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1. Introduction

The method of successive approximations makes it possible to solve existence and
uniqueness problems for fixed points of wide classes of operators. Classical results
in this field, such as the Banach – Caccioppoli principle and some of its modifica-
tions and generalizations, apply to operators satisfying a Lipschitz condition with a
small Lipschitz constant (contractions). However, the method works as well for other
classes of operators which are not contractions. In particular, the well known Kan-
torovich fixed point principle [3] for differentiable operators deals with operators that,
in general, are not contractions; moreover, this principle covers some cases when the
Banach – Caccioppoli principle does not apply.

Recall that the Banach – Caccioppoli fixed point principle refers to operators in
complete metric spaces. The Kantorovich fixed point principle deals only with op-
erators in Banach spaces; moreover, it is applicable only to differentiable operators.
In this article we consider some modification of the Kantorovich fixed point principle
which also covers nondifferentiable operators. Some variants of this modification have
been used by the second author in the 90ies; in [6] an “almost sharp” variant of this
principle was given. The variant discussed in the present article is an essential com-
plement: in this variant we describe exact (unimprovable) estimates of the inner and
outer radius of the domain of existence of a unique fixed point of the operator under
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consideration. In addition, we obtain new a priori and a posteriori error estimates
for successive approximations of the corresponding fixed point.

In the last part we sketch some applications of the new fixed point principle to
nonlinear integral operators of different type.

2. The principle of majorized mappings

Consider the equation
x = Ax, (2.1)

where A is an operator defined on a ball B[x0, R] = {x : ‖x− x0‖ ≤ R} of a Banach
space X (x0 ∈ X).

Definition 2.1 The operator A satisfies a local Lipschitz condition in the ball
B[x0, R] with a nonnegative function k(·) on [0, R] if

‖Ax1 −Ax2‖ ≤ k(r)‖x1 − x2‖, (2.2)

where
‖x1 − x0‖ ≤ r, ‖x2 − x0‖ ≤ r, 0 < r ≤ R.

The basic part of the theorem presented below for smooth operators A is given in
[3]. Here we present the theorem for both smooth and nonsmooth operators. To start
with let us introduce some notation.

Let a+(·) and a−(·) be the functions defined by

a±(r) = a±
r∫

0

k(t) dt, where a = ‖Ax0 − x0‖. (2.3)

In what follows we call the functions a±(r) majorant functions of the operator A.
If the function a+(·) has fixed points in the interval [0, R] we denote the smallest of

them by r∗. Similarly, we denote by r∗ the smallest fixed point of the function a−(·).
Finally, let

r∗∗ = sup
r∗<r≤R

{r : a+(r) < r} (2.4)

(provided that the set under the sup sign is nonempty). We also put

L(x0, r
∗, r∗∗) =

{
{x : r∗ < ‖x0 − x‖ < r∗∗} if a+(R) ≥ R,

{x : r∗ < ‖x0 − x‖ ≤ r∗∗} if a+(R) < R,
(2.5)

and
L[x0, r∗, r

∗] = {x : r∗ ≤ ‖x0 − x‖ ≤ r∗}. (2.6)

With this notation, our main theorem reads as follows.
Theorem 2.2 Suppose that the operator A is defined on the ball B[x0, R] of a

Banach space X (x0 ∈ X) and satisfies the local Lipschitz condition (2.2) in the
ball B[x0, R] with a nonnegative function k(·) on [0, R]. Assume that the functions
a±(·) have fixed points in the interval [0, R]. Then the operator A has a unique fixed
point x∗ ∈ L[x0, r∗, r

∗], and this fixed point is unique in B[x0, r] for each r satisfying
r∗ ≤ r < r∗∗ (i.e., there are no fixed points in B[x0, r∗]

⋃
L[x0, r

∗, r∗∗]).
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This theorem on majorized mappings is a modification of the method of successive
approximations. It is easy to see that the hypotheses of the Banach – Caccioppoli
theorem are covered by the conditions of Theorem 2.2.

Let us discuss some advantages of Theorem 2.2. First of all, Theorem 2.2 uses a
local Lipschitz condition instead of existence conditions for a continuous derivative;
this essentially extends the class of mappings covered by this theorem. Secondly, the
method used in Theorem 2.2 is built on the analysis of a real differentiable function
having fixed points in some interval. Finally, the method adopted here is conve-
nient for a comparison between the method of majorized mappings and the Banach
– Caccioppoli principle.

Figures 1 – 3 below show the relationship between the principle of majorized map-
pings and the Banach – Caccioppoli principle in the general setting. The notation
BC-zone, U-zone, E-zone means the following: the set of radii r of the balls, where
the Banach – Caccioppoli principle of the fixed point is applicable is denoted by (BC ),
where uniqueness holds by (U ), and where existence holds by (E ). The Banach – Cac-
cioppoli principle is applicable in the ball B[x0, r], where the radius r should satisfy
the inequality

r∗ ≤ r < rcr, where rcr = inf
k(r)=1

r.

So according to the Banach – Caccioppoli theorem, any fixed point x∗ of A lies in
the ball B[x0, r

∗] and is unique in each ball B[x0, r], where r∗ ≤ r < rcr. But with
Theorem 2.2 we can get better result: any fixed point x∗ of A lies in the domain
L[x0, r∗, r

∗] and is unique in each ball B[x0, r], where r∗ ≤ r < r∗∗ for Figures 1 –
2 and r∗ ≤ r ≤ r∗∗ for Figure 3 (thus 0 ≤ r < r∗∗ is the uniqueness (U ) zone for
Figures 1 – 2 and 0 ≤ r ≤ r∗∗ for Figure 3).
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Figure 4 illustrates the case when the Banach – Caccioppoli theorem does not
apply, but the principle of majorized mappings does. So in this case the operator A
is neither contracting nor expanding in the ball B[x0, r], where r = r∗ = rcr = R.

One may find a part of the proof of Theorem 2.2 in [7]. Here we give the full proof.
To this end, we first need the following

Lemma 2.3 Suppose that the operator A is defined on the ball B[x0, R] of a Banach
space X (x0 ∈ X) and satisfies the local Lipschitz condition (2.2) in the ball B[x0, R]
with a nonnegative function k(·) on [0, R]. Then the inequality

‖A(x+ h)−Ax‖ ≤
∫ r+δ

r

k(t)dt (‖x− x0‖ ≤ r, ‖h‖ ≤ δ, r + δ ≤ R). (2.7)

holds.
The assertion of the lemma follows from the obvious chain of inequalities

‖A(x+ h)−Ax‖ ≤
s∑

j=1

∥∥∥∥A(
x+

j

s
h

)
−A

(
x+

j − 1
s

h

)∥∥∥∥ ≤ s∑
j=1

k

(
r +

j

s
δ

)
δ

s

after passing to the limit as s→∞.
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Proof of Theorem 1. First of all let us prove that the successive approximations

rn+1 = a+(rn) (r0 = 0, n = 0, 1, . . .), (2.8)

converge. Note that (2.3) implies

a′+(r) = k(r) ≥ 0, r ∈ [0, R],

by virtue of (2.2). So the function a+ does not decrease in the interval [0, R] and rn
makes sense for any n. Moreover,

rn ≤ r∗ (n = 0, 1, . . . ), (2.9)
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where r∗ is the smallest root (whose existence is assumed in Theorem 2.2 of the
equation

r = a+(r). (2.10)
For n = 0, inequality (2.9) is evident, and if it is proved for n = k, then from

rk ≤ r∗ we get a+(rk) ≤ a+(r∗) due to the monotonicity of a+(·). So rk+1 ≤ r∗ and
by induction the inequality (2.9) is proved for any n.

Using again the monotonicity of a+(·) we can prove by induction that the the se-
quence {rn} is monotonically increasing. In fact, rn ≤ rn+1 implies rn+1 = a+(rn) ≤
a+(rn+1) = rn+2, and the inequality 0 = r0 ≤ r1 is obvious.

So far we have established the existence of the limit

r∗ = lim
n→∞

rn.

By (2.8) and the continuity of a+(·), the limit r∗ is a root of equation (2.10); moreover,
r∗ is the smallest root of (2.10) in [0, R], by (2.9).

Let
xn+1 = Axn, (n = 0, 1, . . . ), (2.11)

where x0 is the center of the ball B[x0, R]. We claim that all elements in (2.11) make
sense and form a convergent sequence.

For n = 0 we have, by (2.3),

‖x1 − x0‖ = ‖Ax0 − x0‖ = a = a+(0) = a+(r0) = r1,

hence x1 ∈ B[x0, R]. Suppose that we have already proved that x1, x2, ..., xn ∈
B[x0, R], and that

‖xk+1 − xk‖ ≤ rk+1 − rk (k = 0, 1, . . . , n− 1). (2.12)

Then using Lemma 2.3 we obtain

‖xn+1 − xn‖ = ‖Axn −Axn−1‖ ≤
∫ rn

rn−1

k(t)dt = a+(rn)− a+(rn−1) = rn+1 − rn.

So (2.11) is proved for k = n, and the fact that xn+1 ∈ B[x0, R] is also proved
since

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − xn−1‖+ ...+ ‖x1 − x0‖ ≤
≤ (rn+1 − rn) + (rn − rn−1) + ...+ (r1 − r0) = rn+1 ≤ R.

Consequently, the inclusion xk ∈ B[x0, R] and the estimate (2.12) are established
for all k = 0, 1, ..., by induction.

From (2.12) it further follows that

‖xn+p − xn‖ ≤ ‖xn+p − xn+p−1‖+ ...+ ‖xn+1 − xn‖ ≤
≤ (rn+p − rn+p−1) + ...+ (rn+1 − rn) = rn+p − rn, (2.13)

which implies the convergence of the sequence {xn}. Let us denote

x∗ = lim
n→∞

xn.

Passing to the limit in (2.11) and taking into account the continuity of the operator
A we get

x∗ = Ax∗,
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which shows that x∗ is a root of equation (2.1). Moreover, inequality (2.12) implies

‖x∗ − xn‖ ≤ r∗ − rn (n = 0, 1, . . . ),

which gives an estimate of the convergence speed.
Let us now prove that the operator A has no fixed point in the ball B[x0, r∗].

Estimating ‖x∗ − x0‖ = r0 from below we get

‖x∗ − x0‖ = ‖Ax∗ − x0‖ ≥ ‖Ax0 − x0‖ − ‖Ax∗ −Ax0‖, (2.14)

By Lemma 2.3 we have

‖Ax∗ −Ax0‖ ≤
r0∫
0

k(t)dt.

So using equality (2.3) we get from (2.14)

‖x∗ − x0‖ ≥ a−
r0∫
0

k(t)dt = a−(r0)

which implies
a−(r0) ≤ r0. (2.15)

It is easy to see that inequality (2.15) is valid for all r0 ≥ r∗, where r∗ is the point of
intersection of the graph of the function r̃ = a−(r) and the bisectrix r̃ = r. This im-
mediately implies that the operator A does not have fixed points in the ball B[x0, r∗].

We conclude that r∗ ≤ r0 ≤ r∗, i.e., the fixed point x∗ of the operator A lies in the
annulus L[x0, r∗, r

∗]. The theorem is proved. �
Theorem 2.4 Suppose that all conditions of Theorem 2.2 are fulfilled. Then the

following holds.
1) The successive approximations

ξn+1 = Aξn (n = 0, 1, . . . ) (2.16)

with the initial approximation ξ0 ∈ B[x0, r
∗]∪L(x0, r

∗, r∗∗) are defined for any n and
converge to the fixed point x∗.

2) The estimates

‖x∗ − ξn‖ ≤ r∗ + ρn − 2rn (n = 0, 1, . . . ), (2.17)

‖ξn+1 − ξn‖ ≤ ρn+1 + ρn − 2rn (n = 0, 1, . . . ) (2.18)

are valid, where {rn} are the successive approximations from Theorem 2.2 and

ρn+1 = a+(ρn) (n = 0, 1, . . . ), (2.19)

where the initial approximation is ρ0 = ‖ξ0 − x0‖, and ρ0 ≥ r0 = 0.
Proof. Consider the successive approximations (2.16), with the initial approxima-

tion ξ0 being an arbitrary element from B[x0, r
∗] ∪ L(x0, r

∗, r∗∗)). It is easy to see
at Figure 5 and Figure 6 that if ρ0 ≥ r0, then ρn ≥ rn for any n. Note also that the
sequence {ρn} is increasing to r∗ if ρ0 < r∗ and is decreasing to r∗ if ρ0 > r∗; in the
case ρ0 = r∗ all terms in the sequence {ρn} coincide with r∗.
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Literally in the same way as in the proof of Theorem 2.2 one may show that the
sequence {ρn} has a limit, say ρ∗. Moreover, ρ∗ (the root of equation (2.10)) coincides
with r∗.

Now we prove that the successive approximations sequence {ξn} converges and
therefore gives a root of equation (2.1). We have

‖ξ1 − x1‖ = ‖Aξ0 −Ax0‖

and by Lemma 2.3 we get

‖ξ1 − x1‖ ≤
ρ0∫

r0

k(t)dt = a+(ρ0)− a+(r0) = ρ1 − r1,

and

‖ξ1 − x0‖ ≤ ‖ξ1 − x1‖+ ‖x1 − x0‖ ≤ (ρ1 − r1) + (r1 − r0) ≤ ρ1 ≤ R.

Clearly, ξ1 ∈ B[x0, R].
The remaining part goes by induction. Suppose that

ξk ∈ B[x0, R], ‖ξk − xk‖ ≤ ρk − rk (k = 0, 1, . . . , n). (2.20)

Then ξn+1 − xn+1 = Aξn −Axn. Using again Lemma 2.3 we obtain

‖ξn+1 − xn+1‖ = ‖Aξn −Axn‖ ≤
ρn∫

rn

k(t)dt = a+(ρn)− a+(rn) = ρn+1 − rn+1,

hence
‖ξn+1 − x0‖ ≤ ‖ξn+1 − xn+1‖+ ‖xn+1 − x0‖ ≤

(ρn+1 − rn+1) + (rn+1 − r0) ≤ ρn+1 ≤ R
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which shows that ξn+1 ∈ B[x0, R]. So by induction we conclude that (2.20) is valid
for any k.

Since the sequences {rn} and {ρn} have the common limit r∗ it follows from (2.20)
that the convergence of the sequence {xn} implies the convergence of the sequence
{ξn} with

lim
n→∞

ξn = lim
n→∞

xn = x∗.

So we have proved that the sequence of successive approximations converges to x∗ for
any initial approximation ξ0 ∈ B[x0, R]. This also implies the uniqueness of the root
of equation (2.1).

Now we prove the estimate (2.17). Since

‖x∗ − ξn‖ ≤ ‖x∗ − xn‖+ ‖xn − ξn‖ (n = 0, 1, . . . ),

by (2.13) and (2.20) we get

‖x∗ − ξn‖ ≤ ‖x∗ − xn‖+ ‖xn − ξn‖ ≤ (r∗ − rn) + (ρn − rn).

Moreover, from ρn > rn it follows that

‖x∗ − ξn‖ ≤ r∗ + ρn − 2rn (n = 0, 1, . . . ),

and so we have proved (2.17).
It remains to show that the estimate (2.18) is true. Using Lemma 2.3 we have

‖ξn+1 − ξn‖ ≤ ‖ξn+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − ξn‖

≤ ρn+1 − rn+1 + rn+1 − rn + ρn − rn = ρn+1 + ρn − 2rn
which shows that (2.18) is true as well and concludes the proof. �

3. Examples

To illustrate the applicability of our abstract results, we consider now four exam-
ples.

Let X be a Banach space. Consider the Lemarié-Rieusset equation ([5], see also
[7])

x = η + T (x, . . . , x), (3.1)
where η ∈ X and T is an m-linear (m ≥ 2) continuous operator defined on X. As is
well known, the operator T satisfies the Lipschitz condition

‖Tx1 − Tx2‖ ≤ Cmrm−1‖x1 − x2‖ (x1, x2 ∈ B[x0, r], 0 < r ≤ ∞),

which is (2.2) with k(r) = Cmrm−1 and C being the norm of the m-linear operator
T .

The majorant functions (3) have here the form

a±(r) = a±
r∫

0

k(t)dt = a± C

r∫
0

mtm−1dt = a± Crm, a = ‖η‖.

Thus, the equation
a+ Crm = r (3.2)

allows us to study existence and uniqueness conditions for equation (3.1).
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It is easy to solve this equation for m = 2. It is also possible to find a solution for
each m = 3, 4, ..., but in this case the solution in general form cannot be determined.
From Figure 7 it is clear that the graph of the function a+(·) depends on the value
of a = ‖η‖. So the set of roots of equation (3.2) also depends on a, and the existence
condition for roots reads

a ≤ acr, where acr =
(

1
Cm

) 1
m−1 m− 1

m
. (3.3)

Consequently, in the case when condition (3.3) is satisfied equation (3.1) has a unique
root x∗ ∈ L[x0, r∗, r

∗]. Moreover, the operator A has no fixed points in the set
B[0, r∗] ∪ L(x0, r

∗, r∗∗).
We point out that our reasoning gives more information than the Lemarié-Rieusset

theorems do, inasmuch as the domain of existence of solutions can be described more
precisely than in Lemarié-Rieusset’s work.
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Our second example is concerned with the nonlinear integral equation of mixed
Hammerstein type (see [8])

x(t) = f(t) + λ
m∑

j=1

b∫
a

kj(t, s)hj(x(s)) ds, (3.4)

where the kernel kj(t, s) is, for each j, a measurable function with respect to the
variables t, s ∈ [a, b], hj is a continuous function, λ is a parameter, f is a given
function, and x is an unknown function. This equation was studied in [8].

Let us consider first equation (3.4) in the space C[a, b] of continuous functions on
[a, b]. Assume that the functions hj (j = 1, ...,m) satisfy the conditions

|hj(y1)− hj(y2)| ≤ wj(r)|y1 − y2| (|y1|, |y2| ≤ r, 0 < r ≤ R, wj(r) ≥ 0),
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where the functions wj(r) are nondecreasing. Further, suppose that the kernels kj(t, s)
(j = 1, ...,m) define linear integral operators Kj in the space C; this means that each
kernel kj(t, s) is Lebesgue integrable with respect to s in [a, b] for t ∈ [a, b],

sup
a≤t≤b

b∫
a

|kj(t, s)|ds <∞,

and each function

k̃j(t, s) =

s∫
a

kj(t, σ) dσ,

continuously depends on t in average, i.e.,

lim
t→τ

b∫
a

|k̃j(t, s)− k̃j(τ, s)|ds = 0.

In addition, we have

‖Kj‖ = sup
a≤t≤b

b∫
a

|kj(t, s)|ds <∞.

Under these hypotheses the operator

Ax(t) = f(t) + λ
m∑

j=1

b∫
a

kj(t, s)hj(x(s)) ds (3.5)

acts in the space C and satisfies the local Lipschitz condition (2) in the ball B[0, R]
with

k(r) = |λ|
m∑

j=1

‖Kj‖wj(r). (3.6)

The functions (2.3) read here

a±(r) = |λ|
(
a±

r∫
0

m∑
j=1

wj(t)‖Kj‖dt
)
.

Theorems 1 and 2 allow us to formulate solvability conditions for equation (3.4), to
define the annular domain where this solution is situated, and to estimate the rate of
convergence of successive approximations.

Now let us consider equation (3.4) in the space Lp[a, b]. At first glance one might
think that the results obtained for the space C[a, b] easily carry over to the space
Lp[a, b], but this is not true. The appropriate estimates can be obtained if the Lip-
schitz conditions for the nonlinearities hj(u) are of a special form. Moreover, these
conditions are true only in the case when the nonlinearities hj(u) are defined for all
u ∈ R and have power type growth with respect to the variables u.
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Let us assume that there exist nonnegative constants (ξ, η) such that the inequality

|hj(u1)− hj(u2)| ≤
(
ξ + ηr

p−qj
qj

)
|u1 − u2| (|u1|, |u2| ≤ r, 0 < r <∞) (3.7)

is valid. Then each operator Hjx(t) = hj(x(t)), j = 1, ...,m, acts from Lp[a, b] into
Lqj

[a, b] and satisfies in each ball Br(Lp[a, b]) the local Lipschitz condition

‖Hj(x1)−Hj(x2)‖Lqj
≤ h̃j(r)‖x1 − x2‖Lp

(‖x1‖Lp , ‖x2‖Lp ≤ r, 0 < r <∞),
(3.8)

where

h̃j(r) = inf
(ξ,η)∈T (Hj)

{
ξ(b− a)

p−qj
pqj + ηr

p−qj
qj

}
(3.9)

and T (Hj) denotes the set of pairs (ξ, η) satisfying (3.7).
In order to prove (3.9) it is sufficient to verify that

h̃j(r) ≤
{
ξ(b− a)

p−qj
pqj + ηr

p−qj
qj

}
(3.10)

for arbitrary (ξ, η) ∈ T (Hj). Observe that (3.7) implies

|hj(x1(s))− hj(x2(s))| ≤
(
ξ + η

(
max {|x1(s)|, |x2(s)|}

) p−qj
qj

)
|x1(s)− x2(s)|,

and

‖Hjx1 −Hjx2‖Lqj
≤

(
ξ(b− a)

p−qj
pqj + η‖max {|x1|, |x2|}‖

p−qj
qj

Lp

)
‖x1 − x2‖Lp

, (3.11)

for x1, x2 ∈ Lp. If ‖x1‖Lp
, ‖x2‖Lp

≤ r then ‖max {|x1|, |x2|}‖Lp
≤ 2

1
p r, and the latter

inequality implies only the estimate

‖Hjx1 −Hjx2‖Lqj
≤

(
ξ(b− a)

p−qj
pqj + 2

p−qj
pqj ηr

p−qj
qj

)
‖x1 − x2‖Lp

which is worse than (3.10).
Nevertheless, (3.11) implies (3.10). To see this, let ‖x1‖Lp , ‖x2‖Lp < r and δ > 0

such that ‖x1‖Lp
, ‖x2‖Lp

≤ r − δ. Let N be an integer such that 2r < Nδ, and put

ψj =
(

1− n

N

)
x1 +

n

N
x2, n = 0, 1, . . . , N.

Then

‖Hjx1 −Hjx2‖Lqj
≤

N∑
n=1

‖Hjψn −Hjψn−1‖Lqj

and, by (3.11),
‖Hjx1 −Hjx2‖Lqj

≤(
1
N

N∑
n=1

(
ξ(b− a)

p−qj
pqj + η‖max {|ψn−1|, |ψn|}‖

p−qj
qj

Lp

))
‖x1 − x2‖Lp

.
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Moreover, ‖ψn−1 − ψn‖Lp
≤ 1
N
‖x1 − x2‖Lp

≤ 2r
1
N

< δ. Therefore,

‖max {|ψn−1|, |ψn|}‖Lp
=

‖|ψn−1|+ max {0, |ψn| − |ψn−1|}‖Lp
≤ r − δ + ‖|ψn−1| − |ψn|‖Lp

≤ r,

hence

‖Hjx1 −Hjx2‖Lqj
≤

(
ξ(b− a)

p−qj
pqj + ηr

p−qj
qj

)
‖x1 − x2‖Lp .

Thus, (3.10) holds true in the case when ‖x1‖Lp
, ‖x2‖Lp

< r. Passing to the limit
proves the validity of (3.10) for all ‖x1‖Lp

, ‖x2‖Lp
≤ r. In [1] a different proof of

(3.10) is given under the hypothesis that (3.7) holds.
Further, let us assume that for each j = 1, . . . ,m the kernel kj(t, s) is measurable

with respect to t, s and belongs to the Zaanen space Z(qj , p′) (p′ = p/(p− 1)). Recall
[4] that Z(α, β) is the space of measurable functions z(t, s) with two variables t, s ∈
[a, b] for which the integrals

b∫
a

b∫
a

z(t, s)x(s)y(t) dsdt, x ∈ Lα, y ∈ Lβ

exist; the norm in this space is defined by the formula

‖z‖Z(α,β) = sup
‖x‖Lα ,‖y‖Lβ

≤1

b∫
a

b∫
a

|z(t, s)x(s)y(t)|dsdt. (3.12)

Of course, this norm of a function z(t, s) is nothing else but the norm of the linear
integral operator Z with kernel |z(t, s)|, considered as an operator between the spaces
Lα and Lβ′ , β′ = β/(β − 1). Some methods for calculating or estimating this norm
for various α and β may be found in [4].

Under these assumptions the operator (3.5) satisfies the local Lipschitz condition
(2) in the ball Br(Lp[a, b]) with

k(r) =
m∑

j=1

h̃j(r)‖kj‖Z(qj ,p′),

where h̃j(r) is defined in (3.9). Thus, the majorant functions of the operator A are
defined here by the equations

a±(r) = |λ|
(
a±

r∫
0

m∑
j=1

h̃j(%)‖kj‖Z(qj ,p′) d%
)
.

Again, Theorems 1 and 2 allow us to formulate solvability conditions for equation
(3.4), to define the annular domain where this solution is situated, and to estimate
the rate of convergence of successive approximations.
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As a third example, let us consider the nonlinear integral equation

x(t) =

b∫
a

K(t, s, x(s), x(t)) ds, (3.13)

where the function K(t, s, u, v) is measurable with respect to the variables t, s and
continuous with respect to the variables u, v, and x is the unknown function.

First we consider equation (3.13) in the space C[a, b]. To this end, we assume that
the function K satisfies the condition∣∣K(t, s, u1, v1)−K(t, s, u2, v2)

∣∣ ≤ l(t, s, r)
∣∣u1 − u2

∣∣ +m(t, s, r)
∣∣v1 − v2

∣∣
(
|u1|, |u2|, |v1|, |v2| ≤ r, 0 < r ≤ ∞

)
,

where l(t, s, r) and m(t, s, r) are nonnegative and nondecreasing functions on [a, b]×
[a, b]× [0,∞).

Then the operator

Ax(t) =

b∫
a

K
(
t, s, x(s), x(t)

)
ds, (3.14)

satisfies the local Lipschitz condition (2) in the ball B[x0, R] with

k(r) = max
a≤t≤b

b∫
a

(
l(t, s, r) +m(t, s, r)

)
ds.

In this case,

a±(r) = a±
r∫

0

max
a≤t≤b

b∫
a

(
l(t, s, %) +m(t, s, %)

)
dsd%.

Now let us consider equation (3.13) in the space Lp[a, b]. As in the previous ex-
ample, the results do not carry over automatically from C[a, b] to Lp[a, b]. Again,
this works only if we consider nonlinearities satisfying a special Lipschitz condition.
Moreover, we can treat only the case when the nonlinearity K(t, s, u, v) is defined for
all u, v ∈ R and has power growth with respect to the variables u and v.

Assume that

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤( µ∑
j=0

aj(t, s)rθj

)
|u1 − u2|+

( ν∑
k=0

bk(t, s)rϑk

)
|v1 − v2|

(|u1|, |u2| ≤ r, 0 = θ0 < θ1 < . . . < θµ ≤ p− 1, 0 ≤ ϑ0 < ϑ1 < . . . < ϑν ≤ p),
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where aj(t, s) belongs to the Zaanen space Z( p
1+θj

, p′) (p′ = p/(p − 1)), and bk(t, s)
belongs to the Zaanen space Z( p

ϑk
, p′) (p′ = p/(p− 1)). This inequality implies that

|Ax1(t)−Ax2(t)| ≤
µ∑

j=0

b∫
a

aj(t, s)r(s)θj |x1(s)− x2(s)| ds+

ν∑
k=0

b∫
a

bj(t, s)r(s)ϑk ds |x1(t)− x2(t)|,

where r(s) = sup {|x1(s)|, |x2(s)|}. The same argument as in the previous example
shows that

‖Ax1 −Ax2‖Lp
≤

( µ∑
j=0

‖aj‖Z( p
1+θj

,p′)r
θj +

ν∑
k=0

‖bk‖Z( p
ϑk

,1)r
ϑk

)
‖x1 − x2‖Lp

.

We conclude that the operator (3.14) satisfies the local Lipschitz condition (2) in
the ball B[0, R] with

k(r) =
µ∑

j=0

‖aj‖Z( p
1+θj

,p′)r
θj +

ν∑
k=0

‖bk‖Z( p
ϑk

,1)r
ϑk .

Moreover, by means of the function k(·) we can define the functions

a±(r) = a±
( µ∑

j=0

‖aj‖Z( p
1+θj

,p′)
r1+θj

1 + θj
+

ν∑
k=0

‖bk‖Z( p
ϑk

,1)
r1+ϑk

1 + ϑk

)
.

Finally, our last example refers to the nonlinear integral equation

x(t) = F

(
t, x(t),

b∫
a

K
(
t, s, x(s)

)
ds

)
, (3.15)

where F (t, u, v) is continuous with respect to the variables u, v for fixed t, and also
continuous with respect to the variable t; as before, x is the unknown function.

The operator

Ax(t) = F

(
t, x(t),

b∫
a

K
(
t, s, x(s)

)
ds

)
, (3.16)

may be rewritten in the form
Ax = F (x,Bx), (3.17)

where F is the superposition operator defined by F (x, y)(t) = F (t, x(t), y(t)), and

Bx(t) =

b∫
a

K
(
t, s, x(s)

)
ds. (3.18)
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As before, we study equation (3.15) first in the space C[a, b]. Assume that the function
K satisfies the condition

|K(t, s, u)| ≤ n0(t, s, r) (|u| ≤ r),

|K(t, s, u1)−K(t, s, u2)| ≤ n(t, s, r)|u1 − u2| (|u1|, |u2| ≤ r),(
|u1|, |u2| ≤ r, |v1|, |v2| ≤ ρ, 0 < r, ρ ≤ ∞

)
where n(t, s, r) and n0(t, s, r) are nonnegative functions on [a, b]× [a, b]× [0,∞) which
are nondecreasing with respect to r and measurable with respect to t, s.

Then the operator B satisfies

|Bx(t)| ≤
b∫

a

n0(t, s, ‖x‖) ds (‖x‖ ≤ r)

and

|Bx1(t)−Bx2(t)| ≤
b∫

a

n(t, s, r) ds ‖x1 − x2‖, (‖x1‖, ‖x2‖ ≤ r).

Further assume that
|F (t, u1, v1)− F (t, u2, v2)| ≤ l(t, r, ρ)|u1 − u2|+m(t, r, ρ)|v1 − v2|,

|u1|, |u2| ≤ r, |v1|, |v2| ≤ ρ,
(3.19)

where l(t, r, ρ) and m(t, r, ρ) are nonnegative functions on [a, b]× [0,∞)× [0,∞) which
are nondecreasing with respect to r, ρ and measurable with respect to t. Then the
superposition operator F (x, y)(t) = F (t, x(t), y(t)) satisfies the inequality

|F (t, x1, y1)− F (t, x2, y2)| ≤ m(t, r, ρ)‖x1 − x2‖+ n(t, r, ρ)‖y1 − y2‖

‖x1‖, ‖x2‖ ≤ r, ‖y1 − y2‖ ≤ ρ.

As a result, the operator A satisfies the Lipschitz condition

‖Ax1 −Ax2‖ ≤ sup
a≤t≤b

(
l

(
t, r,

b∫
a

n0(t, s, r)ds
)

+m

(
t, r,

b∫
a

n0(t, s, r)ds
)
×

×
b∫

a

n(t, s, r)ds
)
‖x1 − x2‖,

which is nothing else but the local Lipschitz condition (2) with

k(r) = sup
a≤t≤b

(
l

(
t, r,

b∫
a

n0(t, s, r)ds
)

+m

(
t, r,

b∫
a

n0(t, s, r)ds
)
×

×
b∫

a

n(t, s, r)ds
)
.
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The majorant functions a±(r) for the operator A are defined here by

a±(r) = a±
r∫

0

sup
a≤t≤b

(
l

(
t, %,

b∫
a

n0(t, s, %)ds
)

+m

(
t, %,

b∫
a

n0(t, s, %)ds
)
×

×
b∫

a

n(t, s, %)ds
)

d%.

To conclude, let us consider equation (3.15) also in the space Lp[a, b]. Assume that

|K(t, s, u)| ≤
µ∑

j=0

aj(t, s)|u|θj (|u| ≤ r, 0 ≤ θ0 < θ1 < . . . < θµ ≤ p),

and

|K(t, s, u1)−K(t, s, u2)| ≤
ν∑

k=0

bk(t, s)rϑk |u1 − u2|

(|u1|, |u2| ≤ r, 0 ≤ ϑ0 < ϑ1 < . . . < ϑν ≤ p− 1),
where aj ∈ Z( p

θj
, q′), bk ∈ Z( p

1+ϑk
, q′). Then

‖Kx‖Lq ≤
µ∑

j=0

∥∥∫
Ω

aj(t, s)|x(s)|θjds
∥∥

Lq
≤

µ∑
j=0

‖aj‖Z( p
θj

,q′)r
θj . (3.20)

and

‖Kx1 −Kx2‖Lq
≤

ν∑
k=0

‖
b∫

a

bk(t, s)rϑk |x1(s)− x2(s)|ds‖Lq

≤
ν∑

k=0

‖bk‖Z( p
1+ϑk

,q′)r
ϑk ‖x1 − x2‖Lp

(3.21)

where we use the argument from the second example in the proof of (3.21). Further-
more, assume that

|F (t, u1, v1)− F (t, u2, v2)| ≤ c|u1 − u2|+
(
µ(t) + νρ

q−p
p

)
|v1 − v2|,

|v1|, |v2| ≤ ρ, 0 < ρ <∞, µ ∈ L qp
q−p

.
(3.22)

Then

‖F (x1, y1)− F (x2, y2)‖Lp ≤ c‖x1 − x2‖Lp +
(
‖µ‖L qp

q−p

+ νρ
q−p

p
)
‖y1 − y2‖Lq

where in the proof of this inequality the argument used from the second example is
again applied. Furthermore,

‖F (x1, y1)− F (x2, y2)‖Lp ≤

c‖x1 − x2‖Lp + inf(µ,ν)∈T (F )

(
‖µ‖L qp

q−p

+ νρ
q−p

p
)
‖y1 − y2‖Lq ,
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where T (F ) denotes the set of pairs (µ, ν) for which inequality (3.22) holds.
Summing up all these inequalities we get

‖Ax1 −Ax2‖Lp
≤

(
c+ inf

(µ,ν)∈T (F )

(
‖µ‖L qp

q−p

+ ν

( µ∑
j=0

‖aj‖Z( p
θj

,q′)r
θj

) q−p
p

)
×

×
ν∑

k=0

‖bk‖Z( p
1+ϑk

,q′)r
ϑk

)
‖x1 − x2‖Lp

.

As a result, we obtain the expression

k(r) = c+ inf(µ,ν)∈T (F )

(
‖µ‖L qp

q−p

+ ν

( µ∑
j=0

‖aj‖Z( p
θj

,q′)r
θj

) q−p
p

)
×

×
ν∑

k=0

‖bk‖Z( p
1+ϑk

,q′)r
ϑk

for the Lipschitz constant k(r) and the expression

a±(r) = a±
(
cr +

r∫
0

inf
(µ,ν)∈T (F )

(
‖µ‖L qp

q−p

+ ν

( µ∑
j=0

‖aj‖Z( p
θj

,q′)%
θj

) q−p
p

×

×
ν∑

k=0

‖bk‖Z( p
1+ϑk

,q′)ρ
ϑk

)
d%

)
.

for the majorant functions a±(r) of the operator A.

4. Conclusion

The examples considered above easily carry over to the more general setting of
nonlinear operator equations with unknown functions defined on a measurable space
Ω with σ-finite measure and taking values in a finite dimensional space. Our reasoning
reflects the fact that different solvability and uniqueness results can be essentially
strengthened by a closer scrutiny of Lipschitz conditions. Observe that in the case
when k(r) does not depend on r the fixed point principle for majorizing functions
reduces to the Banach – Caccioppoli principle. On the other hand, an analogue of the
fixed point principle with majorizing functions is not valid for operators in arbitrary
complete metric spaces.
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