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1. INTRODUCTION

In 1959, G. Marinescu [15] extended the Banach Contraction Principle to locally
convex spaces, while I. Colojoara [7] and N. Gheorghiu [12] do the same thing to
gauge spaces and R. J. Knill [14] to uniform spaces. In 1971, Cain and Nashed [4]
extended the notion of contraction to Hausdorff locally convex linear spaces. They
showed that on sequentially complete subset Banach Contraction Principle is still
valid. V.G. Angelov [1] introduced in 1987 the notion of generalized ¢-contractive
single-valued map in gauge spaces, meanwhile the concept for multivalued operators
was given in 1998 (see V.G. Angelov [2]). In 2000, M. Frigon [10] introduced the
notion of singlevalued generalized contraction in gauge spaces and proved that every
generalized contraction on a complete gauge space has a unique fixed point.
Definition 1.1. Let X be any set. A map p: X x X — R, is called a pseudometric
(a gauge) in X whenever

(1) p(z,y) >0, for all z,y € X;
(2) If x =y, then p(z, y) = 0;
(3) p(z,y) = ply,x), for all z,y € X;
(4) p(z, 2) < p(z,y) +p(y, 2), for all z,y,z € X.
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Definition 1.2. A family P = {p, }aca of pseudometrics on X (or a gauge structure
on X), where A is a directed set, is said to be separating if for each pair of points
x,y € X, with © # y, there is a p, € P such that p,(x,y) # 0.

A pair (X,P) of a nonempty set X and a separating gauge structure P on X is
called a gauge space.

It is well known (see Dugundji [8], pages 198-204) that any family P of pseudo-
metrics on a set X induces on X a uniform structure ¢ and conversely, any uniform
structure U on X is induced by a family of pseudometrics on X. In addition, we
have that U is separating (or Hausdorff) if and only if P is separating. Thus we may
identify the gauge spaces and the Hausdorff uniform spaces.

Definition 1.3. A sequence (x,)nen of elements in X is said to be Cauchy if for
every € > 0 and a € A, there is an N with po(2y, Znyp) < e foralln > N and p € N.

The sequence (z,)nen is called convergent if there exists an zp € X such that for
every ¢ > 0 and « € A, there is an N with p, (29, z,) < for all n > N.

Definition 1.4. A gauge space is called complete if any Cauchy sequence is conver-
gent.

A subset of X is said to be sequentially closed if it contains the limit of any con-
vergent sequence of its elements.

For further details see J. Dugundji [8], A. Granas, J. Dugundji [13], M. Frigon [11],
I. A. Rus, A. Petrugel, G. Petrugel [24], T.P. Petru [17].

Let (X, P) be a gauge space and consider the following families of subsets of X:

P(X):={Y e P(X)| Y #0}, P,(X):={Y € P(X)| Y is bounded},
Py(X):={Y € P(X)| Y is closed}, Pp(X):={Y € P(X)| Y is compact}.

If (X,P) is a gauge space, then the gap functional in P((X,P)) for every a € A is
defined as

D, : P((X,P)) x P((X,P)) = Ry, Da(B,C) = inf{pa(b,c) | be B, ce C}.

In particular, if ©og € X then D, (zo, B) :== Da({x0}, B).
We will denote by H,, the generalized Pompeiu-Hausdorff functional on P((X,P)),
defined as
H, : P(X,P)) x P(X,P)) — Ry U{+cc},

H,(B,C) = max{supD,(b,C),supD,(c, B)}.
beB ceC

Let (X, P) be a gauge space. If F': (X,P) — P((X,P)) is a multivalued operator,

then z € X is called fixed point for F' if and only if € F(z). The set
Fig(F):={z e X|z € F(z)}

is called the fixed point set of F'.

For a multivalued operator F' : (X,P) — P((X,P)) we will denote by

Graph(F) ={(z,y) e X xY :y € F(x)}

the graphic of F.
Notice that f : (X,P) — (X,P) is a selection for F': (X,P) — P((X,P)) if f(x) €
F(z), for each z € X.
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For the following notions see I.A. Rus [21] and [20], I.A. Rus, A. Petrusel, A.
Sintamarian [25] and A. Petrusel [19].

Definition 1.5. Let (X,P) be a gauge space and F : (X,P) — P,((X,P)) be a
multivalued operator. By definition, F' is a multivalued weakly Picard (briefly MWP)
operator if for each z € X and each y € F(z) there exists a sequence (2,)nen such
that:

(i) w0 =z, 71 = y;

(i) @p41 € F(xy), for each n € N;

(iil) the sequence (2, )nen is convergent and its limit is a fixed point of F.

Remark 1.6. A sequence (z,)nen satisfying the condition (i) and (ii), in the Defi-
nition 1 is called a sequence of successive approximations of F' starting from (x,y) €
Graph(F).

If F: (X,P)— P((X,P)) is a MWP operator, then we define F'* : Graph(F) —
P(FizF) by the formula F*°(z,y) := { z € Fiz(F) | there exists a sequence of
successive approximations of F' starting from (z,y) that converges to z }.
Definition 1.7. Let (X, P) be a gauge space and F': (X,P) — P((X,P)) be a MWP
operator. Then, F is called a c-multivalued weakly Picard operator (briefly - MWP
operator) if and only if there exists a selection f* of F* such that

Do, [(2,y)) < ¢ palz,y), for all (z,y) € Graph(F), « € A.

For the theory of multivalued weakly Picard operators see [19] and [25].

The purpose of this paper is to present some results concerning the Ulam-Hyers
stability of some operatorial inclusions (such as the fixed point inclusion) by using
the weakly Picard operator technique.

2. ULAM-HYERS STABILITY FOR FIXED POINT INCLUSIONS

Definition 2.1. Let (X,P) be a gauge space and F : (X,P) — P((X,P)) be a
multivalued operator. The fixed point inclusion

z€F(x), zeX (2.1)

is called generalized Ulam-Hyers stable if and only if there exists ¥ := {tq}aca 2
family of mappings, where each v, : Ry — R, is increasing, continuous in 0 and
1¥(0) = 0 such that for each £, > 0 and for each solution y* € X of the inequation

Da(y, F(y)) < €a (2.2)

there exists a solution z* of the fixed point inclusion (2.1) such that
Da(y*,2%) < a(eq), for all a € A.

If there exists ¢ = {cq }aca € (0,00)? such that ¥, (t) := cut, for each t € R, and
a € A, then the fixed point inclusion (2.1) is said to be Ulam-Hyers stable.
Definition 2.2. (Espinola-Petrusel [9]) Let (X, P) be a gauge space and F' : (X, P) —
P((X,P)) be a multivalued operator. Then F is an admissible ¢, —MWP operator
(briefly c,— AMWP operator) if and only if ¢, € (0,00), for each @ € A and the
following conditions are satisfied:
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1) there exists a selection f*° of F*° such that
Pz, f(2,9)) < capalz,y), for all (z,y) € Graph(F) and for all a € A.

2) for every x € X and every ¢ = {qo} € (1,00)%, there exists y € F(x) such
that
Pal®,y) < qaDa(w, F(x)), for all a € A.

Theorem 2.3. Let (X,P) be a gauge space and F : (X,P) — P((X,P)) be a
ca~-AMWP operator. Then, the fixed point inclusion (2.1) is Ulam-Hyers stable.
Proof. Let e, > 0 and y* € F>(x,y) be a solution of (2.2), i.e., Do (y*, F(y*)) < €4,
for all & € A. From condition 2) of Definition 2 we have that for every ¢ = {g.} €
(1,00)# there exists u* € F(y*) such that p,(y*,u*) < gaDa(y*, F(y*)). Then from
condition 1) from Definition 2 for (u*,y*) € Graph(F) we consider z* := f>(y*,u*)
which satisfies the following relations:

(i) =* is a solution of the fixed point inclusion (2.1).

(i) pa(y™ =*) =paly”, [* (Y™, u")) < capaly”, u’)

< cagaDa(y", F(y*)) < cagaCa-

Thus the fixed point inclusion is Ulam-Hyers stable.

O’Regan, Petrugel and Petru proved in [16] the existence of a fixed point for a
Cirié—type multivalued operator. We will show now that the fixed point inclusion
(2.1) is Ulam-Hyers stable provided the multivalued operator F satisfies a Cirié-type
contraction condition. Our tool will be the abstract result given in Theorem 2.
Theorem 2.4. Let (X, P) be a complete gauge space and F : (X,P) — P((X,P) be
a multivalued operator with closed graph. We suppose that:

(i) there exists {an}aca € (0,1)? such that, for every a € A, the following
implication holds: for each x,y € X we have:

Ho(F(z), F(y)) < ao - ML (z,y),

where
M (x,y) := max{pa(z,y), Da(z, F(2)), Daly, F(y)), %[Da(x,F(y)) +Da(y, F(x))]}-

(ii) for every z,y € X, every u € F(x) and every ¢ = {qa}aca € (1,00)? there
exists v € F(y) such that py(u,v) < go - Ho(F(x), F(y)), for every o € A.

Then the fixed point inclusion (2.1) is Ulam-Hyers stable.
Proof. We have to show that F' is a ¢,.-AMWP operator.

Let 79 € X and z; € F(zo) be arbitrary. For every ¢ = {ga}aca € (1,00)4, by
(ii), there exists xo € F(z1) such that

Palx1,22) < goHo(F(z0), F(z1)), for each o € A.
Then:
Pa(®1,72) < qoHo(F(0), F(21))
< oMy (xo,21)

= 4o 0q maX{pa(l’mxl),Da(l’O,F(xo)),Da(zl,F(le)),%Da(l’o,F(Il))}.
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We introduce the following notation:
1
I':= max{pa (0, 21), Da (20, F(20)), Da (1, F(21)), §Da($o7F(I1))}

and will choose ¢ = {qa }aca € (1,00)? such that 1 < ¢, < i, for each a € A.

T = pa(wo,m) then pa(xlu $2) < QQaapa(xmxl)'

If T' = Dy (x0, F(x0)) then since Dy (zg, F(x0)) < pa(zo, 1) we have

Pa(71,72) < gatapPa(To, 1)

If T' = Do(z1, F(z1)) then po(z1,72) < qataDa(z1, F(21)) < qaGapa(T1,v2),
which is a contradiction since 1 < ¢, < i, for each o € A.

If T = 1 Do (o, F(z1)) then

1 Qa0
Pa(r1,22) < QaaaiDa(ajOaF(xl)) < %pa(fﬂo,xz) <

ot
< a2a[pa(x07$1) + pa (w1, 22)].
Hence, we obtain that
Go G,
< — .
pa(‘rlax2) =9 _ qaaapa(xmxl)
Then
1 1 1
I = §Da($an($1)) < 5?&(1'07371) < §[pa(xo,x1) + pa(z1,22)] <
1 Golq 1
< |14+ —pa , = —p, ) < Do , ,
< 2[ + 27%[%‘]10 (zo,21) 2*Qaaap (20, 21) < palzo,21)

which is a contradiction with the definition of I'.
Thus in all cases we have that

Pa(T1,22) < gatapal(To, 1).

By induction, we will obtain a sequence (z,)nen of succesive approximations for F'
starting from x(, satisfying the following assertion:

Pa(Zns Tri1) < (ata)"pa(xo, 21), for every n € N* and « € A.
For each n,m € N* and for every a € A we have

pa(xna -Tn-i-m) S pa(mny xn-&-l) + ...+ pa(mn+m—17 xn—i—m) S

< [1 + ...+ (Qaaa)mil] : (Qaaa)npa(xmxl) =

1- (qaaa)m n (Qaaa)n

1= gaaq (4ata)"Palwo,21) < 7 Gala

Letting n — +o00 and taking into account the completeness of the gauge space, we

obtain that the sequence (z,)nen is Cauchy. Thus, the sequence is convergent and it

converges to a fixed point of F since the multivalued operator F : (X, P) — P((X,P))
has closed graph.

Hence the multivalued operator F' is a c¢,-AMWP with ¢, = ﬁ. Applying

Theorem 2 we obtain the Ulam-Hyers stability of the fixed point inclusion (2.1).

pa(xo,ml)-
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3. APPLICATION

We give at the beginning of this section the notion of Ulam-Hyers stability for an
integral inclusion. Let us consider the following integral inclusion:

x(t) € /K(t,s,x(s))ds +g(t) a.e. t € [0,00), (3.1)

t
where [ K(t,s,z(s))ds denotes the multivalued integral in Aumann’ sense, see [3].
“t

A solution of the integral inclusion (3.1) is a continuous function which satisfies
the inclusion.
Definition 3.1. The integral inclusion (3.1) is Ulam-Hyers stable if and only if there
exists ¢ = {cq taca € (0,00)? such that for each e = {e4}aca € (0,00)* and for any
e-solution y* of (3.1) (i.e., any y* € C'(R,R™) which satisfies the inequality
t
ly™(t) — K(t,s,2(s))ds — g(t)| < &4, for each t > 0) (3.2)

—t
there exists a solution x* of the inclusion (3.1) such that
ly*(t) — 2" (t)] < ¢q - €q, for each ¢ > 0.
Then we have the following result.

Theorem 3.2. We suppose that

(i) K :[0,00)%x[0,00) xR™ — P.,(R™) is jointly measurable for all z € C[0, o0);
(i) g € C(RR™)
(iii) for almost every (t,s) € [0,00) x [0, 00) the multivalued operator
K(t,s,") : R™ — P(R™) is continuous;
(iv) there exists Lx > 0 such that for every u,v € R™

H(K(tasau)7K(ta va)) <Lk- ||U - U”

a) The integral inclusion (3.1) has at least one solution in C(R,R™).
b) The integral inclusion (3.1) is Ulam-Hyers stable.

Proof. a) We consider the sequentially complete gauge space (C’ (R,R™), (dn)n€N>

dp(z,y) = sup {||m(t) —y(@)l -e_T”t“}, >0, ne N,
te[—n,n]

and the multivalued operator

F(z)(t) = /K(t, s,x(s))ds + g(t).



ULAM-HYERS STABILITY OF OPERATORIAL INCLUSIONS 647

Let x1, 22 € C([-n,n],R™) and u; € F(x1). Then u; € R™ and

w () /K(t,s,x(s))ds+g(t).

Thus there exists k1(t,s) € K(t,s,x(s)) such that ui(t) = ft k1(t, s)ds + g(t). Since
“t
H(K(t,s,21(5)), K(t,s,22(5))) < L - |[21(s) — z2(s)]|
follows that there exists v € K(¢,s,22(s)) such that
[k (t,5) = vl| < L - [lz1(s) — z2(s)]]-
Thus the multivalued operator G defined by
G(t) = K(t,s,22(s)) N{v : ||k1(t,s) —vl| < L - [[z1(s) — z2(s)]]}

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski’s se-
lection theorem there exists ks(t,s) a measurable selection for G. Then kq(t,s) €
K(t,s,x2(s)) and

11 (2, 8) = ka(t, s)|| < L - [l (s) — 22(s)]-
¢
Let us(t) = [ ko(t, s)ds + g(t) € F(x2). Then for t € [-n,n], n € N* we have
¢

[I£l
fua® —ua] < [ kit~ ka(t.s) s
= |Itl
Izl
[ i+ loats) = a(o)] s

=izl

IA

Il
_ / Lic - [21(3) — wa(s)[| - e=71o1 - e7Molgs
il
Il
S LK 'dn($1,$2) . / GTHSHdS = LK . dn(a?l,xz) .
—Ilell

Thus dy, (uy,us) < LTK - dp(x1,22). Choosing 7 > Lk we have that Lp := LTK < 1.
By the analogous relation obtained by interchanging the roles of x; and x5 it follows
that

et

Hn(F(l’l), F(JCQ)) S LF . dn(xl,ﬂjg).

In what follows we want to prove that the multivalued operator F' is an admissible
contraction. We have already obtained the first condition, so it remains to show that
for every x € C([—n,n], R™) and every € € (0,00)N", there exists y € F(x) such that
dn(2,y) < Dp(z, F(2)) + &g, for every n € N*.
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Supposing the contrary, we have that there exists ¢ € (O,OO)N* and exists © €
C([—n,n],R™) such that for all y € F(z) we have d,(z,y) > D, (z,F(x)) + &,. It
follows that D, (z, F(x)) > D, (z, F(z)) + &, and so &, <0, for every n € N*, which
is a contradiction.

Thus the multivalued operator F' is an admissible contraction. This implies that
F is also a ¢, — AMW P operator with ¢, = (1 — Lr)~!, hence we have the existence
of the solution.

b) Applying Theorem 2 the second conclusion follows too.

Remark 3.3. For other Ulam-Hyers stability theorems see [6] (for a classical ap-
proach) and [5], [18],]20], [22], [23] (by Picard and weakly Picard operator technique).

Acknowledgement. The second author is partially supported by a grant of the Ro-
manian National Authority for Scientific Research, CNCS UEFISCDI, project number
PN-II-ID-PCE-2011-3-0094.

REFERENCES

[1] V.G. Angelov, Fized point theorems in uniform spaces and applications, Czehoslovak Math. J.,
37(112)(1987), 19-33.
[2] V.G. Angelov, Fized points of multi-valued mappingsin uniform spaces, Math. Balkanica,
12(1998), no. 1-2, 29-35.
(3] J.P. Aubin, H. Frankowska, Set-valued analysis, Birkhauser, Basel, 1990.
[4] G.L. Cain, Jr., M.Z. Nashed, Fized points and stability for a sum of two operators in locally
conver spaces, Pacific J. Math., 839(1971), 581-592.
[5] M.F. Bota-Boriceanu, A. Petrusel, Ulam-Hyers stability for operatorial equations and inclu-
stons, Analele Univ. I. Cuza lasi, 57(2011), DOI: 10.2478/v10157-011-0003-6.
[6] L.P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of Volterra integral equations,
Banach J. Math. Anal., 3(2009), no. 1, 36-43.
[7] 1. Colojoard, On a fized point theorem in complete uniform spaces, Com. Acad. RPR., 11(1961),
281-283.
J. Dugundji, Topology, Allyn & Bacon, Boston, 1966.
[9] R. Espinola, A. Petrusel, Ezistence and data dependence of fized points for multivalued operators
on gauge spaces, J. Math. Anal. Appl., 309(2005), 420-432.
[10] M. Frigon, Fized point results for generelized contractions in gauge spaces and applications,
Proc. Amer. Math. Soc., 128(2000), 2957-2965.
[11] M. Frigon, Fized point and continuation results for contractions in metric and gauge spaces,
Banach Center Publications, 77(2007), 89-114.
[12] N. Gheorghiu, Contraction theorem in uniform spaces, Stud. Cerc. Mat., 19(1967), 119-122
(Romanian).
[13] A. Granas, J. Dugundji, Fized Point Theory, Springer-Verlag, Berlin, 2003.
[14] R.J. Knill, Fized points of uniform spaces, J. Math. Anal. Appl., 12(1965), 449-455.
[15] G. Marinescu, Spatii vectoriale topologice si pseudotopologice (Topological and pseudo-topo-
logical vector spaces), Biblioteca Matematica, vol. IV, Ed. Academiei RPR, Bucharest, 1959.
[16] D. O’Regan, A. Petrusel, T.P. Petru, Fized point results for Cirié type contractions on a set
with two separating gauge structures, Sci. Math. Jap., 21(2008), 503-512.
[17] T.P. Petru, Fized point results for @-contractions on a set with two separating gauge structures,
Anal. $tiint. Univ. ”Ovidius” Constanta Ser. Math., 18(2010), 263-286.
[18] T.P. Petru, A. Petrusel. J.-C. Yao, Ulam-Hyers stability for operatorial equations and inclusions
via nonself operators, Taiwanese J. Math., 15(2011), No. 5, 2169-2193.
[19] A. Petrusel, Multivalued weakly Picard operators and applications, Sci. Math. Jpn., 59(2004),
169-202.

=



ULAM-HYERS STABILITY OF OPERATORIAL INCLUSIONS 649

[20] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009),
No. 2, 305-320.

[21] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.

[22] I.A. Rus, The theory of a metrical fized point theorem: theoretical and applicative relevances,
Fixed Point Theory, 9(2008), 541-559.

[23] I.A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai Math.,
54(2009), 125-133.

[24] I.A. Rus, A. Petrusel, G. Petrusel, Fized Point Theory, Cluj University Press, 2008.

[25] I.A. Rus, A. Petrusel, A. Sintdmarian, Data dependence of the fixed points set of some multi-
valued weakly Picard operators, Nonlinear Anal., 52(2003), 1947-1959.

Received: October 18, 2011; Accepted: February 2, 2012.



650

T.P. PETRU AND M.-F. BOTA



