
Fixed Point Theory, 13(2012), No. 2, 669-680

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

EXISTENCE AND MULTIPLICITY OF POSITIVE
SOLUTIONS FOR SECOND-ORDER SELF-ADJOINT
BOUNDARY VALUE PROBLEM WITH INTEGRAL

BOUNDARY CONDITIONS AT RESONANCE

FANG ZHANG∗, HAIHUA LU∗∗ AND FENG WANG∗

∗School of Mathematics and Physics, Changzhou University,

Changzhou 213164, Jiangsu, China

E-mail: fangzhang188@163.com fengwang188@163.com

∗∗Department of Mathematics, Nantong University,
Nantong 226019, China

E-mail: hhlu188@163.com

Abstract. In this paper, we are concerned with the second order self-adjoint boundary value problem

at resonance
−(p(t)x′(t))′ = f(t, x(t)), t ∈ (0, 1),

x′(0) = 0, x(1) =

Z 1

0
x(s)g(s)ds.

A few new results are given for the existence of at least one, two, three and n positive solutions of

the above boundary value problem by using the theory of a fixed point index for A-proper semilinear
operators defined on cones, where n is an arbitrary natural number.
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1. Introduction

In this paper, we study the existence and multiplicity of positive solutions to the
following self-adjoint boundary value problem (BVP) at resonance

−(p(t)x′(t))′ = f(t, x(t)), t ∈ (0, 1), (1.1)

x′(0) = 0, x(1) =
∫ 1

0

x(s)g(s)ds. (1.2)

Throughout this paper, we assume that the following conditions hold without fur-
ther mention.

(A1) f : [0, 1] × [0,+∞) → R is continuous, p ∈ C[0, 1] ∩ C1(0, 1), p(t) > t(2 − t)
on [0, 1], ∫ 1

0

1
p(t)

dt < e and
∫ 1

0

∫ 1

s

τ

p(τ)
dτg(s)ds > 0.
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(A2) g ∈ L1[0, 1] with g(t) ≥ 0 on [0, 1],

∫ 1

0

g(s)ds = 1, g(t) ≥

∫ 1

0

( ∫ 1

s

τ

p(τ)
dτ

)
g(s)ds

p(t)
∫ 1

0

τ

p(τ)
dτ

∫ 1

t

dτ

p(τ)

.

We note that condition (A2) means that the self-adjoint boundary value prob-
lem (1.1), (1.2) happens to be at resonance in the sense that the associated linear
homogeneous boundary value problem

−x′′(t) = 0, t ∈ (0, 1),

x′(0) = 0, x(1) =
∫ 1

0

x(s)g(s)ds,

has x(t) ≡ c, t ∈ [0, 1], c ∈ R, as a nontrivial solution.
Boundary value problems with integral boundary conditions constitute a very in-

teresting and important class of problems. They include two, three, multi-point and
nonlocal boundary value problems as special cases. For boundary value problems
with integral boundary conditions and comments on their importance, we refer the
reader to the papers by Gallardo [1], Karakostas and Tsamatos [2], Lomtatidze and
Malaguti [3] and the references therein. Moreover, boundary value problems with
integral boundary conditions have been studied by many authors. For details, see, for
example, [4–15] and references therein. The classical tools for such problems include
the coincidence degree theory of Mawhin [16], the Leray-Schauder continuation theo-
rem [16], the fixed point index theory [12, 14], fixed point theorem of cone expansion
and compression [9]. However, as far as the positive solutions are concerned, most
results are for the non-resonant case [4, 5, 9]. In most real problems, only the posi-
tive solution is significant. It is well known that the problem of existence of positive
solutions to boundary value problem is very difficult when the resonant case is consid-
ered. For the existence of positive solutions of multi-point boundary value problems
at resonance, there are only few related works; one can see [15, 17–24]. Recently,
Yang and Ge [15] obtained the existence of a positive solution for problem (1.1),
(1.2). The main method is the Leggett-Williams norm-type theorem established by
O’Regan and Zima [25]. But there are no results concerning with the multiplicity
of positive solutions for (1.1), (1.2). Being directly motivated by [15], in this paper,
we study the existence of n positive solutions for boundary value problem (1.1) with
integral boundary conditions (1.2), where n is an arbitrary natural number. This
will be done by applying the theory of a fixed point index for A-proper semilinear
operators defined on cones due to Cremins [26]. The method we used here is different
from the paper [15] and the main results of this paper are also new.

The paper is divided into four sections. In Section 2, we provide some notation
and lemmas, which play key roles in this paper. In Section 3, we use the theory of
the fixed point index for A-proper semilinear operators defined on cones to establish
several existence results of at least one, two, three, and n positive solutions to the
BVP (1.1) and (1.2). Finally, in Section 4, we give an example to illustrate our results.
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2. Notation and preliminaries

We start by introducing some basic notation relative to theory of the fixed point
index for A-proper semilinear operators defined on cones established by Cremins (see
[26]).

Let X and Y be Banach spaces, D a linear subspace of X, {Xn} ⊂ D, and
{Yn} ⊂ Y sequences of oriented finite dimensional subspaces such that Qny → y
in Y for every y and dist(x,Xn) → 0 for every x ∈ D where Qn : Y → Yn and
Pn : X → Xn are sequences of continuous linear projections. The projection scheme
Γ = {Xn, Yn, Pn, Qn} is then said to be admissible for maps from D ⊂ X to Y .
Definition 2.1 [26]. A map T : D ⊂ X → Y is called approximation-proper (abbre-
viated A-proper) at a point y ∈ Y with respect to Γ, if Tn ≡ QnT |D∩Xn

is continuous
for each n ∈ N and whenever {xnj

: xnj
∈ D ∩ Xnj

} is bounded with Tnj
xnj

→ y,
then there exists a subsequence {xnjk

} such that xnjk
→ x ∈ D, and Tx = y. T is

said to be A-proper on a set Ω if it is A-proper at all points of Ω.
Let K be a cone in a finite dimensional Banach space X and Ω ⊂ X be open and

bounded with Ω∩K = ΩK 6= ∅. Let T : ΩK → K be continuous such that Tx 6= x on
∂ΩK = ∂Ω ∩K where ΩK and ∂ΩK denote the closure and boundary, respectively,
of ΩK relative K. Let ρ : X → K be an arbitrary retraction.

The following definition of finite dimensional index forms the basis of generalized
index for A-proper maps I − T .
Definition 2.2 [26]. We define

iK(T,Ω) = degB(I − Tρ, ρ−1(Ω) ∩BR, 0),

where the degree is the Brouwer degree and BR is a ball containing ΩK .
Now let K be a cone in an infinite dimensional Banach space X with projection

scheme Γ such that Qn(K) ⊆ K for every n ∈ N. Let ρ : X → K be an arbitrary
retraction and Ω ⊂ X an open bounded set such that ΩK = Ω ∩ K 6= ∅. Let
T : ΩK → K be such that I − T is A-proper at 0. Write Kn = K ∩Xn = QnK and
Ωn = ΩK ∩Xn. Then Qnρ : Xn → Kn is a finite dimensional retraction.
Definition 2.3 [26]. If Tx 6= x on ∂ΩK , then we define

indK(T,Ω) = {k ∈ Z ∪ {±∞} : iKnj
(Qnj

T,Ωnj
) → k for some nj →∞},

that is, the index is the set of limit points of iKnj
(Qnj

T,Ωnj
), where the finite dimen-

sional index is that defined above.
Let L : domL ⊂ X → Y be a Fredholm map of index zero and P : X → X, Q : Y →

Y be continuous projectors such that ImP=KerL, KerQ=ImL and X=KerL
⊕

KerP ,
Y =ImL

⊕
ImQ. The restriction of L to domL∩KerP , denote L1, is a bijection onto

ImL with continuous inverse L−1
1 : ImL →domL∩KerP . Since dimImQ=dimKerL,

there exists a continuous bijection J : ImQ → KerL. let K be a cone in an infinite
dimensional Banach space X with projection scheme Γ. If we let H = L + J−1P ,
then H : domL ⊂ X → Y is a linear bijection with bounded inverse. Thus K1 =
H(K ∩ domL) is a cone in the Banach space Y .

Let Ω ⊂ X be open and bounded with ΩK ∩ domL 6= ∅, L : domL ⊂ X → Y
a bounded Fredholm operator of index zero, N : ΩK ∩ domL → Y a bounded
continuous nonlinear operator such that L−N is A-proper at 0.
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We can now extend the definition of the index to A-proper maps of the form L−N
acting on cones.
Definition 2.4. [26] Let ρ1 be a retraction from Y to K1 and assume QnK1 ⊂
K1, P +JQN +L−1

1 (I −Q)N maps K ∩domL to K ∩domL and Lx 6= Nx on ∂ΩK .
We define the fixed point index of L−N over ΩK as

indK([L,N ],Ω) = indK1(T,U),

where U = H(ΩK), T : Y → Y be defined as Ty = (N +J−1P )H−1y for each y ∈ Y ,
and the index on the right is that of Definition 2.3.

For convenience, we recall some properties of indK .
Proposition 2.1. [26] Let L : domL → Y be Fredholm of index zero, Ω ⊂ X be open
and bounded. Assume that P + JQN + L−1

1 (I − Q)N maps K to K, and Lx 6= Nx
on ∂ΩK . Then we have

(P1) (Existence property) if indK([L,N ],Ω) 6= {0}, then there exists x ∈ ΩK such
that Lx = Nx.

(P2) (Normality property) if x0 ∈ ΩK , then indK([L,−J−1P + ŷ0],Ω) = {1}, where
ŷ0 = Hx0 and ŷ0(y) = y0 for every y ∈ H(ΩK).

(P3) (Additivity property) if Lx 6= Nx for x ∈ ΩK\(Ω1 ∪ Ω2), where Ω1 and Ω2

are disjoint relatively open subsets of ΩK , then

indK([L,N ],Ω) ⊆ indK([L,N ],Ω1) + indK([L,N ],Ω2)

with equality if either of indices on the right is a singleton.
(P4) (Homotopy invariance property) if L − N(λ, x) is an A-proper homotopy on

ΩK for λ ∈ [0, 1] and (N(λ, x) + J−1P )H−1 : K1 → K1 and θ 6∈ (L−N(λ, x))(∂ΩK)
for λ ∈ [0, 1], then indK([L,N(λ, x)],Ω) = indK1(Tλ, U) is independent of λ ∈ [0, 1],
where Tλ = (N(λ, x) + J−1P )H−1.

The following two lemmas will be used in this paper.
Lemma 2.1. If L : domL → Y is Fredholm of index zero, Ω is an open bounded set,
and ΩK ∩ domL 6= ∅, and let L − λN be A-proper for λ ∈ [0, 1]. Assume that N is
bounded and P + JQN + L−1

1 (I − Q)N maps K to K. If there exists $ ∈ K1\{θ},
such that

Lx−Nx 6= µ$, (2.1)
for every x ∈ ∂ΩK and all µ ≥ 0, then indK([L,N ],Ω) = {0}.
Proof. Choose a real number l such that

l > sup
x∈Ω

‖Lx−Nx‖
‖$‖

, (2.2)

and define N(µ, x) : [0, 1]× ΩK → Y by

N(µ, x) = Nx + lµ$.

Trivially, (N(µ, x) + J−1P )H−1 : K1 → K1 and from (2.1) we obtain

Nx + lµ$ 6= Lx, for any (µ, x) ∈ [0, 1]× ∂ΩK .

Again, by homotopy invariance property in Proposition 2.1, we have

indK([L,N(0, x)],Ω) = indK([L,N ],Ω) = indK([L,N(1, x)],Ω).
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However
indK([L,N(1, x)],Ω) = {0}.

In fact, if indK([L,N(1, x)],Ω) 6= {0}, the existence property in Proposition 2.1 im-
plies that there exists x0 ∈ ΩK such that

Lx0 = Nx0 + l$.

Then

l =
‖Lx0 −Nx0‖

‖$‖
,

which contradicts (2.2). So

indK([L,N ],Ω) = {0}.

Remark 2.1. The original condition of Theorem 5 in [26] was given with θ 6= $ ∈
L(K ∩ domL) instead of $ ∈ K1\{θ}. The modification is necessary since otherwise
it can not guarantee that (N + µ$ + J−1P )H−1 : K1 → K1.

We assume that there is a continuous bilinear form [y, x] on Y ×X such that y ∈
ImL iff [y, x] = 0 for each x ∈ KerL. This condition implies that if {x1, x2, · · · , xn} is a

basis in KerL, then the linear map J : ImQ → KerL define by Jy = β
n∑

i=1

[y, xi]xi, β ∈

R+ is an isomorphism and that if y =
n∑

i=1

yixi then [J−1y, xi] =
yi

β
for 1 ≤ i ≤ n and

[J−1x0, x0] > 0 for x0 ∈ KerL.
In [26], Cremins extended a continuation theorem related to that of Mawhin [27]

and Petryshyn [28] for semilinear equations to cones refer to [26, Corollary 1] for
the details. By Lemma 2.1 and [26, Corollary 1], we obtain that following existence
theorem of positive solutions to a semilinear equation Lx = Nx in cones.
Lemma 2.2. If L : domL → Y is Fredholm of index zero, K ⊂ X is a cone, Ω1

and Ω2 are open bounded sets such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and Ω2 ∩K ∩ domL 6= ∅.
Suppose that L−λN is A-proper for λ ∈ [0, 1] with N : Ω2 ∩K → Y bounded. Assume
that

(C1) (P + JQN)(K) ⊂ K and (P + JQN + L−1
1 (I −Q)N)(K) ⊂ K,

(C2) Lx 6= λNx for x ∈ ∂Ω2 ∩K, λ ∈ (0, 1],
(C3) QNx 6= 0 for x ∈ ∂Ω2 ∩K ∩KerL,
(C4) [QNx, x] ≤ 0, for all x ∈ ∂Ω2 ∩K ∩KerL,
(C5) there exists $ ∈ K1\{θ}, such that

Lx−Nx 6= µ$, for every µ ≥ 0, x ∈ ∂Ω1 ∩K.

Then there exists x ∈ domL ∩K ∩ (Ω2 \ Ω1) such that Lx = Nx.
Corollary 2.1. Assume all conditions of Lemma 2.2 hold except (C2) and assume

(C2)′ ‖Lx − Nx‖2 ≥ ‖Nx‖2 − ‖Lx‖2 for each x ∈ ∂Ω2 ∩ K. Then the same
conclusion holds.
Proof. We show that (C2)′ implies (C2), i.e., Lx 6= λNx, for each x ∈ ∂Ω2 ∩K, λ ∈
(0, 1]. Here λ ∈ (0, 1). Otherwise, the proof is finished. If x ∈ KerL ∩ ∂Ω2 ∩K, then
it follows from Lx = λNx = θ that Lx = Nx has a solution in domL∩K ∩ (Ω2 \Ω1),
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and Corollary 2.1 is proved. If x ∈ domL\KerL ∩ ∂Ω2 ∩K and Lx = λNx for some
λ ∈ (0, 1), then Nx = λ−1Lx and

(λ− 1)2‖Nx‖2 = ‖Lx−Nx‖2 ≥ ‖Nx‖2 − ‖Lx‖2 = (1− λ2)‖Nx‖2,
by condition (C2)′; that is (λ − 1)2 ≥ 1 − λ2, contradiction the fact that λ ∈ (0, 1).
This completes the proof of Corollary 2.1.

3. Main results

The goal of this section is to apply Lemma 2.2 to discuss the existence and mul-
tiplicity of positive solutions for the BVP (1.1), (1.2). For simplicity of notation, we
set

ω :=
∫ 1

0

∫ 1

s

τ

p(τ)
dτg(s)ds,

l(s) :=
∫ 1

s

∫ 1

τ

1
p(r)

drg(τ)dτ +
∫ 1

s

1
p(τ)

dτ

∫ s

0

g(τ)dτ,

G(t, s) :=



1
ω

l(s)
(
1−

∫ 1

t

τ

p(τ)
dτ +

∫ 1

0

τ2

p(τ)
dτ

)
−

∫ 1

s

τ

p(τ)
dτ +

∫ 1

t

1
p(τ)

dτ,

0 ≤ s ≤ t ≤ 1,
1
ω

l(s)
(
1−

∫ 1

t

τ

p(τ)
dτ +

∫ 1

0

τ2

p(τ)
dτ

)
+

∫ 1

s

1− τ

p(τ)
dτ,

0 ≤ t < s ≤ 1.

It follows from (A1) and (A2) that G(t, s) ≥ 0, t, s ∈ [0, 1], and

1− κ

ω
l(s) ≥ 0, s ∈ [0, 1],

for every κ ∈
(
0,

ω∫ 1

0

∫ 1

s

1
p(τ)

dτg(s)ds

]
. We also set

κ := min
{ ω∫ 1

0

∫ 1

s

1
p(τ)

dτg(s)ds

,
1

max
t,s∈[0,1]

G(t, s)

}
.

Note that κ < 1.

Let X = {x ∈ C[0, 1] : (px′)′ ∈ C[0, 1], x′(0) = 0, x(1) =
∫ 1

0

x(s)g(s)ds}

endowed with the norm ‖x‖X = max
t∈[0,1]

|x(t)| and let Y = C[0, 1] with the norm

‖y‖Y = max
t∈[0,1]

|y(t)| and K = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}, then K is a cone of X.

We define
domL = X,
L : domL → Y, (Lx)(t) = −(p(t)x′(t))′,
N : X → Y, (Nx)(t) = f(t, x(t)),

then BVP (1.1), (1.2) can be written

Lx = Nx, x ∈ K.
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It is easy to check that

KerL = {x ∈ domL : x(t) ≡ c on [0, 1], c ∈ R},

ImL =
{

y ∈ Y :
∫ 1

0

l(s)y(s)ds = 0
}

,

dim KerL = codim ImL = 1,

so that L is a Fredholm operator of index zero.
Next, define the projections P : X → X by

Px =
∫ 1

0

x(s)ds,

and Q : Y → Y by

Qy =
1
ω

∫ 1

0

l(s)y(s)ds.

Furthermore, we define the isomorphism J : ImQ → ImP as Jy = βy, where
β = 1. We are easy to verify that the inverse operator L−1

1 : ImL → domL∩KerP of

L|domL∩KerP : domL ∩KerP → ImL as (L−1
1 y)(t) =

∫ 1

0

k(t, s)y(s)ds, where

k(t, s) =


∫ 1

t

1
p(τ)

dτ −
∫ 1

s

τ

p(τ)
dτ, 0 ≤ s ≤ t ≤ 1,∫ 1

s

1− τ

p(τ)
dτ, 0 ≤ t < s ≤ 1.

The following Theorem 3.1 is a basic existence criterion of BVP (1.1), (1.2).
Theorem 3.1. Assume that there exist two positive numbers a, b such that

(H1) f(t, x) ≥ −κx, for all t ∈ [0, 1], x ≥ 0.
(H2) If one of the two conditions
(i) f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a; f(t, b) < 0, ∀ t ∈ [0, 1],
and
(ii) f(t, a) < 0, ∀ t ∈ [0, 1], f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = b

is satisfied, then the BVP (1.1), (1.2) has at least one positive solution x∗ ∈ K
satisfying min{a, b} ≤ ‖x∗‖X ≤ max{a, b}.
Proof. It is easy to see a 6= b. Without loss of generality, let a < b.

First, we note that L, as so defined, is Fredholm of index zero, L−1
1 is compact by

Arzela-Ascoli theorem and thus L− λN is A-proper for λ ∈ [0, 1] by (a) of Lemma 2
in [28].

For each x ∈ K, then by condition (H1) that

Px + JQNx =
∫ 1

0

x(s)ds +
1
ω

∫ 1

0

l(s)f(s, x(s))ds

≥
∫ 1

0

(1− κ

ω
l(s))x(s)ds

≥ 0,
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Px + JQNx + L−1
1 (I −Q)Nx =

∫ 1

0

x(s)ds +
1
ω

∫ 1

0

l(s)f(s, x(s))ds

+
∫ 1

0

k(t, s)
[
f(s, x(s))− 1

ω

∫ 1

0

l(τ)f(τ, x(τ))dτ
]
ds

=
∫ 1

0

x(s)ds +
∫ 1

0

G(t, s)f(s, x(s))ds

≥
∫ 1

0

(1− κG(t, s))x(s)ds ≥ 0.

This implies that condition (C1) of Lemma 2.2 is satisfied. To apply Lemma 2.2,
we should define two open bounded subsets Ω1,Ω2 of X so that (C2)−(C5) of Lemma
2.2 hold.

We prove only Case (H2)(i). In the same way, we can prove the case (H2)(ii).
Let

Ω1 = {x ∈ X : ‖x‖X < a}, Ω2 = {x ∈ X : ‖x‖X < b}.
Clearly, Ω1 and Ω2 are bounded and open sets and

θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2.

Next we show that (H2)(i) implies (C2). For this purpose, suppose that there ex-
ist x1 ∈ K ∩ ∂Ω2 and λ1 ∈ (0, 1] such that Lx1 = λ1Nx1 then (p(t)x′1(t))

′ =
−λ1f(t, x1(t)) for all t ∈ [0, 1]. Let t1 ∈ [0, 1], such that x1(t1) = max

t∈[0,1]
x1(t) = b.

From boundary conditions, we have t1 ∈ [0, 1). To continue with the proof, we dis-
tinguish between two cases.

Case 1. t1 = 0. Here, x′1(0) = 0, we see from (H2)(i) that

0 < −λ1f(0, x1(0)) = (p(0)x′1(0))′ = p′(0)x′1(0) + p(0)x′′1(0) = p(0)x′′1(0),

and consequently, x′′1(0) > 0. It follows from x′′1(t) is continuous in [0, 1] that there
exists δ ∈ (0, 1), such that x′′1(t) > 0 when t ∈ (0, δ]. This, together with boundary
condition x′1(0) = 0, imply x′1(t) = x′1(0) +

∫ t

0
x′′1(s)ds > 0. Hence

x1(t) = x1(0) +
∫ t

0

x′1(s)ds > x1(0), t ∈ (0, δ],

and x1(0) is not the maximum on [0, 1], a contradiction.
Case 2. t1 ∈ (0, 1). In this case, x′1(t1) = 0, x′′1(t1) ≤ 0. This gives

−λ1f(t1, x1(t1)) = (p(t1)x′1(t1))
′ = p′(t1)x′1(t1) + p(t1)x′′1(t1) = p(t1)x′′1(t1) ≤ 0,

which contradicts (H2)(i). So for each x ∈ ∂Ω2∩K and λ ∈ (0, 1], we have Lx 6= λNx.
Thus (C2) of Lemma 2.2 is satisfied.

To prove (C4) of Lemma 2.2, we define the bilinear form [·, ·] : Y ×X → R as

[y, x] =
∫ 1

0

l(s)y(s)x(s)ds.

It is clear that [·, ·] is continuous and satisfies [y, x] = 0 for every x ∈ KerL, y ∈ ImL.
In fact, for any x ∈ KerL and y ∈ ImL, we have x ≡ c, a constant, and there exists
x ∈ X such that y(s) = −(p(s)x′(s))′ for each s ∈ [0, 1].
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By x′(0) = 0, x(1) =
∫ 1

0

x(s)g(s)ds, we get

[y, x] =
∫ 1

0

l(s)y(s)x(s)ds = −c

∫ 1

0

l(s)(p(s)x′(s))′ds = 0.

Let x ∈ KerL ∩ ∂Ω2 ∩K, then x(t) ≡ b, so we have by condition (H2)(i)

QNx =
1
ω

∫ 1

0

l(s)f(s, b)ds 6= 0,

[QNx, x] =
∫ 1

0

l(s)
( 1

ω

∫ 1

0

l(τ)f(τ, b)dτ
)
· b ds

= b

∫ 1

0

l(s)ds
1
ω

∫ 1

0

l(τ)f(τ, b)dτ

< 0.

Thus (C3) and (C4) of Lemma 2.2 are verified.
Finally, we prove (C5) of Lemma 2.2 is satisfied. We may suppose that

Lx 6= Nx, ∀ x ∈ ∂Ω1 ∩K.

Otherwise, the proof is completed. Let $ ≡ 1 ∈ K1\{θ}. We claim that

Lx−Nx 6= µ$, ∀ x ∈ ∂Ω1 ∩K, µ ≥ 0. (3.2)

In fact, if not, there exist x2 ∈ ∂Ω1 ∩K and µ1 > 0, such that

Lx2 −Nx2 = µ1.

Operating on both sides of the latter equation by Q and using QL = θ, we have

QNx2 + Qµ1 = 0,

that is
1
ω

∫ 1

0

l(s)(f(s, x2(s)) + µ1)ds = 0. (3.3)

For any x2 ∈ ∂Ω1 ∩K, we have ‖x2‖X = a. By condition (H2)(i) and µ1 > 0,

1
ω

∫ 1

0

l(s)(f(s, x2(s)) + µ1)ds > 0,

in contradiction to (3.3). So (3.2) holds, that is (C5) of Lemma 2.2 is verified.
Thus all conditions of Lemma 2.2 are satisfied and there exists x∗ ∈ K ∩ (Ω2\Ω1)

such that Lx∗ = Nx∗ and the assertion follows. Thus x∗ ∈ K and a ≤ ‖x∗‖X ≤ b.
Let [c] be the integer part of c. The following result concerns the existence of n

positive solutions.
Theorem 3.2. Assume that there exist n + 1 positive numbers a1 < a2 < · · · < an+1

such that
(H1)′ f(t, x) ≥ −κx, for all t ∈ [0, 1], x ≥ 0.
(H2)′ If one of the two conditions
(i) f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a2i−1, i = 1, 2, · · · , [n+2

2 ];
f(t, a2i) < 0, ∀ t ∈ [0, 1], i = 1, 2, · · · , [n+1

2 ]
and
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(ii) f(t, a2i−1) < 0, ∀ t ∈ [0, 1], i = 1, 2, · · · , [n+2
2 ];

f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a2i, i = 1, 2, · · · , [n+1
2 ]

is satisfied, then the BVP(1.1), (1.2) has at least n positive solutions x∗i ∈ K, i =
1, 2, · · · , n satisfying ai < ‖x∗i ‖X < ai+1.
Proof. Modeling the proof of Theorem 3.1, we can prove that if there exist two
positive numbers a, b such that f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = b and
f(t, a) < 0, ∀ t ∈ [0, 1], then BVP (1.1), (1.2) has at least one positive solution
x∗ ∈ K satisfying min{a, b} < ‖x∗‖X < max{a, b}.

By the claim, for every pair of positive numbers {ai, ai+1}, i = 1, 2, · · · , n, (1.1),
(1.2) has at least n positive solutions x∗i ∈ K satisfying ai < ‖x∗i ‖X < ai+1.

We have the following existence result for two positive solutions.
Corollary 3.1. Assume that there exist three positive numbers a1 < a2 < a3 such
that

(H1)′′ f(t, x) ≥ −κx, for all t ∈ [0, 1], x ≥ 0.
(H2)′′ If one of the two conditions
(i) f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a1;

f(t, a2) < 0, ∀ t ∈ [0, 1], f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a3

and
(ii) f(t, a1) < 0, ∀ t ∈ [0, 1], f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a2;

f(t, a3) < 0, ∀ t ∈ [0, 1]
is satisfied, then the BVP (1.1), (1.2) has at least two positive solutions x∗1, x

∗
2 ∈ K

satisfying a1 ≤ ‖x∗1‖X < a2 < ‖x∗2‖X ≤ a3.
We also have the following existence result for three positive solutions.

Corollary 3.2. Assume that there exist four positive numbers a1 < a2 < a3 < a4

such that
(H1)′′′ f(t, x) ≥ −κx, for all t ∈ [0, 1], x ≥ 0.
(H2)′′′ If one of the two conditions
(i) f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a1; f(t, a2) < 0, ∀ t ∈ [0, 1],

f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a3; f(t, a4) < 0, ∀ t ∈ [0, 1]
and

(ii) f(t, a1) < 0, ∀ t ∈ [0, 1], f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a2;
f(t, a3) < 0, ∀ t ∈ [0, 1], f(t, x) > 0, ∀ t ∈ [0, 1], x ≥ 0, ‖x‖X = a4

is satisfied, then the BVP (1.1), (1.2) has at least three positive solutions x∗1, x
∗
2, x

∗
3 ∈

K satisfying a1 ≤ ‖x∗1‖X < a2 < ‖x∗2‖X < a3 < ‖x∗3‖X ≤ a4.
Remark 3.1. Using the method above, we can deal with the following self-adjoint
boundary value problem (BVP)


(p(t)x′(t))′ = f(t, x(t)), t ∈ (0, 1),

x′(0) = 0, x(1) =
∫ 1

0

x(s)g(s)ds.
(3.4)

We can also verify the similar results presented in this paper are valid for BVP (3.4),
we omit the details here.
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4. Example

In this section, we give an example to illustrate the main results of the paper.
Consider the following second-order three-point boundary value problem (BVP) −(etx′(t))′ = − (5t+2)(3e−8)

10e−25 sinx, 0 < t < 1,

x′(0) = 0, x(1) =
∫ 1

0

2tx(t)dt.
(4.1)

Corresponding to the BVP (1.1), (1.2), p(t) = et, g(t) = 2t, and

f(t, x) = − (5t + 2)(3e− 8)
10e− 25

sinx.

After direct computations, we get κ = 2(3e−8)
2e−5 and f(t, x) ≥ −κx, x ≥ 0, t ∈ [0, 1].

(1) We take x ≡ π
2 = a, x ≡ 3π

2 = b, then all the conditions of Theorem 3.1 are
satisfied. Thus BVP (4.1) has at least one positive solution x∗ satisfying

π

2
≤ ‖x∗‖X ≤ 3π

2
.

(2) We take x ≡ π
2 = a1, x ≡ 3π

2 = a2, x ≡ 5π
2 = a3, then all the conditions of

Corollary 3.1 are satisfied. Thus BVP (4.1) has at least two positive solutions x∗1, x
∗
2

satisfying π
2 ≤ ‖x∗1‖X < 3π

2 < ‖x∗2‖X ≤ 5π
2 .

(3) We take x ≡ π
2 = a1, x ≡ 3π

2 = a2, x ≡ 5π
2 = a3, x ≡ 7π

2 = a4, then all the
conditions of Corollary 3.2 are satisfied. Thus BVP (4.1) has at least three positive
solutions x∗1, x

∗
2, x

∗
3 satisfying π

2 ≤ ‖x∗1‖X < 3π
2 < ‖x∗2‖X < 5π

2 < ‖x∗3‖X ≤ 7π
2 .

(4) We take x ≡ (4i−3)π
2 = a2i−1, i = 1, 2, · · · , [n+2

2 ]; x ≡ (4i−1)π
2 = a2i, i =

1, 2, · · · , [n+1
2 ], then all the conditions of Theorem 3.2 are satisfied. Thus BVP (4.1)

has at least n positive solutions x∗i , i = 1, 2, · · · , n satisfying ai < ‖x∗i ‖X < ai+1, i =
1, 2, · · · , n.
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