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1. Introduction

It is well known that the method of guiding functions developed by M.A. Kras-
nosel’skii, A.I. Perov and other researchers (see, e.g., [16] - [18]) is an effective tool
to investigate the problems of periodic oscillations in nonlinear systems. Using the
method of integral guiding functions A. Fonda ([7]) studied the periodic problem for
functional differential equations. The method of guiding functions was extended to
differential inclusions (see, e.g., [2, 9]).

In many problems of nonlinear oscillations there arises the necessity to use guiding
functions which are non-smooth. To study such problems for systems admitting
forced oscillations S. Kornev and V. Obukhovskii in [13] - [15] developed the notion
of non-smooth guiding functions by using the methods of non-smooth analysis.
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It should be noted also that until now the method of guiding functions was applied
only to systems governed by differential equations and inclusions in finite dimensional
spaces. Recently, N.V. Loi in [19] presented an approach to extend this method to
differential inclusions in Hilbert spaces.

In the present paper, developing this approach, we define the notion of a non-
smooth integral guiding function for a system governed by a functional differential
inclusion with infinite delay in a Hilbert space and study the existence of periodic
oscillations in such systems. The paper is organized in the following way. In the
next section we recall some basic facts from multivalued analysis, theory of Fredholm
operators and the phase space theory. In Section 3, after the statement of the problem,
we introduce the notion of non-smooth integral guiding function and present the main
result (Theorem 8) on the existence of a periodic solution for a functional differential
inclusion in a Hilbert space satisfying condition of A-approximation solvability and
admitting a guiding function with a non-trivial index. Some sufficient conditions for
A-approximation solvability of inclusion are given in the same section (see Theorems
11 and 12). In the last section, by applying the abstract results, we study the periodic
problem for a gradient functional differential inclusion with infinite delay.

2. Preliminaries

2.1. Multimaps. Let X and Y be Banach spaces. Denote by P (Y ) [Cv(Y ),Kv(Y )]
the collections of all nonempty [respectively, nonempty closed convex, nonempty com-
pact convex] subsets of Y . By BX(0, r) [respectively, ∂BX(0, r)] we will denote a ball
[a sphere] in X of radius r centered at the origin.

Definition 1. (see, e.g., [2], [9], [12]). A multivalued map (multimap) F : X → P (Y )
is said to be:

(i) upper semicontinuous (u.s.c.), if for every open subset V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F (x) ⊂ V }

is open in X;
(ii) closed if its graph

{(x, y) ∈ X × Y : y ∈ F (x)}

is a closed subset of X × Y ;
(iii) compact, if the set

F (X ′) :=
⋃

x∈X′

F (x)

is relatively compact in Y for every bounded subset X ′ ⊂ X.

Recall (see, e.g., [2], [9], [12]) that if u.s.c. and compact multimap F : U → Kv(X)
has no fixed points on the boundary ∂U of an open bounded subset U ⊂ X, then the
topological degree deg(i − F,U) of the corresponding multivalued vector field i − F
(i here denotes the inclusion map) is well defined and has all standard properties of
the Leray–Schauder topological degree.
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2.2. Fredholm Operators.

Definition 2. (see, e.g., [8]). A linear bounded map ` : X → Y is said to be a
Fredholm operator of index zero, if

(i) Im` is closed in Y ;
(ii) Ker` and Coker` have the finite dimensions and dim Ker` = dim Coker`.

Let H be a Hilbert space with an orthonormal basis {en}∞n=1. For every n ∈ N, let
Hn be an n−dimensional subspace of H with the basis {ek}n

k=1 and Pn be a projection
of H onto Hn. By

〈
·, ·
〉

H
we denote the inner product in H. The symbol I denotes

the interval [0, T ]. By C(I,H) [L2(I,H)] we denote the spaces of all continuous
[respectively, square summable] functions u : I → H with usual norms

‖u‖C = max
t∈I

‖u(t)‖H and ‖u‖2 =

(∫ T

0

‖u(t)‖2Hdt

) 1
2

.

The symbol
〈
·, ·
〉

L
will denote the inner product in L2(I,H).

Consider the space of all absolutely continuous functions u : I → H whose deriva-
tives belong to L2(I,H). It is known (see, e.g., [1]) that this space can be identified
with the Sobolev space W 1,2(I,H) endowed with the norm

‖u‖W = ‖u‖2 + ‖u′‖2.

The embedding W 1,2(I,H) ↪→ C(I,H) is continuous, and for every n ≥ 1 the
space W 1,2(I,Hn) is compactly embedded in C(I,Hn). The weak convergence in
W 1,2(I,H) [L2(I,H)] is denoted by xn

W
⇀ x0 [respectively , fn

L
⇀ f0].

By W 1,2
T (I,H) [CT (I,H)] we denote the subspaces of all functions x ∈W 1,2(I,H)

[respectively, C(I,H)] satisfying the boundary condition x(0) = x(T ).
Let n ∈ N, and ` : W 1,2

T (I,Hn) → L2(I,Hn) be a linear Fredholm operator of
index zero. Then there exist the projections (see, e.g., [8]):

Cn : W 1,2
T (I,Hn) →W 1,2

T (I,Hn)

and
Qn : L2(I,Hn) → L2(I,Hn)

such that Im Cn = Ker ` and Ker Qn = Im `. If the operator

`Cn
: dom ` ∩Ker Cn → Im `

is defined as the restriction of ` on dom ` ∩ Ker Cn, then `Cn is a linear isomorphism
and we can define the operator KCn : Im `→ dom `, KCn = `−1

Cn
. Now, set Coker ` =

L2(I,Hn)/Im `; and let Πn : L2(I,Hn) → Coker ` be the canonical projection

Πn(z) = z + Im `

and Λn : Coker `→ Ker ` be the linear continuous isomorphism. Then the equation

`x = y, y ∈ L2(I,Hn)

is equivalent to
(i− Cn)x = (ΛnΠn +KCn,Qn

)y,
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where KCn,Qn : L2(I,Hn) →W 1,2
T (I,Hn) is given as

KCn,Qn
= KCn

(i−Qn).

The following notion will play an important role in the sequel.
Let A : W 1,2

T (I,H) → L2(I,H) be a linear operator; F : CT (I,H) → P (L2(I,H))
a multimap. For n ∈ N, define the projection Pn : L2(I,H) → L2(I,Hn) generated
by Pn as

(Pnf) (t) = Pnf(t), for a.e. t ∈ I.

Definition 3. (cf. Definition 21.2 [4]). An inclusion

Ax ∈ F(x)

is said to be A−approximation solvable, if from the existence of sequences {nk} and
{x(k)}, x(k) ∈W 1,2

T (I,Hnk
) such that supk ‖x(k)‖C < +∞ and Ax(k) ∈ Pnk

F(x(k)) it
follows that there is a subsequence {x(km)} such that

x(km) W
⇀ x∗ ∈W 1,2

T (I,H), and Ax∗ ∈ F(x∗).

2.3. Phase Space. We will use an axiomatical definition of the phase space B, in-
troduced by J.K. Hale and J. Kato (see [10], [11]) for studying functional differential
equations and inclusions with infinite delay. The space B will be considered as a linear
topological space of functions mapping (−∞, 0] into a Hilbert space H endowed with
a seminorm ‖ · ‖B.

For any function y : (−∞;T ] → H and for every t ∈ I, yt represents the function
from (−∞, 0] into H defined by

yt(θ) = y(t+ θ), θ ∈ (−∞; 0].

We will assume that B satisfies the following axioms.
(B1) If y : (−∞;T ] → H is such that y|I ∈ C(I;H) and y0 ∈ B, then we have

(i) yt ∈ B for t ∈ I;
(ii) function t ∈ I 7→ yt ∈ B is continuous;

(iii) ‖yt‖B ≤ K(t) sup
0≤τ≤t

‖y(τ)‖ + N(t)‖y0‖B for t ∈ [0, T ], where K(·), N(·) :

[0;∞) → [0;∞) are independent of y, K(·) is strictly positive and continuous,
and N(·) is bounded.

(B2) There exists l > 0 such that

‖ψ(0)‖H ≤ l‖ψ‖B
for all ψ ∈ B.

Let us mention that under above hypotheses the space C00 of all continuous func-
tions from (−∞, 0] into H with compact support is a subset of each phase space B
([11], Proposition 1.2.1). We will assume, additionally, that the following hypothesis
holds.

(B3) If a uniformly bounded sequence {ψn}+∞n=1 ⊂ C00 converges to a function ψ
compactly (i.e. uniformly on each compact subset of (−∞, 0]), then ψ ∈ B and

lim
n→+∞

‖ψn − ψ‖B = 0.
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The hypothesis (B3) implies that the Banach space BC((−∞, 0];H) of bounded
continuous functions is continuously embedded into B.

We may consider the following examples of phase spaces satisfying all above prop-
erties.

(1) For ν > 0, let B = Cν be the space of functions ψ : (−∞; 0] → H such that: (i)
ψ|[−r,0] ∈ C([−r, 0];E) for each r > 0; (ii) the limit lim

θ→−∞
eνθ‖ψ(θ)‖ is finite. Then

we set
‖ψ‖B = sup

−∞<θ≤0
eνθ‖ψ(θ)‖.

(2) Spaces of ”fading memory”. Let B = Cρ be the space of functions ψ : (−∞; 0] →
E such that

(a) ψ ∈ C([−r; 0];E) for some r > 0;
(b) ψ is Lebesgue measurable on (−∞;−r) and there exists a positive Lebesgue

integrable function ρ : (−∞;−r) → R+ such that ρψ is Lebesgue integrable on
(−∞;−r); moreover, there exists a locally bounded function P : (−∞; 0] →
R+ such that, for all ξ ≤ 0, ρ(ξ + θ) ≤ P (ξ)ρ(θ) a.e. θ ∈ (−∞;−r). Then,

‖ψ‖B = sup
−r≤θ≤0

‖ψ(θ)‖+

−r∫
−∞

ρ(θ)‖ψ(θ)‖dθ.

A simple example of such a space can be obtained by taking the function ρ(θ) =
eµθ, µ ∈ R.

3. Existence of Solutions of Functional Differential
Inclusions with Infinite Delay in Hilbert Spaces

3.1. The Statement of the Problem. Let H be a Hilbert space. The Banach
space BC((−∞, 0];H) of bounded continuous functions will be denoted by BC(H).

We will study the functional differential inclusion in H with the infinite delay of
the following form

x′(t) ∈ F (t, xt) for a.e. t ∈ I. (3.1)
We assume that a multimap F : R × BC(H) → Kv(H) satisfies the following condi-
tions:

(FT ) multimap F : R × BC(H) → Kv(H) is T−periodic with respect to the first
argument, i.e.,

F (t, ψ) = F (t+ T, ψ) for a.e. t ∈ R and for all ψ ∈ BC(H);

(F1) for every ψ ∈ BC(H) multifunction F (·, ψ) : [0, T ] → Kv(H) has a measurable
selection;

(F2) for a.e. t ∈ [0, T ] multimap F (t, ·) : BC(H) → Kv(H) is u.s.c.;
(F3) for every r > 0 there exists a function νr ∈ L+

2 [0, T ] such that for each
x ∈ CT (I,H) with ‖x‖2 ≤ r we have

‖F (s, x̃s)‖H := sup{‖y‖H : y ∈ F (s, x̃s)} ≤ νr(s) for a.e. s ∈ [0, T ],

where x̃ denotes the T -periodic extension of x on (−∞, T ].
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From the above conditions it follows that the superposition multioperator
PF : CT (I,H) → Cv(L2(I,H)),

PF (x) = {f ∈ L2(I,H) : f(s) ∈ F (s, x̃s) for a.e. s ∈ I},

is well-defined and closed (see, e.g., [2],[12]).
Consider the operator of differentiation

A : W 1,2
T (I,H) → L2(I,H), Ax = x′.

Then we will treat the problem of existence of T−periodic solutions of inclusion (3.1)
as the problem of existence of solutions of the following operator inclusion

Ax ∈ PF (x). (3.2)

Recall now some notions of non-smooth analysis (see, e.g., [3]).
Let V : Rn → R be a locally Lipschitz function. For every y0 ∈ Rn and ν ∈ Rn

the generalized directional derivative V 0(y0; ν) of function V at the point y0 in the
direction ν is defined as

V 0(y0; ν) = lim
y → y0
t ↓ 0

V (y + tν)− V (y)
t

.
(3.3)

The subdifferential ∂V (y0) of function V at y0 is defined by:

∂V (y0) =
{
y ∈ Rn :

〈
y, ν
〉
≤ V 0(y0; ν) for every ν ∈ Rn

}
,

It is well known (see, e.g., [3]) that the multimap ∂V : Rn → P (Rn) is u.s.c. and
has compact convex values. In particular, it means that for every continuous function
x : [0, T ] → Rn the set P∂V (x) of all summable selections of the multifunction ∂V (x(t))
is non-empty.

A locally Lipschitz functional V : H → R is called regular, if for every y ∈ H and
ν ∈ H there exists the directional derivative V ′(y, ν) and V ′(y, ν) = V 0(y, ν). It is
known (see, e.g., [3]) that locally bounded convex functionals are regular.

Given a regular functional V : H → R, for each i = 1, 2, ..., define the function

Vi : R → R, Vi(y) = V (0, · · · , 0, y, 0, · · · ),
where y is placed in the i-th position. It is clear that Vi is also regular.

We define the generalized gradient ∂∗V (x) of a regular functional V at x =
(x1, x2, · · · ) ∈ H in the following way:

∂∗V (x) = ∂V1(x1)× ∂V2(x2)× ...× ∂Vi(xi)× ... ⊂ R∞,
where ∂Vi, i = 1, 2, ... is the subdifferential of the function Vi.
Notice that our definition of generalized gradient is different from the classical Clarke
definition (see [3]) and its calculation is easier.

For example, let V : `2 → R be defined as

V (x) = |x1|+ x1x2 +
∞∑
2

x2
k, x = (x1, x2, · · · ). (3.4)
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We have

∂V1(x1) =


1 if x1 > 0,
[−1, 1] if x1 = 0,
−1 if x1 < 0,

and for every i ≥ 2, ∂Vi(xi) = 2xi.

Definition 4. A regular functional V : H → R is said to be a projectively homoge-
neous potential, if there exists n0 ∈ N such that

Prn∂
∗V (x) = ∂∗V (Pnx) (3.5)

for all n ≥ n0 and x ∈ H, where Prn : R∞ → R∞ is the natural projection on first n
coordinates.

It is easy to see that functional (3.4) is projectively homogeneous.

Definition 5. A regular functional V : H → R is said to be a non-degenerate poten-
tial, if there exists R0 > 0 such that

(0, 0, · · · , 0, · · · ) /∈ ∂∗V (x)

for all x ∈ H such that ‖x‖H ≥ R0.

For each n ∈ N, let us make the natural identification Hn
∼= PrnR∞ ∼= Rn. Then,

restricting the multifield Prn∂
∗V on Hn, we can consider it as the u.s.c. multifield

Prn∂
∗V : Rn → Kv(Rn).

From Definitions 4 and 5 it follows that if V is a non-degenerate projectively homo-
geneous potential then the multifields Prn∂∗V have no zeros on spheres ∂BRn(0, R)
for all n ≥ n0 and R ≥ R0. So the topological degrees

γn = deg(Prn∂∗V, ∂BRn(0, R)), n ≥ n0,

are well-defined and do not depend on R ≥ R0.
The index of the non-degenerate projectively homogeneous potential V is defined

by:
ind V = (γn0 , γn0+1, · · · ).

By ind V 6= 0 we mean that there exists a subsequence {nk} such that γnk
6= 0 for

all nk.
For every continuous function x ∈ C(I,H), x(t) =

(
x1(t), x2(t), · · ·

)
, t ∈ I, by a

selection υ(t) ∈ ∂∗V (x(t)) we mean

υ(t) =
(
υ1(t), υ2(t), · · · ), t ∈ I,

where υi(t) ∈ ∂Vi(xi(t)), for a.e. t ∈ I, i ≥ 1, are summable selections.

Definition 6. A projectively homogeneous potential V : H → R is said to be a non-
smooth integral guiding function for inclusion (3.1), if there exists N > 0 such that
for every x ∈W 1,2

T (I,H) with

‖x‖2 ≥ N, ‖x′(s)‖H ≤ ‖F (s, x̃s)‖H for a.e. s ∈ [0, T ]
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the following relation holds:

limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)fk(s) ds

)
= 1,

for all f ∈ PF (x), f(s) = (f1(s), f2(s), ...) and all selections υ(s) ∈ ∂∗V (x(s)).

Lemma 7. If V is a non-smooth integral guiding function for inclusion (3.1) then V
is the non-degenerate potential.

Proof. In fact, for every y = (y1, y2, · · · ) ∈ H, ‖y‖H ≥ N√
T

, considering y as the
constant function we have that

‖y‖2 ≥ N, ‖y′‖H ≤ ‖F (t, y)‖H for all t ∈ I.

Hence,

limm→∞ sign

(
m∑

k=1

∫ T

0

υkfk(s) ds

)
= 1,

for all f ∈ PF (y) and all υ = (υ1, υ2, · · · ) ∈ ∂∗V (y). So υ 6= (0, 0, · · · , 0, · · · ). �

3.2. Main results.

Theorem 8. Let conditions (FT ) and (F1)− (F3) hold. Assume that there exists a
non-smooth integral guiding function V for inclusion (3.1) such that ind V 6= 0. If
inclusion (3.2) is A−approximation solvable then inclusion (3.1) has a T−periodic
solution.

Remark 9. Some sufficient conditions of A-approximation solvability of inclusion
(3.2) will be given in Theorems 11 and 12.

For the proof of the theorem we will need the next assertion which may be proved
by following the same reasonings as in [5], Section 1.5.

Lemma 10. Let a function V : Hn → R be regular, x : [0, T ] → Hn an absolutely
continuous function. Then the function V(x(t)) is absolutely continuous and

V(x(t))− V(x(0)) =
∫ t

0

V0(x(s), x′(s)) ds, t ∈ [0, T ].

Proof of Theorem 8. It is easy to see that for each n ∈ N the restriction

An = A|
W

1,2
T

(I,Hn)
: W 1,2

T (I,Hn) → L2(I,Hn)

is the linear Fredholm operator of index zero and

ker An
∼= Hn

∼= coker An.

The spaces W 1,2
T (I,Hn) and L2(I,Hn) can be decomposed as:

W 1,2
T (I,Hn) = W

(n)
0 ⊕W

(n)
1 ,

and
L2(I,Hn) = L(n)

0 ⊕ L(n)
1 ,
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where W (n)
0 = ker An, L(n)

0 = coker An, W (n)
1 = (W (n)

0 )⊥ and L(n)
1 = ImAn.

For every u ∈ W 1,2
T (I,Hn) and f ∈ L2(I,Hn) we denote their corresponding decom-

positions by
u = u

(n)
(0) + u

(n)
(1) ,

and
f = f

(n)
(0) + f

(n)
(1) .

Notice that a function x ∈W 1,2
T (I,Hn) is a solution of the inclusion

Anx ∈ PnPF (x)

if and only if it is a fixed point
x ∈ Gn(x), (3.6)

of the multimap

Gn : CT (I,Hn) → Cv
(
CT (I,Hn)

)
,

Gn(x) = Cnx+ (ΛnΠn +KCn,Qn
) ◦ PnPF (x),

where projection Πn : L2(I,Hn) → Hn is defined as

Πnf =
1
T

T∫
0

f(s) ds

and the homomorphism Λn : Hn → Hn is the identity operator.
We will show that the multioperator Gn is u.s.c. and compact. Indeed, from

the fact that the multioperator PF is closed and the operator (ΛnΠn + KCn,Qn
) ◦

Pn is linear and continuous it follows that the multimap (ΛnΠn + KCn,Qn) ◦ PnPF

is closed (see, e.g., Theorem 1.5.30 [2]). Further, for every bounded subset U ⊂
CT (I,Hn) the set PnPF (U) is bounded in L2(I,Hn). Then the set (ΛnΠn+KCn,Qn

)◦
PnPF (U) is bounded in W 1,2

T (I,Hn) and by the compact embedding property, the
set (ΛnΠn + KCn,Qn) ◦ PnPF (U) is relatively compact in CT (I,Hn). Finally, our
assertion follows from the fact that the operator Cn is continuous and takes values in
a finite dimensional space.

Now let us demonstrate that solutions of inclusion (3.2) are a priori bounded in
the space CT (I,H). In fact, assume that x ∈ W 1,2

T (I,H) is a solution of inclusion
(3.2). Then there is a function f ∈ PF (x) such that x′(t) = f(t) for a.e. t ∈ I. For
every selection υ(s) ∈ ∂∗V (x(s)) we have

limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)fk(s) ds

)
= limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)x
′

k(s) ds

)
≤

≤ limm→∞ sign

(
m∑

k=1

∫ T

0

V 0
k

(
xk(s), x

′

k(s)
)
ds

)
=

= limm→∞ sign

(
m∑

k=1

(Vk (xk(T ))− Vk (xk(0)))

)
= 0,
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where x(t) = (x1(t), x2(t), · · · ) and f(t) = (f1(t), f2(t), · · · ), t ∈ I.
Hence, ‖x‖2 < N . From (F3) it follows that there exists K > 0 such that ‖x′‖2 < K.
Then there is a number M > 0, independent of x, such that ‖x‖C < M .

Choose an arbitrary R ≥ max{R0,M}, where R0 is the constant in Definition 5.
Then inclusion (3.2) has no solutions on ∂BC(0, R). Let us show that for each n ≥ n0

x /∈ Gn(x)

provided x ∈ ∂B(n)
C (0, R) = ∂BC(0, R) ∩ CT (I,Hn).

To the contrary, assume that x∗ ∈ ∂B(n∗)
C (0, R), n∗ ≥ n0, is a solution of inclusion

(3.6). Then there is a function f∗ ∈ PF (x∗) such that Ax∗ = Pn∗f
∗. Therefore, for

a.e. t ∈ I
‖x∗′(t)‖H = ‖Pn∗f

∗(t)‖H ≤ ‖f∗(t)‖H ≤ ‖F (t, x̃∗t )‖H .

On the other hand, from the choice of R it follows that ‖x∗‖2 ≥ N . Then we obtain

limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
= 1,

for all selections υ(s) ∈ ∂∗V (x∗(s)), s ∈ I.
Since the function x∗ takes values in Hn∗ and V is projectively homogeneous, we have

limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
= sign

(
n∗∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
=

= sign

(
n∗∑

k=1

∫ T

0

υk(s)x∗k
′(s) ds

)
≤ sign

(
n∗∑

k=1

∫ T

0

V 0
k (x∗k(s), x∗′k (s)) ds

)
=

= sign
( n∗∑

k=1

(
Vk(x∗k(T )− Vk(x∗k(0)

))
= 0,

that is the contradiction.
Thus, for each n ≥ n0 the topological degree

ωn = deg(i−Gn, B
(n)
C (0, R))

is well-defined.
Now we will evaluate ωn. To this aim we consider the multimap

Σn : CT (I,Hn)× [0, 1] → Kv(CT (I,Hn)),

Σn(x, λ) = Cnx+ (ΛnΠn +KCn,Qn
) ◦ αn(PnPF (x), λ),

where αn : L2(I,Hn)× [0, 1] → L2(I,Hn) is defined as

αn(f (n)
(0) + f

(n)
(1) , λ) = f

(n)
(0) + λf

(n)
(1) .

It is easy to see that the multimap Σn is u.s.c. and compact. Let us show that the
set

Fix
(
Σn, ∂B

(n)
C (0, R)× [0, 1]

)
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of fixed points of the family Σn(·, λ) on ∂B(n)
C (0, R) is empty. To the contrary, assume

that there exists (x∗, λ∗) ∈ ∂B(n)
C (0, R)× [0, 1] such that

x∗ ∈ Σn(x∗, λ∗).

Then there is a function f∗ ∈ PF (x∗) such that{
Anx

∗ = λ∗f
∗(n)
(1)

0 = f
∗(n)
(0) ,

where f∗(n)
(0) + f

∗(n)
(1) = Pnf

∗, f∗(n)
(0) ∈ L(n)

0 and f∗(n)
(1) ∈ L(n)

1 .
It is clear that ‖x∗‖2 ≥ N and ‖x∗′(t)‖H ≤ ‖f∗(t)‖H ≤ ‖F (t, x̃∗t )‖H for a.e. t ∈ I.
Then we have

limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
= 1,

for all selections υ(s) ∈ ∂∗V (x∗(s)), s ∈ I.
Since x∗ ∈ CT (I,Hn) we obtain

limm→∞ sign

(
m∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
= sign

(
n∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
,

where f∗(t) = (f∗1 (t), f∗2 (t), · · · ) and x∗(t) = (x∗1(t), · · · , x∗n(t), 0, 0, · · · ).
If λ∗ 6= 0, then

sign

(
n∑

k=1

∫ T

0

υk(s)f∗k (s) ds

)
= sign

(
1
λ∗

n∑
k=1

∫ T

0

υk(s)x∗k
′(s) ds

)
≤

≤ sign

(
n∑

k=1

∫ T

0

V 0
k (x∗k(s), x∗k

′(s)) ds

)
= sign

(
n∑

k=1

(
Vk(x∗k(T ))− Vk(x∗k(0))

))
= 0,

that is the contradiction.
In case λ∗ = 0, we have Anx

∗ = 0. Therefore, x∗ ∈ kerAn, i.e.,

x∗(t) ≡ y = (y1, · · · , yn, 0, 0, · · · ), t ∈ I,

where ‖y‖H = R.
From the fact that ‖y′‖2 = 0 ≤ ‖f‖2 for all f ∈ PF (y) it follows that

limm→∞ sign

(
m∑

k=1

∫ T

0

υkfk(s) ds

)
= 1,

for all f ∈ PF (y) and all elements υ = (υ1, · · · , υn, 0, 0, · · · ) ∈ ∂∗V (y).
On the other hand

limm→∞ sign

(
m∑

k=1

∫ T

0

υkfk(s) ds

)
= sign

(
n∑

k=1

∫ T

0

υkfk(s) ds

)
=

= sign
〈
υ,

∫ T

0

(Pnf)(s)ds
〉

Rn
= sign

〈
υ,Πnf

(n)
〉

Rn ,
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where f (n) = Pnf ∈ PnPF (y). So〈
υ,Πnf

(n)
〉

Rn > 0, (3.7)

and hence, Πnf
(n) 6= 0 for all f ∈ PF (y). In particular, Πnf

∗(n) 6= 0. But Πnf
∗(n) =

Πnf
∗(n)
(0) = 0, giving the contradiction.

Thus, Σn is a homotopy connecting the multioperators Σn(x, 1) = Gn and
Σn(x, 0) = Cn + ΠnPnPF . Then we obtain

deg
(
i−Gn, B

(n)
C (0, R)

)
= deg

(
i− Cn −ΠnPnPF , B

(n)
C (0, R)

)
.

The operator Cn + ΠnPnPF takes values in Hn
∼= Rn, so, by the map restriction

property of the topological degree we obtain

deg
(
i− Cn −ΠnPnPF , B

(n)
C (0, R)

)
= deg

(
i− Cn −ΠnPnPF , BRn(0, R)

)
.

In the space Hn
∼= Rn the multifield i− Cn −ΠnPnPF has the form

i− Cn −ΠnPnPF = −ΠnPnPF ,

therefore,

deg
(
i− Cn −ΠnPnPF , BRn(0, R)

)
= deg

(
−ΠnPnPF , BRn(0, R)

)
.

From (3.7) it follows that the multifields ΠnPnPF and Prn∂
∗V are homotopic on

BRn(0, R), and then

deg
(
−ΠnPnPF , BRn(0, R)

)
= deg

(
−Prn∂∗V,BRn(0, R)

)
= (−1)n γn.

From ind V 6= 0 it follows that there exists a sequence {nk}, nk ≥ n0, such that
γnk

6= 0, and then ωnk
6= 0. So, there is a sequence {x(k)}, x(k) ∈ B

(nk)
C (0, R), such

that Ax(k) ∈ Pnk
PF (x(k)) for all k. By virtue of A−approximation solvability of

inclusion (3.2) we obtain that inclusion (3.1) has a T−periodic solution. �

Generalizing the results of [19], let us present some sufficient conditions for
A−approximation solvability of inclusion (3.2).

For a Banach space Y, let us denote by BC(Y ) the Banach space of all bounded
continuous functions x : (−∞, 0] → Y .

Theorem 11. Let a Hilbert space H be compactly embedded in a Banach space Y .
Assume that the multimap F̃ : I × BC(Y ) → P (Y ) satisfies the following conditions:

(F̃ ) for a.e. t ∈ I the multimap F̃ (t, ·) : BC(Y ) → P (Y ) is upper semicontinuous.

In addition assume that the restriction F̃|I×BC(H)
takes values in Kv(H) and the mul-

timap F = F̃|I×BC(H)
: I × BC(H) → Kv(H) satisfies conditions (F1), (F3). Then

inclusion (3.2) is A−approximation solvable.

Proof. Assume that there are sequences {nk} and {x(k)}, xk ∈ CT (I,Hnk
), such that

sup
k
‖x(k)‖C < +∞ and Ax(k) ∈ Pnk

PF (x(k)).

From (F3) it follows that the set PF ({x(k)}∞k=1), and hence the set A({x(k)}∞k=1),
is bounded in L2(I,H). Then the set {x(k)}∞k=1 is bounded in W 1,2

T (I,H), and so
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it is weakly compact. W.l.o.g. assume that x(k) W
⇀ x(0) ∈ W 1,2

T (I,H). Therefore,

Ax(k) L
⇀ Ax(0). From the fact that H is compactly embedded in Y it follows that the

space W 1,2
T (I,H) is compactly embedded in CT (I, Y ), and hence,

x(k) CT (I,Y )−→ x(0), and x̃(k) BC(Y )−→ x̃(0).

Therefore, for every s ∈ I

x̃(k)
s

BC(Y )−→ x̃(0)
s . (3.8)

Now let f (k) ∈ PF (x(k)) be such that Ax(k) = Pnk
f (k). The set {f (k)}∞k=1 is

bounded in L2(I,H), so it is weakly compact in this space. W.l.o.g. assume that

f (k) L
⇀ f (0) ∈ L2(I,H).

Let us show that Pnk
f (k) L

⇀ f (0). For this, at first we demonstrate that

lim
n→∞

Pnf
(0) = f (0).

It fact, since

L2(I,H) =
∞⋃

n=1

L2(I,Hn),

there are sequences {n̂m}∞m=1 ⊂ N and {f̂ (m)}∞m=1, f̂
(m) ∈ L2(I,Hn̂m

) such that
f̂ (m) → f (0) in L2(I,H).
We have

‖Pn̂m
f (0) − f (0)‖2 ≤ ‖Pn̂m

f (0) − Pn̂m
f̂ (m)‖2 + ‖Pn̂m

f̂ (m) − f (0)‖2 ≤

≤ 2‖f̂ (m) − f (0)‖2 → 0

as m→∞. Further, for all n > n̂m

‖Pnf
(0) − Pn̂m

f (0)‖2 = ‖Pnf
(0) − Pn(Pn̂m

f (0))‖2 ≤ ‖f (0) − Pn̂m
f (0)‖2,

hence,
‖Pnf

(0) − f (0)‖2 ≤ ‖Pnf
(0) − Pn̂mf

(0)‖2 + ‖Pn̂mf
(0) − f (0)‖2

≤ 2‖f (0) − Pn̂m
f (0)‖2.

So,
lim

n→∞
Pnf

(0) = f (0).

Now for every g ∈ L2(I,H) we obtain〈
Pnk

f (k) − f (0), g
〉

L
=
〈
Pnk

f (k) − Pnk
f (0), g

〉
L

+
〈
Pnk

f (0) − f (0), g
〉

L
=

=
〈
f (k) − f (0),Pnk

g
〉

L
+
〈
Pnk

f (0) − f (0), g
〉

L
=

=
〈
f (k) − f (0), g

〉
L

+
〈
f (k) − f (0),Pnk

g − g
〉

L
+
〈
Pnk

f (0) − f (0), g
〉

L
.

Thus
lim

k→∞

〈
Pnk

fk − f0, g
〉

L
= 0.
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On the other hand, Pnk
f (k) = Ax(k) L

⇀ Ax(0). So Ax(0) = f (0), and hence, f (k) L
⇀

Ax(0). By virtue of the Mazur’s Lemma (see, e.g., [6] p. 16) there is a sequence of
convex combinations {f (m)},

f
(m)

=
∞∑

k=m

λmkf
(k), λmk ≥ 0 and

∞∑
k=m

λmk = 1,

which converges to Ax(0) on average. Applying Theorem 38 [[20], Chapter IV], we
assume w.l.o.g that {f (m)} converges to Ax0 for a.e. t ∈ I. Since the embedding
H ↪→ Y is compact, we have f

(m)
(t) Y→ Ax(0)(t) for a.e. t ∈ I.

From (3.8) and (F̃ ) it follows that for a.e. t ∈ I and for a given ε > 0 there is an
integer i0 = i0(ε, t) such that

F̃ (t, x̃(i)
t ) ⊂ OY

ε

(
F̃
(
t, x̃

(0)
t

))
for all i ≥ i0,

where OY
ε denotes the ε−neighborhood of a set in Y . Since x(i)(t) ∈ H for all i, we

obtain
F (t, x̃(i)

t ) ⊂ OY
ε

(
F
(
t, x̃

(0)
t

))
for all i ≥ i0,

Then f (i)(t) ∈ OY
ε

(
F
(
t, x̃

(0)
t

))
for all i ≥ i0, and by virtue of the convexity of the set

OY
ε

(
F
(
t, x̃

(0)
t

))
we have

f
(m)

(t) ∈ OY
ε

(
F
(
t, x̃

(0)
t

))
, for all m ≥ i0.

Therefore, Ax(0)(t) ∈ F (t, x̃(0)
t ) for a.e. t ∈ I, and so

Ax(0) ∈ PF (x(0)).

�

Theorem 12. Let a multimap F : I ×BC(H) → Kv(H) satisfy conditions (F1) and
(F3). Then inclusion (3.2) is A−approximation solvable in each of the following
cases:

(1i) for a.e. t ∈ I the multimap F (t, ·) : BC(H) → Kv(H) is weakly upper
semicontinuous in the following sense: for every sequence {ψ(n)} ∈ BC(H),

ψ(n) BC(H)
⇀ ψ(0) ∈ BC(H), and for every ε > 0 there is an integer N(ε, t) > 0

such that
F (t, ψ(n)) ⊂ Oε

(
F (t, ψ(0))

)
for all n > N(ε, t);

(2i) the multimap F satisfies condition (F2) and there is an integer q0 > 0 such
that for each n ≥ q0 the restriction of F (t, ·) on BC(Hn) takes values in
Kv(Hn) for a.e. t ∈ I.

Proof. Assume that there are sequences {nk} ⊂ N and {x(k)}, x(k) ∈ CT (I,Hnk
),

such that
sup

k
‖x(k)‖C < +∞ and Ax(k) ∈ Pnk

PF (x(k)).
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Let condition (1i) holds true. Then the multioperator PF is well-defined. Similarly

to the proof of Theorem 11, from x(k) W
⇀ x(0) it follows that x(k)

t

BC(H)
⇀ x

(0)
t , for every

t ∈ I. And hence, from condition (1i) we obtain that for a.e. t ∈ I

F (t, x̃(i)
t ) ⊂ Oε

(
F
(
t, x̃

(0)
t

))
for all i ≥ N(t, ε).

Hence we again have Ax(0) ∈ PF (x(0)).
Now let condition (2i) holds true. Then for each n ≥ q0 we obtain

PnPF (x) = PF (x),

for all x ∈ CT (I,Hn). It is clear that for all k such that nk ≥ q0 the following relation
holds: Ax(k) ∈ PF (x(k)). �

4. Existence of periodic solutions for a gradient functional
differential inclusion

For h > 0, consider the spaces of real-valued functions H = W 1,2[0, h] and Y =
L2[0, h]. It is clear that H is compactly embedded in Y . Let the functional V : Y → R
be defined as

V (y) =
1
2
|y1|+

∞∑
1

y2
k, y = (y1, y2, · · · ),

where yi, i = 1, 2, · · · , are the Fourier’s coefficients of y. It is clear that

∂∗V (y) = ∂V1(y1)× {2y2} × {2y3} × · · · ,

where

∂V1(y1) =


2y1 + 1

2 if y1 > 0,
[− 1

2 ,
1
2 ] if y1 = 0,

2y1 − 1
2 if y1 < 0,

and the multimap ∂∗V : Y → Kv(Y ) is upper semicontinuous. Moreover, the restric-
tion ∂∗V |H takes values in Kv(H) and

‖∂∗V (y)‖H ≤ 2‖y‖H +
1
2
, for all y = (y1, y2, · · · ) ∈ H. (4.1)

Consider the following functional differential inclusion

x′(t) ∈ ∂∗V (x(t)) +G(t, xt), for a.e. t ∈ I, (4.2)

where G : R× BC(Y ) → P (Y ) is a multimap.
Assume that the following conditions hold:

(GT ) G is T−periodic with respect to the first argument;
(G1) for a.e. t ∈ I multimap G(t, ·) : BC(Y ) → P (Y ) is upper semicontinuous;
(G2) the restriction G|I×BC(H)

takes values in Kv(H);
(G3) for each ψ ∈ BC(H) the multifunction G(·, ψ) : I → Kv(H) has a measurable

selection;
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(G4) there exists C > 0 such that

‖G(s, ψ̃s)‖H ≤ C(1 + ‖ψ‖2),

for a.e. s ∈ I and all ψ ∈ CT (I,H).

Theorem 13. Let conditions (GT ) and (G1)− (G4) hold. In addition, assume that

C
√
T < 2.

Then inclusion (4.2) has a T−periodic solution x ∈W 1,2
T (I,H).

Proof. Set F̃ : R× BC(Y ) → P (Y ),

F̃ (t, ψ) = ∂∗V (ψ(0)) +G(t, ψ).

It is clear that multimap F̃ is T−periodic with respect to the first argument and
satisfies condition (F̃ ) of Theorem 11.
Consider F = F̃|I×BC(H)

. It is easy to see that the multimap F takes values in Kv(H)
and satisfies condition (F1). Notice that from condition (F3) it follows that for every
r > 0 and x ∈ CT (I,H) such that ‖x‖2 ≤ r, there exists Mr > 0 such that ‖f‖2 ≤Mr

for all f ∈ PF (x). From (4.1) and (G4) we see that the multimap F satisfies condition
(F3). The application of Theorem 11 implies that inclusion (3.2) is A−approximation
solvable.

It is clear that the functional V is projectively homogeneous. Let us show that it is
a guiding function for inclusion (4.2). In fact, let x ∈W 1,2

T (I,H) and take an arbitrary
f ∈ PF (x). Then there are a function g ∈ PG(x) and a selection υ(s) ∈ ∂∗V (x(s))
such that

f(s) = υ(s) + g(s) for a.e. t ∈ I,
where

PG(x) = {g ∈ L2(I,H) : g(s) ∈ G(s, x̃s) for a.e. s ∈ I}
Notice that for every s ∈ I the values u = υ(s) and ω = g(s) are functions in H and〈

υ(s), f(s)
〉

H
=
〈
u, u+ ω

〉
H

=

=
∫ h

0

(
u2(τ) + u′

2(τ)
)
dτ +

∫ h

0

(
u(τ)ω(τ) + u′(τ)ω′(τ)

)
dτ ≥

≥ ‖u‖2H − ‖u‖H‖ω‖H .

Therefore ∫ T

0

〈
υ(s), f(s)

〉
H
ds =

∫ T

0

〈
υ(s), υ(s) + g(s)

〉
H
ds ≥

≥
∫ T

0

(
‖υ(s)‖2H − ‖g(s)‖H‖υ(s)‖H

)
ds ≥

≥ ‖υ‖22 −
∫ T

0

‖υ(s)‖H C(1 + ‖x‖2)ds.
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From (4.1) it follows that∫ T

0

〈
υ(s), f(s)

〉
H
ds ≥ ‖υ‖22 − C(1 + ‖x‖2)

∫ T

0

(2‖x(s)‖H +
1
2
)ds ≥

≥ ‖υ‖22 − 2C
√
T‖x‖22 − (2C

√
T +

TC

2
)‖x‖2 −

TC

2
.

Now let us mention that for every selection υ(s) ∈ ∂∗V (x(s)) there is a number
ε ∈ [− 1

2 ,
1
2 ] such that

υ(s) = (2x1(s) + ε, 2x2(s), · · · , 2xn(s), · · · ), s ∈ I,
where x(s) = (x1(s), x2(s), · · · , xn(s), · · · ), s ∈ I.
Therefore

‖υ‖22 =
∫ T

0

‖υ(s)‖2Hds = 4
∫ T

0

‖x(s)‖2Hds+ 4ε
∫ T

0

x1(s)ds+ ε2T ≥

≥ 4‖x‖22 − 2
∫ T

0

‖x(s)‖Hds ≥ 4‖x‖22 − 2
√
T‖x‖2.

Hence we obtain∫ T

0

〈
υ(s), f(s)

〉
H
ds ≥ (4− 2C

√
T )‖x‖22 − (2

√
T + 2C

√
T +

TC

2
)‖x‖2 −

TC

2
> 0

provided ‖x‖2 is sufficiently large. So

limm→∞ sign

(∫ T

0

m∑
k=1

υk(s)fk(s)ds

)
= 1.

Thus, V is a guiding function for inclusion (4.2). It is clear that ind V 6= 0. So,
applying Theorem 8, we conclude that inclusion (4.2) has a T−periodic solution
x ∈W 1,2

T (I,H). �
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