Fixed Point Theory, 14(2013), No. 1, 29-38 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINTS AND COMMON FIXED POINTS OF MAPPINGS ON CAT(0) SPACES

MEHDI ASADI

*Department of Mathematics, Zanjan Branch Islamic Azad University Zanjan, Iran E-mail: masadi@azu.ac.ir Fax: +98-241-4220030

Abstract. In this paper, we will consider the problem of existence of common fixed points for two mappings T and S on a CAT(0) space X. We will suppose that T and S belong to the class of mappings satisfying a generalization of Suzuki's condition (C). Our result improves a number of very recent results of A. Abkar, M. Eslamian in [2] and, as well as, those of B. Nanjaras et al. in [3]. **Key Words and Phrases:** CAT(0) spaces, fixed points, common fixed point. **2010 Mathematics Subject Classification**: 05C05, 54H25.

1. INTRODUCTION

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean plane. It is well known that any complete, simply connected Riemannian manifold having nonpositive sectional curvature is a CAT(0) space. Other examples are pre-Hilbert spaces, R-trees, the complex Hilbert ball with a hyperbolic metric.

In 2008, Suzuki [4] introduced a condition which is weaker than nonexpansiveness and stronger than quasinonexpansiveness. Suzuki's condition, which was named by him the condition (C), reads as follows: a mapping T on a subset K of a Banach space X is said to satisfy the condition (C) if

$$\frac{1}{2}||x - Tx|| \le ||x - y|| \Rightarrow ||Tx - Ty|| \le ||x - y||, \quad x, y \in K.$$

In [4], Suzuki proved some fixed point and convergence theorems for such mappings.

Motivated by this result, Garcia-Falset et al. in [5] introduced two kinds of generalizations for the condition (C) and studied both the existence of fixed points and their asymptotic behavior. Very recently, some authors used a modified Suzuki condition for multivalued mappings, and proved some fixed point theorems for multivalued mappings satisfying this condition in Banach spaces [6, 7].

In this paper, we will consider the problem of existence of common fixed points for two mappings T and S on a CAT(0) space X. We will suppose that T and Sbelong to the class of mappings satisfying some conditions, which are generalizations

of Suzuki's condition (C). Our result improves a number of very recent results of A. Abkar, M. Eslamian in [2] and, as well as, those of B. Nanjaras et al. in [3].

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subseteq R$ to X such that c(0) = x, c(l) = y, and $d(c(t), c(t_0)) = |t - t_0|$ for all $t, t_0 \in [0, l]$. In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique, this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A comparison triangle for a geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3) := \triangle(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{x}_i, \overline{y}_j) = d(x_i, y_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom:

"Let \triangle be a geodesic triangle in X and let $\overline{\triangle}$ be a comparison triangle for \triangle . Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\overline{x}, \overline{y} \in \overline{\triangle}$,

$$d(x,y) \le d_{\mathbb{E}^2}(\overline{x},\overline{y}).$$

Here we recall some useful lemma which will be used next.

Lemma 2.1. ([8]) Let (X, d) be a CAT(0) space. For $x, y \in X$ and $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

$$d(x, z) = td(x, y), \quad d(y, z) = (1 - t)d(x, y).$$

We use the notation $(1-t)x \oplus ty$ for the unique point z of the above lemma.

Lemma 2.2. ([8, Lemma 2.4]) Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z) \le (1-t)d(x, z) + td(y, z),$$

for $x, y, z \in X$ and $t \in [0, 1]$.

Lemma 2.3. ([8, Lemma 2.5]) Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2,$$

for all $x, y, z \in X$ and $t \in [0, 1]$.

In particular by Lemma 2.3 we have

$$d(z, \frac{1}{2}x \oplus \frac{1}{2}y)^2 \le \frac{1}{2}d(z, x)^2 + \frac{1}{2}d(z, y)^2 - \frac{1}{4}d(x, y)^2, \text{ for all } x, y, z \in X,$$

which is called the (CN) inequality of Bruhat-Tits, as it was shown in [9]. In fact (cf. [10], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN)

inequality.

Let $\{x_n\}$ be a bounded sequence in X and K be a nonempty bounded subset of X. We associate this sequence with the number

$$r = r(K, \{x_n\}) = \inf\{r(x, \{x_n\}) : x \in K\},\$$

where

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x_n, x),$$

and the set

$$A = A(K, \{x_n\}) = \{x \in K : r(x, \{x_n\}) = r\}.$$

The number r is known as the asymptotic radius of $\{x_n\}$ relative to K. Similarly, set A is called the asymptotic center of $\{x_n\}$ relative to K.

In the CAT(0) space, the asymptotic center $A = A(K, \{x_n\})$ of $\{x_n\}$ consists of exactly one point whenever K is closed and convex. A sequence $\{x_n\}$ in a CAT(0) space X said to be \triangle -convergent to $x \in X$ if x is the unique asymptotic center of every subsequence of $\{x_n\}$. Notice that given $\{x_n\} \subset X$ such that $\{x_n\}$ is \triangle -convergent to x and given $y \in X$ with $x \neq y$,

$$\limsup_{n \to \infty} d(x_n, x) < \limsup_{n \to \infty} d(x_n, y).$$

So every CAT(0) space X satisfies the Opial property.

Lemma 2.4. ([11]) Every bounded sequence in a complete CAT(0) space has a \triangle -convergent subsequence.

Lemma 2.5. ([12]) If K is a closed convex subset of a complete CAT(0) space and if $\{x_n\}$ is a bounded sequence in K, then the asymptotic center of is in K.

Definition 2.6. ([4]) Let T be a mapping on a subset K of a CAT(0) space (X, d). Then T said to satisfy condition (C) if

$$\frac{1}{2}d(x,Tx) \le d(x,y) \Rightarrow d(Tx,Ty) \le d(x,y),$$

for all $x, y \in K$.

Definition 2.7. ([2]) Let T be a mapping on a subset K of a CAT(0) space X and $\mu \geq 1$. T is said to satisfy condition (E_{μ}) if

$$d(x, Ty) \le \mu d(x, Tx) + d(x, y), \quad x, y \in K.$$

We say that T satisfies condition (E) whenever T satisfies the condition (E_{μ}) for some $\mu \geq 1$.

Definition 2.8. ([2]) Let T be a mapping on a subset K of a CAT(0) space X and $\lambda \in (0, 1)$. T is said to satisfy condition (C_{λ}) if

$$\lambda d(x,Tx) \le d(x,y) \Rightarrow d(Tx,Ty) \le d(x,y), \quad x,y \in K.$$

Notice that if $0 < \lambda_1 < \lambda_2 < 1$ then the condition (C_{λ_1}) implies the condition (C_{λ_2}) . The following example shows that the class of mappings satisfying the conditions (E) and (C_{λ}) for some $\lambda \in (0, 1)$ is broader than the class of mappings satisfying the condition (C).

MEHDI ASADI

Definition 2.9. A mapping T on a subset K of a CAT(0) space X is called quasinonexpansive if $Fix(T) \neq \emptyset$ and $d(T(x), z) \leq d(x, z)$ for all $x \in K$ and $z \in Fix(T)$.

Lemma 2.10. ([2, Lemma 2.9]) Assume that a mapping T satisfies the condition (E)and has a fixed point. Then T is a quasi-nonexpansive mapping.

The converse of the above implication is, in general, not true.

The following lemma is a consequence of Proposition 2 proved by Goebel and Kirk [13].

Lemma 2.11. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a CAT(0) space X and let $\{\alpha_n\} \subseteq [0,1)$ such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Suppose that $x_{n+1} = \alpha_n y_n \oplus (1-\alpha_n) x_n$ and $d(y_{n+1}, y_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} d(y_n, x_n) = 0.$

Lemma 2.12. ([14]) Let $\{a_n\}$ and $\{b_n\}$ be nonnegative real sequences satisfying the following inequality:

$$a_{n+1} \le (1 - \lambda_n)a_n + b_n,$$

where $\lambda_n \in (0,1)$, for all $n \geq n_0$, $\sum_{n=1}^{\infty} \lambda_n = \infty$, and $\frac{b_n}{\lambda_n} \to 0$ as $n \to \infty$. Then $\lim_{n \to \infty} a_n = 0.$

Lemma 2.13. ([1, Lemma 1]) Suppose that $\{a_n\}$ and $\{b_n\}$ are two sequences of nonnegative numbers such that for some real number $N_0 \geq 1$,

$$a_{n+1} \le a_n + b_n \quad \forall n \ge N_0.$$

- (a) If $\sum_{n=1}^{\infty} b_n < \infty$, then, $\lim a_n$ exists. (b) If $\sum_{n=1}^{\infty} b_n < \infty$, and $\{a_n\}$ has a subsequence converging to zero, then, $\lim a_n = 0.$

3. MAIN RESULTS

We generalize first Lemma 2.11 and, then, we will prove a common fixed point for two mappings which satisfy the conditions (E) and (C_{λ}) . Our result improves a number of very recent results of A. Abkar, M. Eslamian [2] and B. Nanjaras et al. [3].

Lemma 3.1. Let $\{y_n\}, \{z_n\}, \{u_n\}$ and $\{v_n\}$ be bounded sequences in a complete CAT(0) space X and let $\{\alpha_n\} \subseteq (0, 1)$ such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Let $\{x_n\}$ be a sequence in X defined by

$$x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n$$

and suppose

$$\begin{aligned} d(y_{n+1}, u_n) &\leq d(x_{n+1}, z_n) \\ d(v_n, z_{n+1}) &\leq d(x_{n+1}, y_n) \\ d(u_n, v_n) &\leq c_n, \end{aligned}$$

for all $n \in \mathbb{N}$, where $\{c_n\}$ is a sequence in \mathbb{R}^+ . Then the sequence $\{x_n\}$ is bounded and

• if $\sum_{n=1}^{\infty} c_n < +\infty$, then $\lim_{n\to\infty} d(y_n, z_n)$ exists.

FIXED POINTS AND COMMON FIXED POINTS OF MAPPINGS ON CAT(0) SPACES 33

• if $d(y_n, z_n) + \frac{c_n}{\alpha_n} \to 0$ as $n \to \infty$, then $\lim_{n \to \infty} d(y_n, z_n) = 0$.

Proof. Since there exist $a \in X$ and r > 0 such that $d(y_n, a) \leq r$ and $d(z_n, a) \leq r$, we have

$$d(x_{n+1}, a) \leq d(x_{n+1}, y_n) + d(a, y_n) = (1 - \alpha_n)d(y_n, z_n) + d(a, y_n) \leq (1 - \alpha_n)(d(y_n, a) + d(a, z_n)) + d(a, y_n) \leq 2hr + r,$$

where $h = \limsup_{n \to \infty} \alpha_n < 1$. This proves $\{x_n\}$ is bounded. To prove the convergence of $a_n := d(y_n, z_n)$ notice that

$$\begin{aligned} a_{n+1} &= d(y_{n+1}, z_{n+1}) \\ &\leq d(y_{n+1}, u_n) + d(u_n, v_n) + d(v_n, z_{n+1}) \\ &\leq \alpha_n a_n + c_n + (1 - \alpha_n) a_n \\ &= a_n + c_n. \end{aligned}$$

Now, by Lemma 2.13, $\lim a_n$ exists. To prove that $a_n := d(y_n, z_n) \to 0$ we observe

$$\begin{aligned} a_{n+1} &= d(y_{n+1}, z_{n+1}) \\ &\leq d(y_{n+1}, u_n) + d(u_n, v_n) + d(v_n, z_{n+1}) \\ &\leq \alpha_n a_n + c_n + (1 - \alpha_n) a_n \end{aligned}$$

Now, by Lemma 2.12, $a_n \to 0$. \Box

Example 3.2. Let $X := \mathbb{R}$ with the usual metric d(x, y) = |x - y|. Put

$$c_n = \frac{1}{n^2}, \ \alpha_n = \frac{1}{n+1}, \ z_n := k, \ y_n := k+1, \ u_n = v_n = k + \frac{n}{n+1},$$

where k is real number. So $x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n = k + \frac{1}{n+1}$ and all conditions of Lemma 3.1 hold for first case, while $\lim_{n\to\infty} d(y_n, z_n) = 1$ exists but $d(y_n, z_n) \neq 0$ as $n \to \infty$.

For second part, put

$$z_n = \frac{1}{\sqrt{n}}, \ y_n = z_n + \frac{1}{n}, \ u_n = v_n = z_{n+1} + \frac{1}{n+1}.$$

Thus $x_{n+1} = z_n + \frac{1}{n(n+1)}$ and all conditions of Lemma 3.1 hold for second case, and since

$$d(y_n, z_n) + \frac{c_n}{\alpha_n} = \frac{1}{n} + \frac{n+1}{n^2} \to 0,$$

therefore $d(y_n, z_n) \to 0$ as $n \to \infty$.

Lemma 3.3. Let $\{y_n\}$ and $\{z_n\}$ be bounded sequences in a complete CAT(0) space X and let $\{\alpha_n\} \subseteq (0,1)$ such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Suppose $\{x_n\}$ be a sequence that defined by $x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n$ and

$$d(y_{n+1}, z_{n+1}) \le d(x_{n+1}, z_n), \tag{3.1}$$

or

34

$$d(y_{n+1}, z_{n+1}) \le d(x_{n+1}, y_n) \tag{3.2}$$

for all $n \in \mathbb{N}$. Then the sequence $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(y_n, z_n) = 0$.

Proof. By the relation (3.1), we have

$$a_{n+1} = d(y_{n+1}, z_{n+1}) \le d(x_{n+1}, z_n) = \alpha_n d(y_n, z_n) = \alpha_n a_n.$$

Therefore

$$0 \le a_{n+1} \le \alpha_n a_n \le a_n,\tag{3.3}$$

namely $\{a_n\}$ is bounded below and decreasing sequence which make it to be convergence to l, i.e. $a_n \to l$ as $n \to \infty$. It is clear that $l \ge 0$. Now by (3.3) we have

$$l = \limsup_{n \to \infty} a_{n+1} \le \limsup_{n \to \infty} (\alpha_n a_n) = \limsup_{n \to \infty} (\alpha_n) l$$

and since $\limsup_{n\to\infty} (\alpha_n) < 1$ we get that l = 0.

Now if the relation (3.2) takes place, we have

$$a_{n+1} = d(y_{n+1}, z_{n+1}) \le d(x_{n+1}, y_n) = (1 - \alpha_n)d(y_n, z_n) = (1 - \alpha_n)a_n$$

Therefore

$$0 \le a_{n+1} \le (1 - \alpha_n)a_n \le a_n,$$
 (3.4)

so $a_n \to l$ as $n \to \infty$ for some l. Now by (3.4) we have

 ϵ

$$l = \liminf_{n \to \infty} a_{n+1} \le \liminf_{n \to \infty} ((1 - \alpha_n)a_n) = (1 - h)l,$$

and since $h = \limsup_{n \to \infty} (\alpha_n) < 1$ we get again that l = 0. \Box

Example 3.4. Let $X := \mathbb{R}$ with the usual metric d(x, y) = |x - y|. Put

$$\alpha_n = \frac{1}{n+1}, \ z_n := \frac{1}{n!}, \ y_n := \frac{k}{n!}$$

where $1 \neq k \in \mathbb{R}$. So $x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n = \frac{k+n}{(n+1)!}$ and all the conditions of Lemma 3.3 with relation (3.1) hold, and we have

$$\lim_{n \to \infty} d(y_n, z_n) = \lim_{n \to \infty} \frac{|k-1|}{(n+1)!} = 0.$$

For relation (3.2) from Lemma 3.3, put

$$\alpha_n = \frac{1}{n+1}, \ z_n := \frac{1}{\sqrt{n}}, \ y_n := z_n + \frac{1}{n},$$

so $x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) z_n = z_n + \frac{1}{n(n+1)}$ and all the conditions of Lemma 3.3 with relation (3.2) hold, and we have again $\lim_{n\to\infty} d(y_n, z_n) = \lim_{n\to\infty} \frac{1}{n} = 0.$

Our first main result is the following.

Theorem 3.5. Let K be a nonempty closed convex bounded subset of a complete CAT(0) space X. Suppose that $T, S : K \to K$ satisfy the condition (C_{λ}) for some $\lambda \in (0,1)$ and TS = ST. Let $x_1 \in K$ and define

$$x_{n+1} = \alpha_n T x_n \oplus (1 - \alpha_n) S x_n, \text{ for } n \ge 1.$$

Let $\{\alpha_n\} \subseteq [\lambda, 1)$ such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$ and suppose that

$$\alpha_n d(x_n, Tx_n) \le d(x_{n+1}, Sx_n),$$

$$\alpha_n d(x_n, Sx_n) \le d(x_{n+1}, Tx_n).$$

Then $\lim_{n\to\infty} d(Tx_n, Sx_n)$ exists.

Proof. Put $a_n := d(Tx_n, Sx_n), u_n := TSx_n$ and $v_n = STx_n$. It follows that

$$\lambda d(x_n, Tx_n) \le \alpha_n d(x_n, Tx_n) \le d(x_{n+1}, Sx_n) = \alpha_n a_n$$

$$\lambda d(x_n, Sx_n) \le \alpha_n d(x_n, Sx_n) \le d(x_{n+1}, Tx_n) = (1 - \alpha_n)a_n$$

By condition (C_{λ}) , we have

$$d(Tx_{n+1}, TSx_n) \le \alpha_n a_n$$

$$d(Sx_{n+1}, STx_n) \le (1 - \alpha_n) a_n$$

$$d(u_n, v_n) = d(STx_n, TSx_n) = 0.$$

Now according to Lemma (3.1) we get that $\lim_{n\to\infty} d(Tx_n, Sx_n)$ exists. \Box

Remark 3.6. If $a_n := d(y_n, z_n)$ and $d(u_n, v_n) \le c_n$, then, in the conditions of Lemma 3.1, we have

$$d(u_n, v_n) \leq d(u_n, y_{n+1}) + d(y_{n+1}, z_{n+1}) + d(z_{n+1}, v_n)$$

$$\leq \alpha_n a_n + a_{n+1} + (1 - \alpha_n) a_n$$

$$= a_n + a_{n+1}.$$

Corollary 3.7. ([3, Lemma 3.6]) Let K be a nonempty bounded and convex subset of a complete CAT(0) space X and suppose $T : K \to K$ satisfies condition (C). Define a sequence $\{x_n\}$ by $x_1 \in K$ and

$$x_{n+1} = \alpha_n T x_n \oplus (1 - \alpha_n) x_n$$
, for all $n \ge 1$,

where $\{\alpha_n\} \subset [\frac{1}{2}, 1)$ is such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Then $\lim_{n \to \infty} d(Tx_n, x_n)$ exists.

Proof. It is enough that we take Sx = x and $\lambda = \frac{1}{2}$. Then $\alpha_n d(x_n, Tx_n) = d(x_{n+1}, x_n)$ and all the conditions from Theorem 3.5 hold. \Box

Our second main result is the following.

Theorem 3.8. Let K be a nonempty closed convex bounded subset of a complete CAT(0) space X. Suppose $T, S : K \to K$ satisfy the conditions (E) and (C_{λ}) for some $\lambda \in (0, 1), TS = ST$ and the relations

$$\lambda d(x_n, Tx_n) \le d(x_{n+1}, Sx_n), \quad \lambda d(x_n, Sx_n) \le d(x_{n+1}, Tx_n), \tag{3.5}$$

hold for some sequence $\{x_n\}$ in K.

Then $\lim_{n\to\infty} d(Tx_n, Sx_n)$ exists and if, additionally $\lim_{n\to\infty} d(Tx_n, Sx_n) = 0$, then T and S have a common fixed point in K. *Proof.* Let $x_1 \in K$ and define $x_{n+1} = \lambda T x_n \oplus (1-\lambda)S x_n$. By relation (3.5) and Theorem 3.5, we obtain that $\lim_{n\to\infty} d(T x_n, S x_n)$ exists. Notice that

$$d(x_{n+1}, Sx_n) = \lambda d(Tx_n, Sx_n), \quad d(x_{n+1}, Tx_n) = (1 - \lambda)d(Tx_n, Sx_n).$$
(3.6)

When $\lim_{n\to\infty} d(Tx_n, Sx_n) = 0$ we can show that

$$\limsup_{n \to \infty} d(Tx_n, x_n) = \limsup_{n \to \infty} d(Sx_n, x_n) = 0$$

Since

$$d(x_n, Tx_n) \leq d(x_n, Sx_n) + d(Sx_n, Tx_n)$$

$$d(x_n, Sx_n) \leq d(x_n, Tx_n) + d(Tx_n, Sx_n),$$

we obtain

$$\limsup_{n \to \infty} d(x_n, Tx_n) \leq \limsup_{n \to \infty} d(x_n, Sx_n)$$
$$\limsup_{n \to \infty} d(x_n, Sx_n) \leq \limsup_{n \to \infty} d(x_n, Tx_n)$$

Thus, from (3.6) we get that

$$\limsup_{n \to \infty} d(Tx_n, x_n) = \limsup_{n \to \infty} d(Sx_n, x_n) = 0.$$

Let $A({x_n}) = {x_0}$. By Lemma 2.5 we have $x_0 \in K$. Since T and S satisfy the condition (E) we have

$$\begin{aligned} d(x_n, Tx_0) &\leq & \mu_1 d(x_n, Tx_n) + d(x_n, x_0) \\ d(x_n, Sx_0) &\leq & \mu_2 d(x_n, Sx_n) + d(x_n, x_0), \end{aligned}$$

for some $\mu_1, \mu_2 \ge 1$. Hence by taking limit superior on both sides in above inequalities, we obtain

$$\limsup_{n \to \infty} d(x_n, Tx_0) \leq \limsup_{n \to \infty} d(x_n, x_0)$$
$$\limsup_{n \to \infty} d(x_n, Sx_0) \leq \limsup_{n \to \infty} d(x_n, x_0).$$

By the uniqueness of the asymptotic center, we obtain $Tx_0 = Sx_0 = x_0.\Box$

Corollary 3.9. ([2, Theorem 3.2]) Let K be a nonempty closed convex bounded subset of a complete CAT(0) space X. Suppose $T: K \to K$ satisfies the conditions (E) and (C_{λ}) for some $\lambda \in [0, 1)$. If $\lim_{n\to\infty} d(Tx_n, x_n) = 0$, then T has a fixed point in K.

Proof. Put Sx = x so $\lambda d(x_n, Tx_n) = d(x_{n+1}, x_n)$ for all $n \ge 1$. By Theorem 3.8 we have Tx = x for some $x \in K$. \Box

Our last main result is the following.

Theorem 3.10. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X and let $T, S : K \to K$ be two mappings which satisfy the conditions (E) and (C_{λ}) and TS = ST. Consider $x_1 \in K$ and define

$$x_{n+1} = \alpha_n T x_n \oplus (1 - \alpha_n) S x_n$$
, for all $n \ge 1$,

where (for some $\lambda \in (0,1)$) $\{\alpha_n\} \subseteq [\lambda,1)$ is such that $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_n \alpha_n < 1$. Suppose that the following relations hold

$$\alpha_n d(x_n, Tx_n) \le d(x_{n+1}, Sx_n),$$

$$\alpha_n d(x_n, Sx_n) \le d(x_{n+1}, Tx_n).$$

If $\lim_{n\to\infty} d(Tx_n, Sx_n) = 0$, then $\lim_{n\to\infty} d(x_n, p)$ exists, for each $p \in Fix(T) \cap Fix(S)$.

Proof. By Theorem 3.8, $Fix(T) \cap Fix(S) \neq \emptyset$. Given $p \in Fix(T) \cap Fix(S)$, by Lemma 2.2 and Lemma 2.10 we have

$$d(x_{n+1}, p) = d(\alpha_n T x_n \oplus (1 - \alpha_n) S x_n, p)$$

$$\leq \alpha_n d(T x_n, p) + (1 - \alpha_n) d(S x_n, p)$$

$$= d(x_n, p).$$

Thus $d(x_{n+1}, p) \leq d(x_n, p)$. So the sequence $\{d(x_n, p)\}$ which is bounded below and decreasing, which completes the proof. \Box

Corollary 3.11. ([3, Lemma 5.1]) Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X and let $T: K \to K$ be a mapping satisfying condition (C). Define a sequence $\{x_n\}$ by $x_1 \in K$ and $x_{n+1} = \alpha_n T x_n \oplus (1 - \alpha_n) x_n$ where $\{\alpha_n\} \subseteq [\frac{1}{2}, 1)$. Then $\lim_{n\to\infty} d(x_n, p)$ exists, for each $p \in Fix(T)$.

Acknowledgment. This research has been supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran. The author also like to thank *Professors A. Petruşel*, *S.M. Vaezpour, S. Dhompongsa and H. Soleimani* for their helpful advises which led me to present this paper.

References

- [1] A. Rafiq, Implicit fixed point iterations, Rostock, Math. Kolloq., 62(2007), 21-39.
- [2] A. Abkar, M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Anal., 74(2011), 18351840.
- [3] B. Nanjaras, B. Panyanaka, W. Phuengrattana, Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Systems, 4(2010), 25-31.
- [4] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2008), 1088-1095.
- [5] J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375(2011), 185195.
- [6] A. Abkar, M. Eslamian, A fixed point theorem for generalized nonexpansive multivalued mappings, Fixed Point Theory, 12(2011), 241-246.
- [7] A. Abkar, M. Eslamian, Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces, Fixed Point Theory Appl., 2010(2010), Article ID 457935, 10 pp.
- [8] S. Dhompongsa, B. Panyanak, On △-convergence theorems in CAT(0) spaces, Computer Math. Appl., 56(2008), 2572-2579.
- [9] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math., 41(1972), 5-251.
- [10] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg, 1999.
- [11] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68(2008), 36893696.

MEHDI ASADI

- [12] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8(2007), 3545.
- [13] K. Goebel, W.A. Kirk, Iteration processes for nonexpansive mapping, Contemp. Math., 21(1983), 115123.
- [14] F.P. Vasilev, Numerical Methods for Solving Extremal Problems, Moscow, 1988.

Received: July 30, 2012; Accepted: October 31, 2012.