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Abstract. Using the weakly Picard operator technique, we will present some Ulam-Hyers stabil-
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1. Introduction

In 1959, G. Marinescu [15] extended the Banach Contraction Principle to locally
convex spaces, while I. Colojoară [7] and N. Gheorghiu [12] do the same thing to
gauge spaces and R. J. Knill [14] to uniform spaces. In 1971, Cain and Nashed [4]
extended the notion of contraction to Hausdorff locally convex linear spaces. They
showed that on sequentially complete subset Banach Contraction Principle is still
valid. V.G. Angelov [1] introduced in 1987 the notion of generalized ϕ-contractive
single-valued map in gauge spaces, meanwhile the concept for multivalued operators
was given in 1998 (see V.G. Angelov [2]). In 2000, M. Frigon [10] introduced the
notion of singlevalued generalized contraction in gauge spaces and proved that every
generalized contraction on a complete gauge space has a unique fixed point.
Definition 1.1. Let X be any set. A map p : X ×X → R+ is called a pseudometric
(a gauge) in X whenever

(1) p(x, y) ≥ 0, for all x, y ∈ X;
(2) If x = y, then p(x, y) = 0;
(3) p(x, y) = p(y, x), for all x, y ∈ X;
(4) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X.
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Definition 1.2. A family P = {pα}α∈A of pseudometrics on X (or a gauge structure
on X), where A is a directed set, is said to be separating if for each pair of points
x, y ∈ X, with x 6= y, there is a pα ∈ P such that pα(x, y) 6= 0.

A pair (X,P) of a nonempty set X and a separating gauge structure P on X is
called a gauge space.

It is well known (see Dugundji [8], pages 198-204) that any family P of pseudo-
metrics on a set X induces on X a uniform structure U and conversely, any uniform
structure U on X is induced by a family of pseudometrics on X. In addition, we
have that U is separating (or Hausdorff) if and only if P is separating. Thus we may
identify the gauge spaces and the Hausdorff uniform spaces.
Definition 1.3. A sequence (xn)n∈N of elements in X is said to be Cauchy if for
every ε > 0 and α ∈ A, there is an N with pα(xn, xn+p) ≤ ε for all n ≥ N and p ∈ N.

The sequence (xn)n∈N is called convergent if there exists an x0 ∈ X such that for
every ε > 0 and α ∈ A, there is an N with pα(x0, xn) ≤ ε for all n ≥ N .
Definition 1.4. A gauge space is called complete if any Cauchy sequence is conver-
gent.

A subset of X is said to be sequentially closed if it contains the limit of any con-
vergent sequence of its elements.

For further details see J. Dugundji [8], A. Granas, J. Dugundji [13], M. Frigon [11],
I. A. Rus, A. Petruşel, G. Petruşel [24], T.P. Petru [17].

Let (X,P) be a gauge space and consider the following families of subsets of X:

P (X) := {Y ∈ P(X)| Y 6= ∅}, Pb(X) := {Y ∈ P (X)| Y is bounded},

Pcl(X) := {Y ∈ P (X)| Y is closed}, Pcp(X) := {Y ∈ P (X)| Y is compact}.
If (X,P) is a gauge space, then the gap functional in P ((X,P)) for every α ∈ A is

defined as

Dα : P ((X,P))× P ((X,P)) → R+, Dα(B,C) = inf{pα(b, c) | b ∈ B, c ∈ C}.

In particular, if x0 ∈ X then Dα(x0, B) := Dα({x0}, B).
We will denote by Hα the generalized Pompeiu-Hausdorff functional on P ((X,P)),

defined as
Hα : P ((X,P))× P ((X,P)) → R+ ∪ {+∞},
Hα(B,C) = max{sup

b∈B
Dα(b, C), sup

c∈C
Dα(c,B)}.

Let (X,P) be a gauge space. If F : (X,P) → P ((X,P)) is a multivalued operator,
then x ∈ X is called fixed point for F if and only if x ∈ F (x). The set

Fix(F ) := {x ∈ X| x ∈ F (x)}

is called the fixed point set of F .
For a multivalued operator F : (X,P) → P ((X,P)) we will denote by

Graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}

the graphic of F .
Notice that f : (X,P) → (X,P) is a selection for F : (X,P) → P ((X,P)) if f(x) ∈
F (x), for each x ∈ X.
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For the following notions see I.A. Rus [21] and [20], I.A. Rus, A. Petruşel, A.
Ŝıntămărian [25] and A. Petruşel [19].
Definition 1.5. Let (X,P) be a gauge space and F : (X,P) → Pcl((X,P)) be a
multivalued operator. By definition, F is a multivalued weakly Picard (briefly MWP)
operator if for each x ∈ X and each y ∈ F (x) there exists a sequence (xn)n∈N such
that:
(i) x0 = x, x1 = y;
(ii) xn+1 ∈ F (xn), for each n ∈ N;
(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of F .
Remark 1.6. A sequence (xn)n∈N satisfying the condition ( i) and ( ii), in the Defi-
nition 1 is called a sequence of successive approximations of F starting from (x, y) ∈
Graph(F ).

If F : (X,P) → P ((X,P)) is a MWP operator, then we define F∞ : Graph(F ) →
P (FixF ) by the formula F∞(x, y) := { z ∈ Fix(F ) | there exists a sequence of
successive approximations of F starting from (x, y) that converges to z }.
Definition 1.7. Let (X,P) be a gauge space and F : (X,P) → P ((X,P)) be a MWP
operator. Then, F is called a c-multivalued weakly Picard operator (briefly c-MWP
operator) if and only if there exists a selection f∞ of F∞ such that

pα(x, f∞(x, y)) ≤ c · pα(x, y), for all (x, y) ∈ Graph(F ), α ∈ A.

For the theory of multivalued weakly Picard operators see [19] and [25].
The purpose of this paper is to present some results concerning the Ulam-Hyers

stability of some operatorial inclusions (such as the fixed point inclusion) by using
the weakly Picard operator technique.

2. Ulam-Hyers stability for fixed point inclusions

Definition 2.1. Let (X,P) be a gauge space and F : (X,P) → P ((X,P)) be a
multivalued operator. The fixed point inclusion

x ∈ F (x), x ∈ X (2.1)

is called generalized Ulam-Hyers stable if and only if there exists ψ := {ψα}α∈A a
family of mappings, where each ψα : R+ → R+ is increasing, continuous in 0 and
ψα(0) = 0 such that for each εα > 0 and for each solution y∗ ∈ X of the inequation

Dα(y, F (y)) ≤ εα (2.2)

there exists a solution x∗ of the fixed point inclusion (2.1) such that

pα(y∗, x∗) ≤ ψα(εα), for all α ∈ A.

If there exists c = {cα}α∈A ∈ (0,∞)A such that ψα(t) := cαt, for each t ∈ R+ and
α ∈ A, then the fixed point inclusion (2.1) is said to be Ulam-Hyers stable.
Definition 2.2. (Espinola-Petruşel [9]) Let (X,P) be a gauge space and F : (X,P) →
P ((X,P)) be a multivalued operator. Then F is an admissible cα−MWP operator
(briefly cα− AMWP operator) if and only if cα ∈ (0,∞), for each α ∈ A and the
following conditions are satisfied:
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1) there exists a selection f∞ of F∞ such that

pα(x, f∞(x, y)) ≤ cαpα(x, y), for all (x, y) ∈ Graph(F ) and for all α ∈ A.
2) for every x ∈ X and every q = {qα} ∈ (1,∞)A, there exists y ∈ F (x) such

that
pα(x, y) ≤ qαDα(x, F (x)), for all α ∈ A.

Theorem 2.3. Let (X,P) be a gauge space and F : (X,P) → P ((X,P)) be a
cα-AMWP operator. Then, the fixed point inclusion (2.1) is Ulam-Hyers stable.
Proof. Let εα > 0 and y∗ ∈ F∞(x, y) be a solution of (2.2), i.e., Dα(y∗, F (y∗)) ≤ εα,
for all α ∈ A. From condition 2) of Definition 2 we have that for every q = {qα} ∈
(1,∞)A there exists u∗ ∈ F (y∗) such that pα(y∗, u∗) ≤ qαDα(y∗, F (y∗)). Then from
condition 1) from Definition 2 for (u∗, y∗) ∈ Graph(F ) we consider x∗ := f∞(y∗, u∗)
which satisfies the following relations:

(i) x∗ is a solution of the fixed point inclusion (2.1).
(ii) pα(y∗, x∗) = pα(y∗, f∞(y∗, u∗)) ≤ cαpα(y∗, u∗)

≤ cαqαDα(y∗, F (y∗)) ≤ cαqαεα.

Thus the fixed point inclusion is Ulam-Hyers stable.
O’Regan, Petruşel and Petru proved in [16] the existence of a fixed point for a

Ćirić-type multivalued operator. We will show now that the fixed point inclusion
(2.1) is Ulam-Hyers stable provided the multivalued operator F satisfies a Ćirić-type
contraction condition. Our tool will be the abstract result given in Theorem 2.
Theorem 2.4. Let (X,P) be a complete gauge space and F : (X,P) → P ((X,P) be
a multivalued operator with closed graph. We suppose that:

(i) there exists {aα}α∈A ∈ (0, 1)A such that, for every α ∈ A, the following
implication holds: for each x, y ∈ X we have:

Hα(F (x), F (y)) ≤ aα ·MF
α (x, y),

where

MF
α (x, y) := max{pα(x, y), Dα(x, F (x)), Dα(y, F (y)),

1
2
[Dα(x, F (y))+Dα(y, F (x))]}.

(ii) for every x, y ∈ X, every u ∈ F (x) and every q = {qα}α∈A ∈ (1,∞)A there
exists v ∈ F (y) such that pα(u, v) ≤ qα ·Hα(F (x), F (y)), for every α ∈ A.

Then the fixed point inclusion (2.1) is Ulam-Hyers stable.
Proof. We have to show that F is a cα-AMWP operator.

Let x0 ∈ X and x1 ∈ F (x0) be arbitrary. For every q = {qα}α∈A ∈ (1,∞)A, by
(ii), there exists x2 ∈ F (x1) such that

pα(x1, x2) ≤ qαHα(F (x0), F (x1)), for each α ∈ A.
Then:

pα(x1, x2) ≤ qαHα(F (x0), F (x1))

≤ qαaαM
F
α (x0, x1)

= qαaα max{pα(x0, x1), Dα(x0, F (x0)), Dα(x1, F (x1)),
1
2
Dα(x0, F (x1))}.
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We introduce the following notation:

Γ := max{pα(x0, x1), Dα(x0, F (x0)), Dα(x1, F (x1)),
1
2
Dα(x0, F (x1))}

and will choose q = {qα}α∈A ∈ (1,∞)A such that 1 < qα <
1

aα
, for each α ∈ A.

If Γ = pα(x0, x1) then pα(x1, x2) ≤ qαaαpα(x0, x1).
If Γ = Dα(x0, F (x0)) then since Dα(x0, F (x0)) ≤ pα(x0, x1) we have

pα(x1, x2) ≤ qαaαpα(x0, x1).

If Γ = Dα(x1, F (x1)) then pα(x1, x2) ≤ qαaαDα(x1, F (x1)) ≤ qαaαpα(x1, x2),
which is a contradiction since 1 < qα <

1
aα

, for each α ∈ A.
If Γ = 1

2Dα(x0, F (x1)) then

pα(x1, x2) ≤ qαaα
1
2
Dα(x0, F (x1)) ≤

qαaα

2
pα(x0, x2) ≤

≤ qαaα

2
[pα(x0, x1) + pα(x1, x2)].

Hence, we obtain that

pα(x1, x2) ≤
qαaα

2− qαaα
pα(x0, x1).

Then

Γ =
1
2
Dα(x0, F (x1)) ≤

1
2
pα(x0, x1) ≤

1
2
[pα(x0, x1) + pα(x1, x2)] ≤

≤ 1
2
[1 +

qαaα

2− qαaα
]pα(x0, x1) =

1
2− qαaα

pα(x0, x1) < pα(x0, x1),

which is a contradiction with the definition of Γ.
Thus in all cases we have that

pα(x1, x2) ≤ qαaαpα(x0, x1).

By induction, we will obtain a sequence (xn)n∈N of succesive approximations for F
starting from x0, satisfying the following assertion:

pα(xn, xn+1) ≤ (qαaα)npα(x0, x1), for every n ∈ N∗ and α ∈ A.

For each n,m ∈ N∗ and for every α ∈ A we have

pα(xn, xn+m) ≤ pα(xn, xn+1) + ...+ pα(xn+m−1, xn+m) ≤
≤ [1 + ...+ (qαaα)m−1] · (qαaα)npα(x0, x1) =

=
1− (qαaα)m

1− qαaα
· (qαaα)npα(x0, x1) ≤

(qαaα)n

1− qαaα
pα(x0, x1).

Letting n→ +∞ and taking into account the completeness of the gauge space, we
obtain that the sequence (xn)n∈N is Cauchy. Thus, the sequence is convergent and it
converges to a fixed point of F since the multivalued operator F : (X,P) → P ((X,P))
has closed graph.

Hence the multivalued operator F is a cα-AMWP with cα = 1
1−qαaα

. Applying
Theorem 2 we obtain the Ulam-Hyers stability of the fixed point inclusion (2.1).
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3. Application

We give at the beginning of this section the notion of Ulam-Hyers stability for an
integral inclusion. Let us consider the following integral inclusion:

x(t) ∈
t∫

−t

K(t, s, x(s))ds+ g(t) a.e. t ∈ [0,∞), (3.1)

where
t∫
−t

K(t, s, x(s))ds denotes the multivalued integral in Aumann’ sense, see [3].

A solution of the integral inclusion (3.1) is a continuous function which satisfies
the inclusion.
Definition 3.1. The integral inclusion (3.1) is Ulam-Hyers stable if and only if there
exists c = {cα}α∈A ∈ (0,∞)A such that for each ε = {εα}α∈A ∈ (0,∞)A and for any
ε-solution y∗ of (3.1) (i.e., any y∗ ∈ C(R,Rm) which satisfies the inequality

|y∗(t)−
∫ t

−t

K(t, s, x(s))ds− g(t)| ≤ εα, for each t ≥ 0) (3.2)

there exists a solution x∗ of the inclusion (3.1) such that

|y∗(t)− x∗(t)| ≤ cα · εα, for each t ≥ 0.

Then we have the following result.
Theorem 3.2. We suppose that

(i) K : [0,∞)× [0,∞)×Rm → Pcp(Rm) is jointly measurable for all x ∈ C[0,∞);
(ii) g ∈ C(R,Rm);
(iii) for almost every (t, s) ∈ [0,∞)× [0,∞) the multivalued operator

K(t, s, ·) : Rm → P (Rm) is continuous;
(iv) there exists LK > 0 such that for every u, v ∈ Rm

H(K(t, s, u),K(t, s, v)) ≤ LK · ‖u− v‖.

Then:

a) The integral inclusion (3.1) has at least one solution in C(R,Rm).
b) The integral inclusion (3.1) is Ulam-Hyers stable.

Proof. a) We consider the sequentially complete gauge space
(
C(R,Rm), (dn)n∈N

)
where

dn(x, y) = sup
t∈[−n,n]

{
‖x(t)− y(t)‖ · e−τ‖t‖

}
, τ > 0, n ∈ N∗,

and the multivalued operator

F (x)(t) =

t∫
−t

K(t, s, x(s))ds+ g(t).
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Let x1, x2 ∈ C([−n, n],Rm) and u1 ∈ F (x1). Then u1 ∈ Rm and

u1(t) ∈
t∫

−t

K(t, s, x(s))ds+ g(t).

Thus there exists k1(t, s) ∈ K(t, s, x(s)) such that u1(t) =
t∫
−t

k1(t, s)ds+ g(t). Since

H(K(t, s, x1(s)),K(t, s, x2(s))) ≤ LK · ‖x1(s)− x2(s)‖
follows that there exists v ∈ K(t, s, x2(s)) such that

‖k1(t, s)− v‖ ≤ LK · ‖x1(s)− x2(s)‖.
Thus the multivalued operator G defined by

G(t) = K(t, s, x2(s)) ∩ {v : ‖k1(t, s)− v‖ ≤ LK · ‖x1(s)− x2(s)‖}
has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski’s se-
lection theorem there exists k2(t, s) a measurable selection for G. Then k2(t, s) ∈
K(t, s, x2(s)) and

‖k1(t, s)− k2(t, s)‖ ≤ LK · ‖x1(s)− x2(s)‖.

Let u2(t) =
t∫
−t

k2(t, s)ds+ g(t) ∈ F (x2). Then for t ∈ [−n, n], n ∈ N∗ we have

‖u1(t)− u2(t)‖ ≤
‖t‖∫

−‖t‖

‖k1(t, s)− k2(t, s)‖ds

≤
‖t‖∫

−‖t‖

LK · ‖x1(s)− x2(s)‖ ds

=

‖t‖∫
−‖t‖

LK · ‖x1(s)− x2(s)‖ · e−τ‖s‖ · eτ‖s‖ds

≤ LK · dn(x1, x2) ·
‖t‖∫

−‖t‖

eτ‖s‖ds = LK · dn(x1, x2) ·
eτ‖t‖

τ
.

Thus dn(u1, u2) ≤ LK

τ · dn(x1, x2). Choosing τ > LK we have that LF := LK

τ < 1.
By the analogous relation obtained by interchanging the roles of x1 and x2 it follows
that

Hn(F (x1), F (x2)) ≤ LF · dn(x1, x2).
In what follows we want to prove that the multivalued operator F is an admissible

contraction. We have already obtained the first condition, so it remains to show that
for every x ∈ C([−n, n],Rm) and every ε ∈ (0,∞)N∗ , there exists y ∈ F (x) such that
dn(x, y) ≤ Dn(x, F (x)) + εn, for every n ∈ N∗.
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Supposing the contrary, we have that there exists ε ∈ (0,∞)N∗ and exists x ∈
C([−n, n],Rm) such that for all y ∈ F (x) we have dn(x, y) > Dn(x, F (x)) + εn. It
follows that Dn(x, F (x)) ≥ Dn(x, F (x)) + εn and so εn ≤ 0, for every n ∈ N∗, which
is a contradiction.

Thus the multivalued operator F is an admissible contraction. This implies that
F is also a cn−AMWP operator with cn = (1−LF )−1, hence we have the existence
of the solution.

b) Applying Theorem 2 the second conclusion follows too.
Remark 3.3. For other Ulam-Hyers stability theorems see [6] (for a classical ap-
proach) and [5], [18],[20], [22], [23] (by Picard and weakly Picard operator technique).
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logical vector spaces), Biblioteca Matematică, vol. IV, Ed. Academiei RPR, Bucharest, 1959.
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