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Abstract. In this paper the solutions of a two–endpoint boundary value problem is studied and

under suitable assumptions the existence and uniqueness of a solution is proved. As a consequence, a

condition to guarantee the existence of at least one periodic solution for a class of Liénard equations
is presented.
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1. Introduction and the statement of the main result

It is well known that Liénard equations are considered in several problems in me-
chanics, engineering, and electrical circuits theory. There are some existence and
multiplicity results for such equations with nonconstant forced terms; see for ex-
ample [6, 7, 8, 10, 13, 14, 15, 16, 17, 21]. In the following we state and prove an
existence–uniqueness type theorem for a class of two–endpoint boundary value prob-
lems associated with the second order forced Liénard equations.
Theorem 1.1 Let a1 < a2 and B > 0 be real numbers and put A = max{2|a1|, 2|a2|}.
Suppose f and g are real functions on R which are locally Lipschitz and at least one
of the f or g is nonconstant on |x| ≤ A; and p is a continuous real function on [0, T ],
T > 0. Also suppose M0 is the maximum value of |p| on [0, T ]; M1, M2 are the maxi-
mum values of |f |, |g| on |x| ≤ A; and M ′

1, M
′
2 are the Lipschitz constants of f, g on
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|x| ≤ A, respectively. Consider M = 2/(M ′
1B+M ′

2 +M1), N = 1/(M1B+M2 +M0),
and 0 < T0 < min{T, 2

√
AN, 2BN, 2

√
M + 1 − 2}. Then for each a1 ≤ b ≤ a2 the

boundary value problem
x′′ + f(x)x′ + g(x) = p(t) : 0 ≤ t ≤ T0

x(0) = x(T0) = b

|x(t)| ≤ A, |x′(t)| ≤ B : 0 ≤ t ≤ T0

(1.1)

has a unique solution.
Proof. Consider the equation x′′ = 0 with boundary condition x(0) = x(T0) = b.
The existence of Green’s function for a typical two–endpoint problem was suggested
by a simple physical example in [1] and is as follows:

G(t, s) =

{
s(t− T0)/T0 : 0 ≤ s ≤ t ≤ T0

t(s− T0)/T0 : 0 ≤ t ≤ s ≤ T0

If we now consider the integral equation

x(t) = b+
∫ T0

0

G(t, s)
(
f(x(s))x′(s) + g(x(s))− p(s)

)
ds,

then it is easy to see that the solutions x(t) of this integral equation which are satisfied
in |x(t)| ≤ A and |x′(t)| ≤ B for each 0 ≤ t ≤ T0 are exactly the solutions of given
boundary value problem. Hence, to prove the theorem, it is enough to show that the
above integral equation has a unique solution x(t) satisfying |x(t)| ≤ A and |x′(t)| ≤ B
for each 0 ≤ t ≤ T0. In order to do so, suppose X = C1([0, T0],R), and for φ ∈ X
define ||φ|| = max0≤t≤T0 |φ(t)| + max0≤t≤T0 |φ′(t)|. It is clear that X is a Banach
space. Now, consider

Ω =
{
φ ∈ X : |φ(t)| ≤ A and |φ′(t)| ≤ B hold for each 0 ≤ t ≤ T0

}
,

which is obviously a closed, bounded, and convex subspace of X. Define the operator
S : Ω → X by mapping φ to S(φ), where S(φ) is defined by

S(φ)(t) = b+
∫ T0

0

G(t, s)
(
f(φ(s))φ′(s) + g(φ(s))− p(s)

)
ds.

First, we show that S maps Ω into itself. In order to do this, note that for each
x, x′, and t such that |x| ≤ A, |x′| ≤ B, and 0 ≤ t ≤ T0 we have∣∣∣f(x)x′ + g(x)− p(t)

∣∣∣ ≤ M1B +M2 +M0 =
1
N
.

Also for each 0 ≤ t ≤ T0 we have∫ T0

0
|G(t, s)|ds = 1

2 t(T0 − t) ≤ T0
2

8 ,

∫ T0

0
| ∂
∂tG(t, s)|ds = 1

T0
t2 − t+ 1

2T0 ≤ T0
2 .
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Hence we conclude that for each φ ∈ Ω and 0 ≤ t ≤ T0,

|S(φ)(t)| ≤ |b|+ 1
N

∫ T0

0
|G(t, s)|ds ≤ |b|+ T0

2

8N ≤ A
2 + A

2 = A,

|S(φ)′(t)| ≤ 1
N

∫ T0

0
| ∂
∂tG(t, s)|ds ≤ T0

2N ≤ B.

These mean that for each φ ∈ Ω, S(φ) ∈ Ω and therefore S is an operator from Ω to
Ω.

Next, we show that S is a compact operator on Ω. For this, it is enough to
show that each bounded sequence {φn} on Ω has a subsequence {φni

} for which
{S(φni

)} is convergent on Ω. Therefore, let {φn} be a given sequence on Ω which
is automatically bounded by definition of Ω. Suppose ε > 0 is given. Since G is a
uniformly continuous function on [0, T0] × [0, T0], there exists δ, 0 < δ < εN , such
that (t1, s1), (t2, s2) ∈ [0, T0] × [0, T0] and

√
(t1 − t2)2 + (s1 − s2)2 < δ imply that

|G(t1, s1) − G(t2, s2)| < εN/2T0. We now conclude that for each n and for each
t1, t2 ∈ [0, T0], if |t1 − t2| < δ, then

|S(φn)(t1)− S(φn)(t2)| ≤ 1
N

∫ T0

0
|G(t1, s)−G(t2, s)|ds < ε,

|S(φn)′(t1)− S(φn)′(t2)| ≤ 1
N

∫ T0

0
| ∂
∂tG(t1, s)− ∂

∂tG(t2, s)|ds = 1
N |t1 − t2| < ε.

Hence {S(φn)(t)} and {S(φn)′(t)} are equicontinuous family of functions on [0, T0] and
by classical Ascoli–Arzela theorem, there exists a subsequence {φni(t)} of {φn(t)} for
which {S(φni)(t)} and {S(φni)

′(t)} are uniformly convergent on [0, T0]. This shows
that {S(φni

)} is convergent on Ω and so S is a compact operator.
Therefore, by Schauder’s fixed point theorem, there exists φ ∈ Ω such that S(φ) =

φ. So for each 0 ≤ t ≤ T0, we have S(φ)(t) = φ(t) which is to say

φ(t) = b+
∫ T0

0

G(t, s)
(
f(φ(s))φ′(s) + g(φ(s))− p(s)

)
ds.

This means that φ ∈ Ω is a solution of the mentioned integral equation with restric-
tions |φ(t)| ≤ A and |φ′(t)| ≤ B for each 0 ≤ t ≤ T0 and therefore is a solution of the
given boundary value problem.

We now suppose that ψ is another solution of the given boundary value problem.
This means that ψ ∈ Ω, ψ 6= φ, and S(ψ) = ψ. By the locally Lipschitz condition for
f and g, note that for each x, y, x′, and y′ such that |x| ≤ A, |y| ≤ A, |x′| ≤ B, and
|y′| ≤ B we have

�
��f(x)x′ + g(x)

�
−

�
f(y)y′ + g(y)

��� =
�
��f(x)− f(y)

�
x′ + f(y)(x′ − y′) + g(x)− g(y)

�
�

≤ (M ′
1B + M ′

2)|x− y|+ M1|x′ − y′|.

Therefore by the above inequality, for each 0 ≤ t ≤ T0,

|S(φ)(t)− S(ψ)(t)| ≤ T0
2

8

(
M ′

1B +M ′
2 +M1

)
||φ− ψ||

= T0
2

8
2
M ||φ− ψ||

= T0
2

4M ||φ− ψ||,
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|S(φ)′(t)− S(ψ)′(t)| ≤ T0
2

(
M ′

1B +M ′
2 +M1

)
||φ− ψ||

= T0
2

2
M ||φ− ψ||

= T0
M ||φ− ψ||.

Hence,

||φ− ψ|| = ||S(φ)− S(ψ)||

= max
0≤t≤T0

|S(φ)(t)− S(ψ)(t)|+ max
0≤t≤T0

|S(φ)′(t)− S(ψ)′(t)|

≤ (T0
2

4M + T0
M )||φ− ψ||.

Therefore, we obtain T0
2 + 4T0 ≥ 4M , or T0 ≥ 2

√
M + 1 − 2 which is contradictory

with the definition of T0. So φ is the unique solution of the given boundary value
problem �.

Remark 1.2 In the above proof, we obtained a more deeper property for the operator
S, which is contractivity condition. Therefore, we can apply the Banach’s fixed point
theorem directly to Eq. (1.1). We will verify this property in Section 3.

2. An application

The analysis of periodic Liénard equations have long been a topic of interest. In this
direction, an important question, which has been studied extensively by a number of
authors (see, for example [2, 3, 5, 9, 11, 12, 18, 19, 20]), is whether Liénard equations
can support periodic solutions or not. In this section, as a consequence of Theorem
1.1, we investigate the existence of periodic solutions for a class of the second order
forced Liénard equations

x′′ + f(x)x′ + g(x) = p(t),

where f and g are real functions on R and p is a real function on [0, T ], T > 0.
These equations appear in a number of physical models and one important question
is whether these equations can support periodic solutions. In the following we state
and prove a result which yields a condition to guarantee the existence of at least one
periodic solution for the above equation.
Theorem 2.1 Suppose f and g are real functions on R which are locally Lipschitz
and p is a nonconstant, continuous, real function on [0, T ], T > 0. Also suppose all
solutions of the initial value problems associated with x′′+f(x)x′+g(x) = p(t) can be
extended to [0, T ]. If there exist real numbers a1 and a2 for which g(a1) ≤ p(t) ≤ g(a2)
holds for each 0 ≤ t ≤ T , then there exists T0, 0 < T0 < T , such that if p is T0–
periodic, x′′ + f(x)x′ + g(x) = p(t) has at least one T0–periodic solution.
Proof. By the assumption we conclude that a1 6= a2 and so without loss of generality
we can suppose that a1 < a2. Define the functions g̃ and ĝ as follows which are
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obviously locally Lipschitz:

g̃(x) =

{
g(x) : x ≤ a1

g(a1) + a1 − x : x > a1

and

ĝ(x) =

{
g(x) : x ≥ a2

g(a2) + a2 − x : x < a2

Consider A = max{2|a1|, 2|a2|} and suppose B = 1. Let M0 be the maximum value
of |p| on [0, T ]; M1, M2, M̃2, M̂2 be the maximum values of |f |, |g|, |g̃|, |ĝ| on |x| ≤ A;
andM ′

1, M
′
2, M̃

′
2, M̂

′
2 be the Lipschitz constants of f, g, g̃, ĝ on |x| ≤ A, respectively.

Consider M = 2/(M ′
1 + M ′

2 + M1), N = 1/(M1 + M2 + M0), M̃ = 2/(M ′
1 + M̃ ′

2 +
M1), Ñ = 1/(M1 + M̃2 +M0), M̂ = 2/(M ′

1 + M̂ ′
2 +M1), N̂ = 1/(M1 + M̂2 +M0),

and 0 < T0 < min{L, L̃, L̂}, where

L = min
{
T, 2

√
AN, 2N, 2

√
M + 1− 2

}
,

L̃ = min
{
T, 2

√
AÑ, 2Ñ , 2

√
M̃ + 1− 2

}
,

L̂ = min
{
T, 2

√
AN̂, 2N̂ , 2

√
M̂ + 1− 2

}
.

Theorem 1.1 now implies that for each a1 ≤ b ≤ a2, the boundary value problem
x′′ + f(x)x′ + g(x) = p(t) : 0 ≤ t ≤ T0

x(0) = x(T0) = b

|x(t)| ≤ A, |x′(t)| ≤ 1 : 0 ≤ t ≤ T0

has a unique solution, say x(t, b).
Lemma 2.2 For each 0 ≤ t ≤ T0, we have x(t, a1) ≤ a1 < a2 ≤ x(t, a2).
Proof. We prove that x(t, a1) ≤ a1 holds for each 0 ≤ t ≤ T0. By Theorem 1.1, the
boundary value problem

x′′ + f(x)x′ + g̃(x) = p(t) : 0 ≤ t ≤ T0

x(0) = x(T0) = a1

|x(t)| ≤ A, |x′(t)| ≤ 1 : 0 ≤ t ≤ T0

has a unique solution x(t). We claim that x(t) ≤ a1 holds for each 0 ≤ t ≤ T0.
Suppose for the purpose of a contradiction, there exists a point 0 ≤ t̃ ≤ T0 such that
x(t̃) > a1. Therefore the function x(t) − a1 has a positive maximum on the interval
(0, T0), say at t1. Hence (x(t)− a1)′

∣∣
t=t1

= 0, or x′(t1) = 0. Therefore we established

(x(t)− a1)′′ = x′′(t1)
= −f(x(t1))x′(t1)− g̃(x(t1)) + p(t1)
= −g̃(x(t1)) + p(t1)
= −g(a1)− a1 + x(t1) + p(t1)
=

(
p(t1)− g(a1)

)
+

(
x(t1)− a1

)
> 0,
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which is a contradiction since x(t) − a1 has a maximum at t1. Therefore for each
0 ≤ t ≤ T0, x(t) ≤ a1 and so by the definition of g̃, g̃(x(t)) = g(x(t)) holds for each
0 ≤ t ≤ T0. This means that x(t) is a solution of

x′′ + f(x)x′ + g(x) = p(t) : 0 ≤ t ≤ T0

x(0) = x(T0) = a1

|x(t)| ≤ A, |x′(t)| ≤ 1 : 0 ≤ t ≤ T0

The uniqueness property now implies that for each 0 ≤ t ≤ T0, x(t) = x(t, a1) and so
x(t, a1) ≤ a1 holds for each 0 ≤ t ≤ T0.

A similar argument applying to the function ĝ gives us the other inequality. �
Lemma 2.3 There exists b̂, a1 ≤ b̂ ≤ a2, such that x′(0, b̂) = x′(T0, b̂).
Proof. Define the function θ on [a1, a2] by

θ(b) = x′(0, b)− x′(T0, b).

Using the Ascoli–Arzela theorem, one may easily verify that both x(t, b) and x′(t, b)
are continuous on [0, T0] × [a1, a2]. This implies that θ is continuous also. On the
other hand, note that for i ∈ {1, 2},

x′(0, ai) = lim
t→0+

x(t, ai)− ai

t
, x′(T0, ai) = lim

t→0+

ai − x(T0 − t, ai)
t

,

and therefore,

θ(ai) = x′(0, ai)− x′(T0, ai)

= lim
t→0+

x(t, ai) + x(T0 − t, ai)− 2ai

t
.

So by Lemma 2.2, we obtain θ(a1) ≤ 0 and θ(a2) ≥ 0. Hence there exists b̂, a1 ≤ b̂ ≤
a2, such that θ(b̂) = 0, or x′(0, b̂) = x′(T0, b̂). �

Lemma 2.3 now implies that x(t, b̂) is a solution of the periodic boundary value
problem 

x′′ + f(x)x′ + g(x) = p(t) : 0 ≤ t ≤ T0

x(0, b̂) = x(T0, b̂)

x′(0, b̂) = x′(T0, b̂)

and therefore, by a similar method as the one used in [4], we can extend x(t, b̂)
periodically with period T0 to obtain a periodic solution of the equation x′′+f(x)x′+
g(x) = p(t). Note that this periodic solution is nontrivial, since p is a nonconstant
forced function. �
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3. An illustrative example

In this section, we give a concrete example satisfying the assumptions of the main
result. In order to do this, consider the initial value problem


x′′ = p(t, x, x′) = x

10x
′ − (16x+ x3

10 )− (1119999+480 cos(924t)+cos(48t)) sin(24t)
20000

x(0) = 0
x′(0) = 24

10

(3.1)

There are several numerical methods to solve Eq. (3.1) in the standard texts of numer-
ical analysis and numerical solutions of ordinary differential equations. For example
using Runge-Kutta method, the error of approximation is about 10−8, knowing the
exact solution of Eq. (3.1) which is x(t) = 0.1 sin(24t).

We now present a rather nonstandard symbolic-numeric scheme for generating
approximate solution for this example. This method is based on transformation of
the second order initial value problem to a system of the first order equations and
then use Picard’s iteration method, with controlling the number of terms at each
step. More precisely, at each step we ignore all the terms with an upper bound less
than 10−12. Using this method, we show that the corresponding Picard’s iteration
converges, and also we give a crude approximation to the contraction factor of the
Picard’s method.

Let C1([0, T0],R) be the Banach space equipped with the norm

‖x‖∞ = max
{

max
0≤t≤T0

|x(t)|, max
0≤t≤T0

|x′(t)|
}
.

Assuming x = u1, x′ = u2 and

u = [u1, u2]T , u′ = [u′1, u
′
2]

T , F = [u2, p(t, u1, u2)]T ,

Eq. (3.1) is equivalent to the system{
u′ = F (t, u) : 0 < t ≤ T0

u(0) = [0, 2.4]T

with corresponding Picard’s iteration formula given by{
un(t) = u(0) +

∫ t

0
F (s, un−1(s))ds

u0(t) = u(0)
(3.2)

For n = 1, . . . , 7, we generate the sequence of the functions u1, . . . , u7 and x1, . . . , x7

and the approximation to Eq. (1.1) with exact solution x(t) = 0.1 sin(24t). Numer-
ical values for expressions ‖xn(t) − xn−1(t)‖∞ and ‖xn(t) − x(t)‖∞ are given in the
following table.

n 3 4 5 6 7

‖xn(t)− xn−1(t)‖∞ 0.0692 0.0025 0.0000486 5.88× 10−7 2.6306× 10−9

‖xn(t)− x(t)‖∞ 2.11 0.0717 0.00255 0.0000492 5.91× 10−7
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Note that error decrease at most with the factor 0.1. This verifies numerically that
the operator corresponding to the Picard’s iteration given in Eq. (3.2) is contraction
mapping with contraction factor 0.1.

Numerical example given by Eq. (3.1) is generated by trail and error method
designed in Mathematica version 5, and implemented in a cluster environment at
Laboratory of Scientific Computation in Institute for Studies in Theoretical Physics
and Mathematics (see http://www.scc.ipm.ac.ir/ganglia/).
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