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Abstract. The paper is devoted to existence of solutions to initial value problems for nonlinear

first order differential systems with nonlocal conditions. The proof will rely on the Perov, Schauder
and Leray-Schauder fixed point principles which are applied to a nonlinear integral operator. The

novelty in this paper is that this approach is combined with the technique that uses convergent to
zero matrices and vector norms.
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1. Introduction

In this paper we deal with the nonlocal initial value problem for the first order
differential system 

x′ (t) = f1 (t, x (t) , y(t))
y′ (t) = f2 (t, x (t) , y(t)) (a.e. on [0, 1])
x (0) = α[x]
y (0) = β[y].

(1.1)

Here f1, f2 : [0, 1]×R2 → R are Carathéodory functions, α, β : C[0, 1] → R are linear
and continuous functionals such that 1− α[1] 6= 0 and 1− β[1] 6= 0.

Problem (1.1) is equivalent to the following integral system in C [0, 1]2 :{
x(t) = 1

1−α[1]α[g1] +
∫ t

0
f1 (s, x (s) , y(s)) ds

y(t) = 1
1−β[1]β[g2] +

∫ t

0
f2 (s, x (s) , y(s)) ds,

where

g1(t) :=
∫ t

0

f1 (s, x (s) , y(s)) ds, g2(t) :=
∫ t

0

f2 (s, x (s) , y(s)) ds.

This can be viewed as a fixed point problem in C [0, 1]2 for the completely continuous
operator T : C [0, 1]2 → C [0, 1]2 , T = (T1, T2), where T1 and T2 are given by
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T1(x, y)(t) = 1
1−α[1]α[g1] +

∫ t

0
f1 (s, x (s) , y(s)) ds,

T2(x, y)(t) = 1
1−β[1]β[g2] +

∫ t

0
f2 (s, x (s) , y(s)) ds.

Nonlocal problems were extensively discussed in the literature by different methods
(see [2], [3], [5], [6], [9], [10], [12], [14], [15], [16], [17], [18] and references therein).
For example, in [15], it is shown how the existence of multiple positive solutions of
nonlinear second order differential equations of the form

u′′(t) + p(t)u′(t) + q(t)u(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1),

subject to various nonlocal boundary conditions can be established under a unified
approach. The nonlocal boundary conditions are of the general form

au(0)− bu′(0) = α[u], cu(1) + du′(1) = β[u],

where α[u], β[u] are linear functionals given by Stieltjes integrals, not assumed to be
positive for all u ≥ 0. The well known multi-point boundary value problems are special
cases, and it is allowed for some coefficients to have opposite signs. Then, in [16], it is
established the existence of multiple positive solutions of nonlinear equations of the
form

−u′′(t) = g(t)f(t, u(t)), t ∈ (0, 1),

where f, g are non-negative functions, subject to various nonlocal boundary condi-
tions. The common feature is that each problem can be written as an integral equation
in the space C[0, 1], of the form

u(t) = γ(t)α[u] +
∫ 1

0

k(t, s)g(s)f (s, u (s)) ds,

where α[u] is a linear functional given by a Stieltjes integral.
A unified method of establishing the existence of multiple positive solutions for a

large number of non-linear differential equations of arbitrary order with any allowed
number of non-local boundary conditions is given in [17]. In particular, the authors
determine the Green’s function for these problems with very little explicit calculation,
which shows that studying a more general version of a problem with appropriate
notation can lead to a simplification in approach. They also obtain existence and
non-existence results, some of which are sharp, and give new results for both non-
local and local boundary conditions. The authors illustrate the theory with a detailed
account of a fourth-order problem that models an elastic beam and also determine
optimal values of the constants that appear in the theory. To be more specific, a
typical example of the problems that are treated there is the weakly singular fourth-
order equation

u(4)(t) = g(t)f(t, u(t)), t ∈ (0, 1),

where g and f are non-negative functions, typically f is continuous and g ∈ L1 may
have pointwise singularities, with the non-local boundary conditions (some βi[u] could
be identically 0, and hence are omitted)

u(0) = β1[u], u′(0) = β2[u], u(1) = β3[u], u′′(1) + β4[u] = 0.
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Here, the boundary conditions involve linear continuous functionals on C[0, 1], or
equivalently Stieltjes integrals

βj [u] =

1∫
0

u(s)dBj(s)

with signed measures, that is Bj are functions of bounded variations.
A similar approach for the study of existence of multiple positive solutions for

semi-positone boundary value problems of arbitrary order is given by the same au-
thors, Webb and Infante in [18]. The nonlocal boundary conditions are quite general,
involving positive linear functionals on the space C[0, 1], given by Stieltjes integrals.
With their general theory, one can, for the first time in semi-positone problems, allow
any number of the boundary conditions to be nonlocal. More exactly, one approach
to establishing the existence of positive solutions of a boundary value problem is to
seek fixed points of a Hammerstein integral operator of the form

Ŝu(t) =

1∫
0

k(t, s)f(s, u(s))ds, (1.2)

in a cone of positive functions, where k is the corresponding Green’s function. When
seeking positive solutions of (1.2), it is usually required that the nonlinearity f and
the kernel k are both positive. However, in some applications, f changes sign, which
problems are called semi-positone or non-positone in the literature. For example,
problems of the type

u(n)(t) = λf(t, u(t)),

occur as models for the concentration of a reactant inside a porous catalyst pellet. In
applications one is often interested in showing the existence of positive solutions for
λ small.

A completely different approach is given in [9] to the nonlocal initial value problem
for the first order differential system

x′ (t) = f (t, x (t) , y(t))
y′ (t) = g (t, x (t) , y(t)) (a.e. on [0, 1])

x (0) +
m∑

k=1

akx(tk) = 0

y (0) +
m∑

k=1

ãky(tk) = 0.

Here f, g : [0, 1] × R2 → R are Carathéodory functions, tk are given points with

0 ≤ t1 ≤ t2 ≤ ... ≤ tm < 1 and ak, ãk are real numbers with 1 +
m∑

k=1

ak 6= 0 and

1 +
m∑

k=1

ãk 6= 0. The initial conditions that are imposed can be viewed of ”functional

type”. Fixed point principles are applied to a nonlinear integral operator splitted into
two parts like in [3], one of Fredholm type for the subinterval containing the points
involved by the nonlocal condition, and an another one of Volterra type for the rest
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of the interval. The goal of this paper is to extend the results established in [9] to
the case where the non-local initial conditions are more generally expressed in terms
of two linear continuous functionals.

In the next sections three different fixed point principles will be used in order to
prove the existence of solutions for the semilinear problem, namely the fixed point
theorems of Perov, Schauder and Leray-Schauder (see [12]). In all three cases a key
role will be played by the so called convergent to zero matrices. A square matrix M
with nonnegative elements is said to be convergent to zero if

Mk → 0 as k →∞.

It is known that the property of being convergent to zero is equivalent to each of the
following three conditions (for details see [12], [13]):

(a) I −M is nonsingular and (I −M)−1 = I + M + M2 + ... (where I stands for
the unit matrix of the same order as M);

(b) the eigenvalues of M are located inside the unit disc of the complex plane;
(c) I −M is nonsingular and (I −M)−1 has nonnegative elements.

The following lemma whose proof is immediate from characterization (b) of con-
vergent to zero matrices will be used in the sequel:
Lemma 1.1. If A is a square matrix that converges to zero and the elements of an
other square matrix B are small enough, then A + B also converges to zero.

We finish this introductory section by recalling (see [1], [12]) the fundamental
results which will be used in the next sections. Let X be a nonempty set. By a
vector-valued metric on X we mean a mapping d : X ×X → Rn

+ such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), by x ≤ y we mean xi ≤ yi

for i = 1, 2, ..., n. We call the pair (X, d) a generalized metric space. For such a space
convergence and completeness are similar to those in usual metric spaces.

An operator T : X → X is said to be contractive (with respect to the vector-valued
metric d on X) if there exists a convergent to zero matrix M such that

d(T (u), T (v)) ≤ Md(u, v) for all u, v ∈ X.

Theorem 1.2. [Perov] Let (X, d) be a complete generalized metric space and T :
X → X a contractive operator with Lipschitz matrix M. Then T has a unique fixed
point u∗ and for each u0 ∈ X we have

d(T k(u0), u∗) ≤ Mk(I −M)−1d(u0, T (u0)) for all k ∈ N.

Theorem 1.3. [Schauder] Let X be a Banach space, D ⊂ X a nonempty closed
bounded convex set and T : D → D a completely continuous operator (i.e., T is
continuous and T (D) is relatively compact). Then T has at least one fixed point.
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Theorem 1.4. [Leray–Schauder] Let (X, || . ||X) be a Banach space, R > 0 and
T : BR(0;X) → X a completely continuous operator. If ||u||X < R for every solution
u of the equation u = λT (u) and any λ ∈ (0, 1), then T has at least one fixed point.

2. Nonlinearities with the Lipschitz property. Application of Perov’s
fixed point theorem

Here we show that the existence of solutions to problem (1.1) follows from Perov’s
fixed point theorem in case that f1, f2 satisfy Lipschitz conditions in x and y :{

|f1(t, x, y)− f1(t, x, y)| ≤ a1 |x− x|+ b1 |y − y|
|f2(t, x, y)− f2(t, x, y)| ≤ a2 |x− x|+ b2 |y − y| , (2.1)

for all x, y, x, y ∈ R and some ai, bi > 0, i = 1, 2.

Theorem 2.1. If f1, f2 satisfy the Lipschitz conditions (2.1) and matrix

Mα,β =

 a1

(
‖α‖

|1−α[1]| + 1
)

b1

(
‖α‖

|1−α[1]| + 1
)

a2

(
‖β‖

|1−β[1]| + 1
)

b2

(
‖β‖

|1−β[1]| + 1
)  (2.2)

converges to zero, then problem (1.1) has a unique solution.
Proof. We shall apply Perov’s fixed point theorem in C [0, 1]2 endowed with the vector
norm ‖.‖ defined by

‖u‖ = (‖x‖∞ , ‖y‖∞)
for u = (x, y) , where for z ∈ C [0, 1] , we let

‖z‖∞ = max
t∈[0,1]

|z(t)| .

We have to prove that T is a generalized contraction, more exactly that

‖T (u)− T (u)‖ ≤ Mα,β ‖u− u‖ (2.3)

for all u = (x, y), u = (x, y) ∈ C [0, 1]2 . Indeed, we have

|T1(x, y)(t)− T1(x, y)(t)|

=
∣∣∣∣ 1
1− α[1]

α[g1] +
∫ t

0

f1 (s, x (s) , y(s)) ds

− 1
1− α[1]

α[g1]−
∫ t

0

f1 (s, x (s) , y(s)) ds

∣∣∣∣
≤

∣∣∣∣ 1
1− α[1]

∣∣∣∣ |α[g1 − g1]|+
∫ t

0

|f1 (s, x (s) , y(s))− f1 (s, x (s) , y(s))| ds

≤ ‖α‖
|1− α[1]|

‖g1 − g1‖∞ +
∫ t

0

(a1 |x(s)− x(s)|+ b1 |y(s)− y(s)|) ds. (2.4)

Taking the supremum, we have

‖T1(x, y)− T1(x, y)‖∞

≤ ‖α‖
|1− α[1]|

‖g1 − g1‖∞ + a1 ‖x− x‖∞ + b1 ‖y − y‖∞ .
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Also

|g1(t)− g1(t)| ≤
∫ t

0

|f1 (s, x (s) , y(s))− f1 (s, x (s) , y(s))| ds

≤
∫ t

0

(a1 |x(s)− x(s)|+ b1 |y(s)− y(s)|) ds

≤ a1 ‖x− x‖∞ + b1 ‖y − y‖∞ ,

which gives

‖g1 − g1‖∞ ≤ a1 ‖x− x‖∞ + b1 ‖y − y‖∞ . (2.5)

From (2.4) and (2.5), we obtain that

‖T1(x, y)− T1(x, y)‖∞ (2.6)

≤
(

‖α‖
|1− α[1]|

+ 1
)

(a1 ‖x− x‖∞ + b1 ‖y − y‖∞) .

Similarly

‖T2(x, y)− T2(x, y)‖∞ (2.7)

≤
(

‖β‖
|1− β[1]|

+ 1
)

(a2 ‖x− x‖∞ + b2 ‖y − y‖∞) .

Now, (2.6), (2.7) can be put together and be rewritten as[
‖T1(x, y)− T1(x, y)‖∞
‖T2(x, y)− T2(x, y)‖∞

]
≤ Mα,β

[
‖x− x‖∞
‖y − y‖∞

]
,

that is (2.3) holds. Since Mα,β is assumed to be convergent to zero, the result follows
from Perov’s fixed point theorem. �

3. Nonlinearities with growth at most linear. Application of
Schauder’s fixed point theorem

Here we show that the existence of solutions to problem (1.1) follows from
Schauder’s fixed point theorem in case that f1, f2 satisfy instead of the Lipschitz
condition, the more relaxed condition of growth at most linear:{

|f1(t, x, y)| ≤ a1 |x|+ b1 |y|+ c1

|f2(t, x, y)| ≤ a2 |x|+ b2 |y|+ c2,
(3.1)

for all x, y, x, y ∈ R and some ai, bi, ci > 0, i = 1, 2.

Theorem 3.1. If f1, f2 satisfy (3.1) and matrix (2.2) converges to zero, then problem
(1.1) has at least one solution.
Proof. In order to apply Schauder’s fixed point theorem, we look for a nonempty,
bounded, closed and convex subset B of C [0, 1]2 so that T (B) ⊂ B. Let x, y be any
elements of C [0, 1] .
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We have

|T1(x, y)(t)| =
∣∣∣∣ 1
1− α[1]

α[g1] +
∫ t

0

f1 (s, x (s) , y(s)) ds

∣∣∣∣
≤

∣∣∣∣ 1
1− α[1]

∣∣∣∣ |α[g1]|+
∫ t

0

(a1 |x(s)|+ b1 |y(s)|+ c1) ds

≤ ‖α‖
|1− α[1]|

‖g1‖∞ +
∫ t

0

(a1 |x(s)|+ b1 |y(s)|+ c1) ds

≤ ‖α‖
|1− α[1]|

‖g1‖∞ + a1 ‖x‖∞ + b1 ‖y‖∞ + c1. (3.2)

Also

|g1(t)| ≤
∫ t

0

|f1 (s, x (s) , y(s))| ds

≤
∫ t

0

(a1 |x(s)|+ b1 |y(s)|+ c1) ds

≤ a1 ‖x‖∞ + b1 ‖y‖∞ + c1,

which gives
‖g1‖∞ ≤ a1 ‖x‖∞ + b1 ‖y‖∞ + c1. (3.3)

From (3.2) and (3.3), we obtain that

‖T1(x, y)‖∞ ≤
(

‖α‖
|1− α[1]|

+ 1
)

(a1 ‖x‖∞ + b1 ‖y‖∞) + c̃1, (3.4)

where c̃1 := c1

(
‖α‖

|1−α[1]| + 1
)

. Similarly

‖T2(x, y)‖∞ ≤
(

‖β‖
|1− β[1]|

+ 1
)

(a2 ‖x‖∞ + b2 ‖y‖∞) + c̃2, (3.5)

with c̃2 := c2

(
‖β‖

|1−β[1]| + 1
)

. Now (3.4), (3.5) can be put together as[
‖T1(x, y)‖∞
‖T2(x, y)‖∞

]
≤ Mα,β

[
‖x‖∞
‖y‖∞

]
+

[
c̃1

c̃2

]
,

where matrix Mα,β is given by (2.2) and converges to zero. Next, we look for two
positive numbers R1, R2 such that if ‖x‖∞ ≤ R1, ‖y‖∞ ≤ R2, then ‖T1(x, y)‖∞ ≤ R1,
‖T2(x, y)‖∞ ≤ R2. To this end it is sufficient that

Mα,β

[
R1

R2

]
+

[
c̃1

c̃2

]
≤

[
R1

R2

]
,

whence [
R1

R2

]
≥ (I −Mα,β)−1

[
c̃1

c̃2

]
.

Notice that I −Mα,β is invertible and its inverse (I −Mα,β)−1 has nonnegative ele-
ments since Mα,β converges to zero. Thus, if

B =
{
(x, y) ∈ C[0, 1]2 : ‖x‖∞ ≤ R1, ‖y‖∞ ≤ R2

}
,
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then T (B) ⊂ B and Schauder’s fixed point theorem can be applied. �

4. More general nonlinearities. Application of the Leray-Schauder
principle

We now consider that nonlinearities f1, f2 satisfy more general growth conditions,
namely: {

|f1(t, u)| ≤ ω1(t, |u|e)
|f2(t, u)| ≤ ω2(t, |u|e)

, for t ∈ [0, 1], (4.1)

for all u = (x, y) ∈ R2, where by |u|e we mean the euclidean norm in R2. Here, ω1, ω2

are Carathéodory functions on [0, 1]×R+, nondecreasing in their second argument.

Theorem 4.1. Assume that condition (4.1) holds. Denote A1 := ‖α‖
|1−α[1]| + 1, A2 :=

‖β‖
|1−β[1]| + 1. In addition assume that there exists a positive number R0 such that for

ρ = (ρ1, ρ2) ∈ (0,∞)2{
1
ρ1

∫ 1

0
ω1(t, |ρ|e)dt ≥ 1

A1
1
ρ2

∫ 1

0
ω2(t, |ρ|e)dt ≥ 1

A2

implies |ρ|e ≤ R0. (4.2)

Then problem (1.1) has at least one solution.
Proof. The result will follow from the Leray-Schauder fixed point theorem once we
have proved the boundedness of the set of all solutions to equations u = λT (u), for
λ ∈ [0, 1]. Let u = (x, y) be such a solution. Hence, we apply Theorem 1.4 considering
X = C[0, 1]2, T = (T1, T2), R any real number with R > R0 and the norm in C[0, 1]2

defined by

‖u‖X =
(
‖x‖2∞ + ‖y‖2∞

)1/2

.

Then, for t ∈ [0, 1], we have

|x(t)| = |λT1(x, y)(t)|

= λ

∣∣∣∣ 1
1− α[1]

α[g1] +
∫ t

0

f1 (s, x (s) , y(s)) ds

∣∣∣∣
≤ ‖α‖

|1− α[1]|
‖g1‖∞ +

∫ t

0

|f1 (s, x (s) , y(s))| ds

≤
(

‖α‖
|1− α[1]|

+ 1
) ∫ 1

0

ω1(s, |u (s)|e)ds

= A1

∫ 1

0

ω1(s, |u (s)|e)ds. (4.3)

Similarly,

|y(t)| ≤ A2

∫ 1

0

ω2(s, |u (s)|e)ds. (4.4)

Let ρ1 = ‖x‖∞ , ρ2 = ‖y‖∞ . Then from (4.3), (4.4), we deduce{
ρ1 ≤ A1

∫ 1

0
ω1(s, |ρ|e)ds

ρ2 ≤ A2

∫ 1

0
ω2(s, |ρ|e)ds.
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From our assumption (4.2),
|ρ|e ≤ R0. (4.5)

Since |ρ|e = ‖u‖X , one has ‖u‖X < R as we wished and the result follows from
Leray-Schauder’s fixed point theorem. �
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