FIXED POINTS AND COMMON FIXED POINTS
OF MAPPINGS ON CAT(0) SPACES

MEHDI ASADI

*Department of Mathematics, Zanjan Branch
Islamic Azad University
Zanjan, Iran
E-mail: masadi@azu.ac.ir
Fax: +98-241-4220030

Abstract. In this paper, we will consider the problem of existence of common fixed points for two mappings T and S on a CAT(0) space X. We will suppose that T and S belong to the class of mappings satisfying a generalization of Suzuki's condition (C). Our result improves a number of very recent results of A. Abkar, M. Eslamian in [2] and, as well as, those of B. Nanjaras et al. in [3].

Key Words and Phrases: CAT(0) spaces, fixed points, common fixed point.

2010 Mathematics Subject Classification: 05C05, 54H25.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean plane. It is well known that any complete, simply connected Riemannian manifold having nonpositive sectional curvature is a CAT(0) space. Other examples are pre-Hilbert spaces, R-trees, the complex Hilbert ball with a hyperbolic metric.

In 2008, Suzuki [4] introduced a condition which is weaker than nonexpansiveness and stronger than quasinonexpansiveness. Suzuki’s condition, which was named by him the condition (C), reads as follows: a mapping T on a subset K of a Banach space X is said to satisfy the condition (C) if

$$\frac{1}{2}\|x - Tx\| \leq \|x - y\| \Rightarrow \|Tx - Ty\| \leq \|x - y\|, \quad x, y \in K.$$

In [4], Suzuki proved some fixed point and convergence theorems for such mappings.

Motivated by this result, Garcia-Falset et al. in [5] introduced two kinds of generalizations for the condition (C) and studied both the existence of fixed points and their asymptotic behavior. Very recently, some authors used a modified Suzuki condition for multivalued mappings, and proved some fixed point theorems for multivalued mappings satisfying this condition in Banach spaces [6, 7].

In this paper, we will consider the problem of existence of common fixed points for two mappings T and S on a CAT(0) space X. We will suppose that T and S belong to the class of mappings satisfying some conditions, which are generalizations
of Suzuki’s condition (C). Our result improves a number of very recent results of A. Abkar, M. Eslamian in [2] and, as well as, those of B. Nanjaras et al. in [3].

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subseteq \mathbb{R}$ to X such that $c(0) = x, c(l) = y$, and $d(c(t), c(t_0)) = |t - t_0|$ for all $t, t_0 \in [0, l]$. In particular, c is an isometry and $d(x, y) = l$. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique, this geodesic is denoted by $[x, y]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A comparison triangle for a geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\triangle(x_1, x_2, x_3) := \triangle(x_1, x_2, x_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(x_i, x_j) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom:

“Let \triangle be a geodesic triangle in X and let \triangle be a comparison triangle for \triangle. Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\overline{x}, \overline{y} \in \overline{\triangle}$,

$$d(x, y) \leq d_{\mathbb{E}^2}(\overline{x}, \overline{y}).$$

Here we recall some useful lemma which will be used next.

Lemma 2.1. ([8]) Let (X, d) be a CAT(0) space. For $x, y \in X$ and $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

$$d(x, z) = td(x, y), \quad d(y, z) = (1-t)d(x, y).$$

We use the notation $(1-t)x \oplus ty$ for the unique point z of the above lemma.

Lemma 2.2. ([8, Lemma 2.4]) Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z) \leq (1-t)d(x, z) + td(y, z),$$

for $x, y, z \in X$ and $t \in [0, 1]$.

Lemma 2.3. ([8, Lemma 2.5]) Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z)^2 \leq (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2,$$

for all $x, y, z \in X$ and $t \in [0, 1]$.

In particular by Lemma 2.3 we have

$$d(z, \frac{1}{2}x \oplus \frac{1}{2}y)^2 \leq \frac{1}{2}d(z, x)^2 + \frac{1}{2}d(z, y)^2 - \frac{1}{4}d(x, y)^2,$$

for all $x, y, z \in X$, which is called the (CN) inequality of Bruhat-Tits, as it was shown in [9]. In fact (cf. [10], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN)
Let $\{x_n\}$ be a bounded sequence in X and K be a nonempty bounded subset of X. We associate this sequence with the number
\[r = r(K, \{x_n\}) = \inf \{ r(x, \{x_n\}) : x \in K \}, \]
where
\[r(x, \{x_n\}) = \limsup_{n \to \infty} d(x_n, x), \]
and the set
\[A = A(K, \{x_n\}) = \{ x \in K : r(x, \{x_n\}) = r \}. \]

The number r is known as the asymptotic radius of $\{x_n\}$ relative to K. Similarly, set A is called the asymptotic center of $\{x_n\}$ relative to K.

In the CAT(0) space, the asymptotic center $A = A(K, \{x_n\})$ of $\{x_n\}$ consists of exactly one point whenever K is closed and convex. A sequence $\{x_n\}$ in a CAT(0) space X said to be Δ-convergent to $x \in X$ if x is the unique asymptotic center of every subsequence of $\{x_n\}$. Notice that given $\{x_n\} \subset X$ such that $\{x_n\}$ is Δ-convergent to x and given $y \in X$ with $x \neq y$,
\[\limsup_{n \to \infty} d(x_n, x) < \limsup_{n \to \infty} d(x_n, y). \]
So every CAT(0) space X satisfies the Opial property.

Lemma 2.4. ([11]) Every bounded sequence in a complete CAT(0) space has a Δ-convergent subsequence.

Lemma 2.5. ([12]) If K is a closed convex subset of a complete CAT(0) space and $\{x_n\}$ is a bounded sequence in K, then the asymptotic center of is in K.

Definition 2.6. ([4]) Let T be a mapping on a subset K of a CAT(0) space (X, d). Then T said to satisfy condition (C) if
\[\frac{1}{2} d(x, Tx) \leq d(x, y) \Rightarrow d(Tx, Ty) \leq d(x, y), \]
for all $x, y \in K$.

Definition 2.7. ([2]) Let T be a mapping on a subset K of a CAT(0) space X and $\mu \geq 1$. T is said to satisfy condition (E_μ) if
\[d(x, Ty) \leq \mu d(x, Tx) + d(x, y), \quad x, y \in K. \]

We say that T satisfies condition (E) whenever T satisfies the condition (E_μ) for some $\mu \geq 1$.

Definition 2.8. ([2]) Let T be a mapping on a subset K of a CAT(0) space X and $\lambda \in (0, 1)$. T is said to satisfy condition (C_λ) if
\[\lambda d(x, Tx) \leq d(x, y) \Rightarrow d(Tx, Ty) \leq d(x, y), \quad x, y \in K. \]

Notice that if $0 < \lambda_1 < \lambda_2 < 1$ then the condition (C_{λ_1}) implies the condition (C_{λ_2}). The following example shows that the class of mappings satisfying the conditions (E) and (C_λ) for some $\lambda \in (0, 1)$ is broader than the class of mappings satisfying the condition (C).
Definition 2.9. A mapping T on a subset K of a CAT(0) space X is called quasi-nonexpansive if $\text{Fix}(T) \neq \emptyset$ and $d(T(x), z) \leq d(x, z)$ for all $x \in K$ and $z \in \text{Fix}(T)$.

Lemma 2.10. (\cite[Lemma 2.9]{1}) Assume that a mapping T satisfies the condition (E) and has a fixed point. Then T is a quasi-nonexpansive mapping.

The converse of the above implication is, in general, not true.

The following lemma is a consequence of Proposition 2 proved by Goebel and Kirk \cite{13}.

Lemma 2.11. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a CAT(0) space X and let $\{\alpha_n\} \subseteq [0, 1)$ such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Suppose that $x_{n+1} = \alpha_n y_n \oplus (1-\alpha_n) x_n$ and $d(y_{n+1}, y_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} d(y_n, x_n) = 0$.

Lemma 2.12. (\cite{14}) Let $\{a_n\}$ and $\{b_n\}$ be nonnegative real sequences satisfying the following inequality:

$$a_{n+1} \leq (1 - \lambda_n) a_n + b_n,$$

where $\lambda_n \in (0, 1)$, for all $n \geq n_0$, $\sum_{n=1}^{\infty} \lambda_n = \infty$, and $\frac{b_n}{\lambda_n} \to 0$ as $n \to \infty$. Then $\lim_{n \to \infty} a_n = 0$.

Lemma 2.13. (\cite[Lemma 1]{1}) Suppose that $\{a_n\}$ and $\{b_n\}$ are two sequences of nonnegative numbers such that for some real number $N_0 \geq 1$,

$$a_{n+1} \leq a_n + b_n \quad \forall n \geq N_0.$$

(a) If $\sum_{n=1}^{\infty} b_n < \infty$, then, $\lim a_n$ exists.

(b) If $\sum_{n=1}^{\infty} b_n < \infty$, and $\{a_n\}$ has a subsequence converging to zero, then, $\lim a_n = 0$.

3. Main results

We generalize first Lemma 2.11 and, then, we will prove a common fixed point for two mappings which satisfy the conditions (E) and (C_λ). Our result improves a number of very recent results of A. Abkar, M. Eslamian \cite{2} and B. Nanjaras et al. \cite{3}.

Lemma 3.1. Let $\{y_n\}, \{z_n\}, \{u_n\}$ and $\{v_n\}$ be bounded sequences in a complete CAT(0) space X and let $\{\alpha_n\} \subseteq (0, 1)$ such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Let $\{x_n\}$ be a sequence in X defined by

$$x_{n+1} = \alpha_n y_n \oplus (1-\alpha_n) z_n$$

and suppose

$$d(y_{n+1}, u_n) \leq d(x_{n+1}, z_n)$$

$$d(v_n, z_{n+1}) \leq d(x_{n+1}, y_n)$$

$$d(u_n, v_n) \leq c_n,$$

for all $n \in \mathbb{N}$, where $\{c_n\}$ is a sequence in \mathbb{R}^+. Then the sequence $\{x_n\}$ is bounded and

- if $\sum_{n=1}^{\infty} c_n < +\infty$, then $\lim_{n \to \infty} d(y_n, z_n)$ exists.
Example 3.2. Let \(d(y_n, z_n) + \frac{c_n}{\alpha_n} \to 0 \) as \(n \to \infty \), then \(\lim_{n \to \infty} d(y_n, z_n) = 0 \).

Proof. Since there exist \(a \in X \) and \(r > 0 \) such that \(d(y_n, a) \leq r \) and \(d(z_n, a) \leq r \), we have

\[
d(x_{n+1}, a) \leq d(x_{n+1}, y_n) + d(a, y_n) = (1 - \alpha_n)d(y_n, z_n) + d(a, y_n)
\leq (1 - \alpha_n)(d(y_n, a) + d(a, z_n)) + d(a, y_n)
\leq 2hr + r,
\]

where \(h = \limsup_n \alpha_n < 1 \). This proves \(\{x_n\} \) is bounded.

To prove the convergence of \(a_n := d(y_n, z_n) \) notice that

\[
a_{n+1} = d(y_{n+1}, z_{n+1})
\leq d(y_{n+1}, u_n) + d(u_n, v_n) + d(v_n, z_{n+1})
\leq \alpha_n a_n + c_n + (1 - \alpha_n)a_n
= a_n + c_n.
\]

Now, by Lemma 2.13, \(\lim a_n \) exists.

To prove that \(a_n := d(y_n, z_n) \to 0 \) we observe

\[
a_{n+1} = d(y_{n+1}, z_{n+1})
\leq d(y_{n+1}, u_n) + d(u_n, v_n) + d(v_n, z_{n+1})
\leq \alpha_n a_n + c_n + (1 - \alpha_n)a_n
\]

Now, by Lemma 2.12, \(a_n \to 0 \). \(\square \)

Example 3.2. Let \(X := \mathbb{R} \) with the usual metric \(d(x, y) = |x - y| \). Put

\[
c_n = \frac{1}{n^2}, \quad \alpha_n = \frac{1}{n + 1}, \quad z_n := k, \quad y_n := k + 1, \quad u_n = v_n = k + \frac{n}{n+1},
\]

where \(k \) is real number. So \(x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n)z_n = k + \frac{1}{n+1} \) and all conditions of Lemma 3.1 hold for first case, while \(\lim_{n \to \infty} d(y_n, z_n) = 1 \) exists but \(d(y_n, z_n) \neq 0 \) as \(n \to \infty \).

For second part, put

\[
z_n = \frac{1}{\sqrt{n}}, \quad y_n = z_n + \frac{1}{n}, \quad u_n = v_n = z_{n+1} + \frac{1}{n + 1}.
\]

Thus \(x_{n+1} = z_n + \frac{1}{n(n+1)} \) and all conditions of Lemma 3.1 hold for second case, and since

\[
d(y_n, z_n) + \frac{c_n}{\alpha_n} = \frac{1}{n} + \frac{n + 1}{n^2} \to 0,
\]

therefore \(d(y_n, z_n) \to 0 \) as \(n \to \infty \).

Lemma 3.3. Let \(\{y_n\} \) and \(\{z_n\} \) be bounded sequences in a complete \(CAT(0) \) space \(X \) and let \(\{\alpha_n\} \subseteq (0, 1) \) such that \(\sum_{n=1}^{\infty} \alpha_n = \infty \) and \(\limsup_n \alpha_n < 1 \). Suppose \(\{x_n\} \) be a sequence that defined by \(x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n)z_n \) and

\[
d(y_{n+1}, z_{n+1}) \leq d(x_{n+1}, z_n), \quad (3.1)
\]
or
\[d(y_{n+1}, z_{n+1}) \leq d(x_{n+1}, y_n) \]
(3.2)
for all \(n \in \mathbb{N} \). Then the sequence \(\{x_n\} \) is bounded and \(\lim_{n \to \infty} d(y_n, z_n) = 0 \).

Proof. By the relation (3.1), we have
\[a_{n+1} = d(y_{n+1}, z_{n+1}) \leq d(x_{n+1}, y_n) = \alpha_n d(y_n, z_n) = \alpha_n a_n. \]
Therefore
\[0 \leq a_{n+1} \leq \alpha_n a_n \leq a_n, \]
(3.3)
namely \(\{a_n\} \) is bounded below and decreasing sequence which make it to be convergence to \(l \), i.e. \(a_n \to l \) as \(n \to \infty \). It is clear that \(l \geq 0 \). Now by (3.3) we have
\[l = \limsup_{n \to \infty} a_{n+1} \leq \limsup_{n \to \infty} (\alpha_n a_n) = \limsup_{n \to \infty} (\alpha_n)l \]
and since \(\limsup_{n \to \infty} (\alpha_n) < 1 \) we get that \(l = 0 \).

Now if the relation (3.2) takes place, we have
\[a_{n+1} = d(y_{n+1}, z_{n+1}) \leq d(x_{n+1}, y_n) = (1 - \alpha_n) d(y_n, z_n) = (1 - \alpha_n) a_n. \]
Therefore
\[0 \leq a_{n+1} \leq (1 - \alpha_n) a_n \leq a_n, \]
(3.4)
so \(a_n \to l \) as \(n \to \infty \) for some \(l \). Now by (3.4) we have
\[l = \liminf_{n \to \infty} a_{n+1} \leq \liminf_{n \to \infty} ((1 - \alpha_n) a_n) = (1 - h)l, \]
and since \(h = \limsup_{n \to \infty} (\alpha_n) < 1 \) we get again that \(l = 0 \). \(\square \)

Example 3.4. Let \(X = \mathbb{R} \) with the usual metric \(d(x, y) = |x - y| \). Put
\[\alpha_n = \frac{1}{n+1}, \quad z_n := \frac{1}{n}, \quad y_n := \frac{k}{n}, \]
where \(1 \neq k \in \mathbb{R} \). So \(x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n = \frac{k+n}{(n+1)!} \) and all the conditions of Lemma 3.3 with relation (3.1) hold, and we have
\[\lim_{n \to \infty} d(y_n, z_n) = \lim_{n \to \infty} \frac{|k - 1|}{(n+1)!} = 0. \]

For relation (3.2) from Lemma 3.3, put
\[\alpha_n = \frac{1}{n+1}, \quad z_n := \frac{1}{\sqrt{n}}, \quad y_n := z_n + \frac{1}{n}, \]
so \(x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n = z_n + \frac{1}{n(n+1)} \) and all the conditions of Lemma 3.3 with relation (3.2) hold, and we have again \(\lim_{n \to \infty} d(y_n, z_n) = \lim_{n \to \infty} \frac{1}{n} = 0 \).

Our first main result is the following.
Theorem 3.5. Let K be a nonempty closed convex bounded subset of a complete CAT(0) space X. Suppose that T, S : K → K satisfy the condition (C\lambda) for some λ ∈ (0, 1) and TS = ST. Let x_1 ∈ K and define
\[x_{n+1} = \alpha_nTx_n \oplus (1 - \alpha_n)Sx_n, \text{ for } n \geq 1. \]
Let \{α_n\} ⊆ [λ, 1) such that \(\sum_{n=1}^{\infty} α_n = \infty\) and lim sup \(n\to\infty\) α_n < 1 and suppose that
\[α_n d(x_n, Tx_n) \leq d(x_{n+1}, Sx_n), \]
\[α_n d(x_n, Sx_n) \leq d(x_{n+1}, Tx_n). \]
Then \(\lim_{n\to\infty} d(Tx_n, Sx_n)\) exists.

Proof. Put \(a_n := d(Tx_n, Sx_n), u_n := TSx_n\) and \(v_n = STx_n\). It follows that
\[\lambda d(x_n, Tx_n) \leq α_n d(x_n, Tx_n) \leq d(x_{n+1}, Sx_n) = α_n a_n \]
\[\lambda d(x_n, Sx_n) \leq α_n d(x_n, Sx_n) \leq d(x_{n+1}, Tx_n) = (1 - α_n)a_n \]
By condition (C\lambda), we have
\[d(Tx_{n+1}, TSx_n) \leq α_n a_n \]
\[d(Sx_{n+1}, STx_n) \leq (1 - α_n)a_n \]
\[d(u_n, v_n) = d(STx_n, TSx_n) = 0. \]
Now according to Lemma (3.1) we get that \(\lim_{n\to\infty} d(Tx_n, Sx_n)\) exists.

Remark 3.6. If \(a_n := d(y_n, z_n)\) and \(d(u_n, v_n) \leq \epsilon_n\), then, in the conditions of Lemma 3.1, we have
\[d(u_n, v_n) \leq d(u_n, y_{n+1}) + d(y_{n+1}, z_{n+1}) + d(z_{n+1}, v_n) \]
\[\leq α_n a_n + a_{n+1} + (1 - α_n)a_n \]
\[= a_n + a_{n+1}. \]

Corollary 3.7. ([3, Lemma 3.6]) Let K be a nonempty bounded and convex subset of a complete CAT(0) space X and suppose T : K → K satisfies condition (C). Define a sequence \{x_n\} by \(x_1 \in K\) and
\[x_{n+1} = \alpha_nTx_n \oplus (1 - \alpha_n)x_n, \text{ for all } n \geq 1, \]
where \{α_n\} ⊆ [\frac{1}{2}, 1) is such that \(\sum_{n=1}^{\infty} α_n = \infty\) and lim sup \(n\to\infty\) α_n < 1.
Then \(\lim_{n\to\infty} d(Tx_n, x_n)\) exists.

Proof. It is enough that we take Sx = x and \(\lambda = \frac{1}{2}\). Then \(\alpha_n d(x_n, Tx_n) = d(x_{n+1}, x_n)\) and all the conditions from Theorem 3.5 hold.

Our second main result is the following.

Theorem 3.8. Let K be a nonempty closed convex bounded subset of a complete CAT(0) space X. Suppose T, S : K → K satisfy the conditions (E) and (C\lambda) for some \(\lambda \in (0, 1)\), TS = ST and the relations
\[\lambda d(x_n, Tx_n) \leq d(x_{n+1}, Sx_n), \quad \lambda d(x_n, Sx_n) \leq d(x_{n+1}, Tx_n), \tag{3.5} \]
hold for some sequence \{x_n\} in K.
Then \(\lim_{n\to\infty} d(Tx_n, Sx_n)\) exists and if, additionally \(\lim_{n\to\infty} d(Tx_n, Sx_n) = 0\), then T and S have a common fixed point in K.
Theorem 3.5, we obtain that \(\lim_{n \to \infty} d(Tx_n, Sx_n) \) exists. Notice that
\[
d(x_{n+1}, Sx_n) = \lambda d(Tx_n, Sx_n), \quad d(x_{n+1}, Tx_n) = (1 - \lambda)d(Tx_n, Sx_n). \tag{3.6}
\]

When \(\lim_{n \to \infty} d(Tx_n, Sx_n) = 0 \) we can show that
\[
\limsup_{n \to \infty} d(Tx_n, x_n) = \limsup_{n \to \infty} d(Sx_n, x_n) = 0.
\]

Since
\[
d(x_n, Tx_n) \leq d(x_n, Sx_n) + d(Sx_n, Tx_n)
d(x_n, Sx_n) \leq d(x_n, Tx_n) + d(Tx_n, Sx_n),
\]
we obtain
\[
\limsup_{n \to \infty} d(x_n, Tx_n) \leq \limsup_{n \to \infty} d(x_n, Sx_n)
\]
\[
\limsup_{n \to \infty} d(x_n, Sx_n) \leq \limsup_{n \to \infty} d(x_n, Tx_n).
\]
Thus, from (3.6) we get that
\[
\limsup_{n \to \infty} d(Tx_n, x_n) = \limsup_{n \to \infty} d(Sx_n, x_n) = 0.
\]

Let \(A(\{x_n\}) = \{x_0\} \). By Lemma 2.5 we have \(x_0 \in K \). Since \(T \) and \(S \) satisfy the condition \((E)\) we have
\[
d(x_n, Tx_0) \leq \mu_1 d(x_n, Tx_n) + d(x_n, x_0)
d(x_n, Sx_0) \leq \mu_2 d(x_n, Sx_n) + d(x_n, x_0),
\]
for some \(\mu_1, \mu_2 \geq 1 \). Hence by taking limit superior on both sides in above inequalities, we obtain
\[
\limsup_{n \to \infty} d(x_n, Tx_0) \leq \limsup_{n \to \infty} d(x_n, x_0)
\]
\[
\limsup_{n \to \infty} d(x_n, Sx_0) \leq \limsup_{n \to \infty} d(x_n, x_0).
\]
By the uniqueness of the asymptotic center, we obtain \(Tx_0 = Sx_0 = x_0 \). \(\square \)

Corollary 3.9. \((2, \text{Theorem 3.2})\) Let \(K \) be a nonempty closed convex bounded subset of a complete CAT(0) space \(X \). Suppose \(T : K \to K \) satisfies the conditions \((E)\) and \((C_\lambda)\) for some \(\lambda \in [0, 1) \). If \(\lim_{n \to \infty} d(Tx_n, x_n) = 0 \), then \(T \) has a fixed point in \(K \).

Proof. Put \(Sx = x \) so \(\lambda d(x_n, Tx_n) = d(x_{n+1}, x_n) \) for all \(n \geq 1 \). By Theorem 3.8 we have \(Tx = x \) for some \(x \in K \). \(\square \)

Our last main result is the following.

Theorem 3.10. Let \(K \) be a nonempty bounded closed convex subset of a complete CAT(0) space \(X \) and let \(T, S : K \to K \) be two mappings which satisfy the conditions \((E)\) and \((C_\lambda)\) and \(TS = ST \). Consider \(x_1 \in K \) and define
\[
x_{n+1} = \alpha_n Tx_n \oplus (1 - \alpha_n)Sx_n, \text{ for all } n \geq 1,
\]
where (for some \(\lambda \in (0,1) \)) \(\{\alpha_n\} \subseteq [\lambda, 1) \) is such that \(\sum_{n=1}^{\infty} \alpha_n = \infty \) and \(\limsup_n \alpha_n < 1 \). Suppose that the following relations hold
\[
\alpha_n d(x_n, Tx_n) \leq d(x_{n+1}, Sx_n),
\]
\[
\alpha_n d(x_n, Sx_n) \leq d(x_{n+1}, Tx_n).
\]
If \(\lim_{n \to \infty} d(Tx_n, Sx_n) = 0 \), then \(\lim_{n \to \infty} d(x_n, p) \) exists, for each \(p \in Fix(T) \cap Fix(S) \).

\textbf{Proof.} By Theorem 3.8, \(Fix(T) \cap Fix(S) \neq \emptyset \). Given \(p \in Fix(T) \cap Fix(S) \), by Lemma 2.2 and Lemma 2.10 we have
\[
d(x_{n+1}, p) = d(\alpha_n Tx_n \oplus (1 - \alpha_n) Sx_n, p) \\
\leq \alpha_n d(Tx_n, p) + (1 - \alpha_n) d(Sx_n, p) \\
= d(x_n, p).
\]
Thus \(d(x_{n+1}, p) \leq d(x_n, p) \). So the sequence \(\{d(x_n, p)\} \) which is bounded below and decreasing, which completes the proof. \(\square \)

\textbf{Corollary 3.11.} ([3, Lemma 5.1]) Let \(K \) be a nonempty bounded closed convex subset of a complete CAT(0) space \(X \) and let \(T : K \to X \) be a mapping satisfying condition (C). Define a sequence \(\{x_n\} \) by \(x_1 \in K \) and \(x_{n+1} = \alpha_n Tx_n \oplus (1 - \alpha_n)x_n \) where \(\{\alpha_n\} \subseteq [\frac{1}{2}, 1) \). Then \(\lim_{n \to \infty} d(x_n, p) \) exists, for each \(p \in Fix(T) \).

\textbf{Acknowledgment.} This research has been supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran. The author also like to thank Professors A. Petruşel, S.M. Vaezpour, S. Dhompongsa and H. Soleimani for their helpful advises which led me to present this paper.

\textbf{References}

Received: July 30, 2012; Accepted: October 31, 2012.