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1. Introduction

K-metric and K-normed spaces were introduced in the mid-20th century (see, e.g.,
[3]–[18]) by using an ordered Banach space instead of the set of real numbers, as the
codomain for a metric. L.G. Huang and X. Zhang [4] re-introduced such spaces under
the name of cone metric spaces, but went further, defining convergent and Cauchy
sequences in the terms of interior points of the underlying cone. Thus, nonnormal
cones can be used as well, paying attention to the fact that Sandwich theorem and
continuity of the metric may not hold.

Quasicontractions in metric spaces were first used in [5] and [6] in order to obtain
fixed point and common fixed point results. When abstract metric spaces are con-
cerned, they appear, e.g., in [8, 13], and, in generalized version (but in the special
case when S = IX) in [17]. In the last mentioned paper several fixed point results
were obtained under the assumption that the positive cone P is regular or, at least,
normal.

The aim of this paper is to extend these results and to obtain common fixed
points theorems for pairs of mappings under appropriate generalized commutativity
conditions. Also, we show that regularity and/or normality condition may be dropped
in some cases. Examples are given to illustrate the results.
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We note that it was shown in the recent papers [9]–[12] that some fixed point
results for mappings satisfying linear contractive conditions in abstract metric spaces
can be directly obtained from their metric counterparts. The results of the present
paper do not fall into this category, since some of them are new even in the context
of metric spaces and they are concerned with nonlinear contractive conditions.

2. Preliminaries

We need the following definitions and results, consistent with [19, 21, 4, 7].
Let E be a real Banach space with the zero vector θ. A subset P of E is called

a cone if: (a) P is closed, non-empty and P 6= {θ}; (b) a, b ∈ R, a, b ≥ 0, x, y ∈ P
imply that ax + by ∈ P ; (c) P ∩ (−P ) = {θ}.

Given a cone P , we define the partial ordering � with respect to P by x � y if and
only if y − x ∈ P . We shall write x � y for y − x ∈ intP , where int P stands for the
interior of P and use x ≺ y for x � y and x 6= y. If int P 6= ∅, then P is called a solid
cone [19].

The cone P in E is called normal if there is a number K > 0 such that for all
x, y ∈ E, θ � x � y implies ‖x‖ ≤ K‖y‖ (the minimal such constant K is called the
normal constant of P ). Equivalently, the cone P is normal if

(∀n) xn � yn � zn and lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1)

For details see [7].
The cone P in E is called regular if every increasing sequence in E which is bounded

from above is convergent. Equivalently, the cone P is regular if every decreasing
sequence in E which is bounded from below is convergent. Every regular cone is
normal [7], but the converse is not true.

Example 2.1. [19] 1◦ Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E :

x(t) ≥ 0}. Consider sequences xn(t) = tn

n and yn(t) = 1
n . Then θ � xn � yn, and

limn→∞ yn = θ, but ‖xn‖ = maxt∈[0,1] | t
n

n |+ maxt∈[0,1] |tn−1| = 1
n + 1 > 1; hence xn

does not converge to zero. It follows by (1) that P is a nonnormal cone.
2◦ Let E = CR[0, 1] with ‖x‖ = ‖x‖∞ and P be as in the previous example. Then

P is a normal cone, but it is not regular. Indeed, let xn(t) = −tn; then the sequence
(xn) is increasing and bounded from above but ‖xn‖ = 1 for all n, so limn→∞ xn does
not exist.

Definition 2.2. [21, 4] Let X be a non-empty set and E a Banach space with a cone
P . Suppose that a mapping d : X ×X → E satisfies:

(d1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

The function d is called an abstract metric and (X, d) is called an abstract metric
space (or a K-metric space [21], or a cone metric space [4]); we shall use the first
mentioned term.
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For examples of abstract metric spaces and definitions of basic notions, in particular
convergent and Cauchy sequences, completeness etc., we refer to [21, 4]. The following
remark will be useful.

Remark 2.3. 1◦ If u � v and v � w, then u � w.
2◦ If a � λa where a ∈ P and 0 < λ < 1, then a = θ.
3◦ If c ∈ intP , θ � xn and xn → θ, then there exists a positive integer n0 such

that xn � c for all n > n0. (Note that the converse is not true if P is nonnormal.
Indeed, in Example 2.1.1◦, xn 6→ θ, but xn � c for n sufficiently large.)

If (T, S) is a pair of self-maps on the abstract metric space (X, d) then its well
known properties, such as R-weak-commutativity [15], can be introduced in the same
way as in metric spaces. The only difference is that we use vectors instead of numbers.
Thus, the pair (T, S) is said to be R-weakly commuting if there exists a real number
R > 0 such that d(TSx, STx) � Rd(Tx, Sx) for all x ∈ X.

3. Generalized quasicontractions and common fixed points

Let (T, S) be a pair of self-maps on an abstract metric space (X, d) such that
T (X) ⊂ S(X). For arbitrary x0 ∈ X there exists x1 ∈ X such that Sx1 = Tx0.
Having chosen xn−1 ∈ X, choose xn ∈ X such that Sxn = Txn−1.

Definition 3.1. (1) The sequences (xn)∞n=0 and (yn)∞n=0, where y0 = Sx0, yn =
Txn−1 = Sxn for n ≥ 1, are called Jungck sequences of the pair (T, S), with the initial
point x0 (of first, resp. second order) [11]. The space (X, d) is called (T, S)-orbitally
complete if, for each x0, every Cauchy subsequence of arbitrary Jungck sequence (yn)
of second order has a limit in X.

(2) For arbitrary points x, y ∈ X denote

CT,S(x, y) = {d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}.
The mapping T is called a generalized S-quasicontraction if there exists x0 ∈ X such
that for arbitrary Jungck sequences (xn), (yn) of the pair (T, S) with the initial point
x0 and for arbitrary z ∈ Z = {y0, x0, y1, x1, y2, x2, . . . } there exists u ∈ CT,S(x0, z)
such that d(Tx0, T z) � ϕ(z) · u holds, where ϕ : Z → [0, 1) is a function such that
supz∈Z ϕ(z) = µ < 1.

Obviously, each S-quasicontraction in the sense of [8] is a generalized S-quasicon-
traction if contraction coefficient λ ≤ 1

2 . Adapting [17, Example 3.1] we show in the
next example that the converse is not true.

Example 3.2. Let X = [0, 1), E = R2, P = {(x, y) : x ≥ 0, y ≥ 0}, let α > 0 be
fixed and let d(x, y) = (|x − y|, α|x − y|) for x, y ∈ X. (X, d) is a normal abstract
metric space with K = 1. Consider mappings T, S : X → X, Tx = 1

2x2, x ∈ X and
S = IX . Taking x0 = 1

8 , ϕ(z) = 1
2 ( 1

2 + z) and λ = 3
4 it is easy to show that T is

a generalized S-quasicontraction. We show that T is not an S-quasicontraction. Let
x, y ∈ X; then d(Tx, Ty) = 1

2 (|x2 − y2|, α|x2 − y2|). Consider the set CT,S(x, y) =
{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} and suppose that for arbitrary x, y ∈ X
there exists u ∈ CT,S(x, y) such that d(Tx, Ty) � λu for some fixed λ < 1. It is easy
to show that in each of the five possible cases a contradiction is obtained. E.g., if
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u = d(x, y) = (|x− y|, α|x− y|), then one obtains 1
2 |x+ y| ≤ λ which is impossible for

fixed λ < 1 when x, y → 1.

Adapting the proof of the first part of [17, Theorem 3.1] we obtain

Lemma 3.3. Let (T, S) be a pair of self-maps of an abstract metric space (X, d)
with the normal constant K such that T (X) ⊂ S(X). Let T be a generalized S-quasi-
contraction where x0, (xn), (yn), and ϕ are as in Definition 3.1 with the function ϕ
satisfying the condition supz∈Z ϕ(z) ≤ λ/2K (λ ∈ [0, 1) is fixed, so that λK < 1).
Then (yn) is a Cauchy sequence in (X, d).
Proof. We shall use the following notation (k ≥ 0).

O(yk;n) = {yk, yk+1, . . . , yk+n},
δn(yk) = diam O(yk;n) = sup{ ‖d(u, v)‖ : u, v ∈ O(yk;n) },

O(yk;∞) = {yk, yk+1, . . . }, δ(yk) = diam O(yk;∞),

Let us prove first that
δn−1(y1) ≤ λδn(y0). (2)

Indeed, for some 1 ≤ j < k ≤ n, we have

δn−1(y1) = diam {y1, . . . , yn} = ‖d(yj , yk)‖ = ‖d(Txj−1, Txk−1)‖.
But

d(Txj−1, Txk−1) � d(Tx0, Txj−1) + d(Tx0, Txk−1)

� ϕ(xj−1) · uj−1 + ϕ(xk−1) · vk−1,

where

uj−1 ∈ {d(Sx0, Sxj−1), d(Sx0, Tx0), d(Sxj−1, Txj−1),

d(Sx0, Txj−1), d(Sxj−1, Tx0)}
= {d(y0, yj−1), d(y0, y1), d(yj−1, yj), d(y0, yj), d(yj−1, y1)},

so that ‖uj−1‖ ≤ diam O(y0;n) and similarly for ‖vk−1‖. It follows that

δn−1(y1) ≤ K (ϕ(xj−1) · ‖uj−1‖+ ϕ(xk−1) · ‖vk−1‖)

≤ K · λ

2K
· 2 diam O(y0;n) = λδn(y0),

and (2) is proved. It follows that

δn(y0) = ‖d(y0, yk)‖ for some k ≤ n. (3)

Indeed, suppose that δn(y0) = ‖d(yj , yk)‖ for some 1 ≤ j < k ≤ n. Then it follows
from (2) that

δn(y0) ≤ diam {y1, . . . , yn} = δn−1(y1) ≤ λδn(y0) < δn(y0),

a contradiction.
Now we prove that the sequence (δn(y0)) is bounded:

δn(y0) ≤
K

1− λK
‖d(y0, Tx0)‖. (4)
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Let k be as in (3). Then d(y0, yk) � d(y0, Tx0) + d(Tx0, yk), so that

δn(y0) = ‖d(y0, yk)‖ ≤ K · ‖d(y0, Tx0)‖+ K · ‖d(Tx0, yk)‖
= K (‖d(y0, Tx0)‖+ ‖d(y1, yk)‖) ,

and since ‖d(y1, yk)‖ ≤ δn−1(y1) ≤ λδn(y0), we obtain that δn(y0) ≤ K ·‖d(y0, Tx0)‖+
K · λδn(y0), wherefrom relation (4) follows.

Since obviously δn(y0) ≤ δn+1(y0), we conclude that there exists δ(y0) =
limn→∞ δn(y0) and

δ(y0) ≤
K

1− λK
‖d(y0, Tx0)‖. (5)

Consider now βn(y0) = diam O(yn+1;∞) where O(yn+1;∞) = {yn+1, yn+2, . . . }.
Obviously the sequence (βn(y0)) is not increasing and there exists β(y0) :=
lim

n→∞
βn(y0). Let us prove that β(y0) = 0. Passing to the limit in relation (2) we

obtain that

δ(y1) ≤ λδ(y0) and similarly δ(yk+1) ≤ λδ(yk) for k ≥ 1. (6)

It follows that

βn+1(y0) = diam O(yn+2;∞) ≤ λdiam O(yn+1;∞) = λβn(y0).

Passing to the limit we get that β(y0) ≤ λβ(y0) which is only possible (since λ < 1)
when β(y0) = 0.

Thus, β(y0) = 0 which implies that the Jungck sequence (yn) of second order,
where yn = Txn−1 = Sxn, is a Cauchy sequence.

Theorem 3.4. Let (X, d) be a (T, S)-orbitally complete normal abstract metric space
for some pair of self-maps (T, S) such that:

1◦ T is a generalized S-quasicontraction (notation is as in Lemma 3.3);
2◦ (T, S) is R-weakly commuting;
3◦ S is continuous.
Let (xn) and (yn) be Jungck sequences of first and second order with the initial

point x0 and let limn→∞ yn = x̄. Suppose that for each element z ∈ Z there exists
v ∈ CT,S(x̄, z) such that d(T x̄, Tz) � ϕ(z) · v. Then:

(i) T x̄ = Sx̄ = x̄.

(ii) ‖d(yn, x̄)‖ ≤ λnK

1− λK
‖d(y0, Tx0)‖.

(iii) If
⋂∞

n=0 Tn(X) is a singleton, then x̄ is the unique common fixed point of T
and S.

Note that if Y ⊂ X, then T (Y ) =
⋃

y∈Y Ty, and in particular, T (X) =
⋃

x∈X Tx.
Further, T 2(X) = T (T (X)) = T (

⋃
x∈X Tx) =

⋃
x∈X

⋃
y∈Tx Ty, and Tn(X) is defined

by induction (T 0(X) = X).
Proof. According to Lemma 3.3 the sequence (yn) is a Cauchy sequence, and since
the space (X, d) is (T, S)-orbitally complete, it has a limit. So, introduction of the
point x̄ in the formulation of the theorem is correct.
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(i) We shall prove first that T x̄ = Sx̄. Since Txn → x̄ and Sxn → x̄ and since S
is continuous, STxn → Sx̄. By the triangle inequality we have that

d(T x̄, Sx̄) � d(T x̄, TSxn) + d(TSxn, STxn) + d(STxn, Sx̄) (7)

For the first term on the right-hand side of (7) we have that d(T x̄, TSxn) � ϕ(Sxn) ·v
where

v ∈ {d(Sx̄, S2xn), d(T x̄, Sx̄), d(TSxn, S2xn), d(Sx̄, TSxn), d(S2xn, T x̄)}.
The elements of the last set tend to zero or to d(Sx̄, T x̄); since supϕ(Sxn) ≤ µ < 1,
using Remark 1.2.2◦ it follows that d(T x̄, TSxn) → θ. For the second term in (7) we
obtain using assumption 2◦ that d(TSxn, STxn) � Rd(Txn, Sxn) → θ. Finally, the
third term also tends to zero because of STxn → Sx̄. Using property (1) (and thus
normality of the cone) we conclude that d(T x̄, Sx̄) = θ, i.e. T x̄ = Sx̄.

Now we prove that T x̄ = x̄. For each n it is d(T x̄, Txn+1) � ϕ(xn+1) · v, where

v ∈ {d(Sx̄, Sxn+1), d(Sx̄, T x̄), d(Sxn+1, Txn+1), d(Sx̄, Txn+1), d(Sxn+1, T x̄)}.
Elements of the last set tend, respectively, to d(Sx̄, x̄) = d(T x̄, x̄), θ, θ, d(T x̄, x̄) and
d(x̄, T x̄). Hence, passing to the limit (and again using boundedness of ϕ and property
(1)), we obtain that d(T x̄, x̄) = θ, i.e. T x̄ = x̄ = Sx̄.

(ii) Using inequalities (6) we obtain that δ(yn) ≤ λδ(yn−1) ≤ · · · ≤ λnδ(y0). Taking
into account relation (5), we get that

δ(yn) ≤ λnK

1− λK
‖d(y0, Tx0)‖. (8)

Since Txn = yn+1 we have also δ(Txn) ≤ λn+1K
1−λK ‖d(y0, Tx0)‖ ≤ λnK

1−λK ‖d(y0, Tx0)‖
(because of λ < 1). Hence, both δ(Txn) and δ(Sxn) have the same upper bound
λnK
1−λK ‖d(y0, Tx0)‖.

Let m > n. Then, by (8),

‖d(yn, ym)‖ ≤ δ(yn) ≤ λnK

1− λK
‖d(y0, Tx0)‖.

Passing to the limit when m →∞ we obtain that

‖d(Sxn, x̄)‖ = ‖d(yn, x̄)‖ ≤ λnK

1− λK
‖d(y0, Tx0)‖.

as stated in (ii). Similarly, one obtains that

‖d(Txn, x̄)‖ ≤ λnK

1− λK
‖d(y0, Tx0)‖.

(iii) Let
⋂∞

n=0 Tn(X) = {w}. Let v be any common fixed point for T and S, i.e.,
v = Tv = Sv. It follows that also v = Tnv = Snv for n = 0, 1, 2, . . . and hence
v ∈ Tn(X) for each n. Thus, v = w and the fixed common point x̄ of T and S is
unique.

The theorem is proved.

Theorem 3.1 of [17] is obtained as a special case of our Theorem 3.4 putting S = IX .
Note that condition that the cone P is regular was here avoided, but it was just stated
and not used in [17], either.
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On the other hand, Theorem 3.4 is obviously a generalization of [8, Theorem 2.1].
Example 3.2 shows that this generalization is proper.

A similar example can be constructed even for Banach contractions and in the
setting of metric spaces. Let (X, d) be a metric space and T, S be two self-maps
on X. We shall call T a Banach S-contraction if d(Tx, Ty) ≤ λd(Sx, Sy) holds for
some λ ∈ (0, 1) and all x, y ∈ X and a generalized Banach S-contraction if there
exists x0 ∈ X such that d(Tx0, T y) ≤ ϕ(y)d(Sx0, Sy) holds for all y ∈ Z, where
supy∈Z ϕ(y) ≤ 1

2λ for some λ < 1. We shall show that there exists a generalized
Banach S-contraction which is not a Banach S-contraction.

Example 3.5. Let X = [0, 1), d be the Euclidean metric, and let T, S : X → X
be defined by Tx = 1

2x3, Sx = 1
2x2. Obviously, TX ⊂ SX and S is continuous.

Then d(Tx, Ty) ≤ λd(Sx, Sy) does not hold for all x, y ∈ X and any fixed λ ∈ (0, 1),
Indeed, otherwise we would have 1

2 |x
3−y3| ≤ 1

2λ|x2−y2|, i.e., x2+xy+y2

x+y ≤ λ, which is
impossible for fixed λ ∈ (0, 1) when x, y → 1. Hence, T is not a Banach S-contraction.

To show that T is a generalized Banach S-contraction, take x0 = 1
4 . Then

d(Sx0, Sy) = | 1
32 −

1
2y2| = 1

2 |
1
4 − y| · | 14 + y| and

d(Tx0, T y) =
∣∣∣∣ 1
128

− 1
2
y3

∣∣∣∣ =
1
2

∣∣∣∣14 − y

∣∣∣∣ (
1
16

+
1
4
y + y2

)
=

1 + 4y + 16y2

8(1 + 4y)
· d(Sx0, Sy).

Hence, taking ϕ(y) = 1+4y+16y2

8(1+4y) , since maxy∈Z ϕ(y) = ϕ( 1
4 ) = 3

16 ≤ λ
2 for any

λ ∈
[
3
8 , 1

)
, we conclude that T is a generalized Banach S-contraction.

The next example illustrates the case when conditions of Theorem 3.4 are fulfilled.

Example 3.6. Let X = [0, 1), E = CR[0, 1] and P = {f : f(t) ≥ 0}. This cone is
normal with constant K = 1, but it is not regular (see Example 2.1.2◦). An abstract
metric d on X is defined by d(x, y) = |x− y| ·φ, where φ ∈ P is an arbitrary function
(e.g., φ(t) = 2t). Consider mappings T, S : X → X given by Tx = 1

3x2, Sx = x2,
x ∈ X. Then one can easily check:

1◦ For x0 = 1
3 and z ∈ Z (see Definition 3.1),

d(Tx0, T z) =
∣∣∣∣ 1
27
− 1

3
z2

∣∣∣∣ · φ =
1
3

∣∣∣∣19 − z2

∣∣∣∣ · φ =
1
3
d(Sx0, Sz),

so T is a generalized S-quasicontraction with ϕ(z) ≡ 1
3 ≤ λ/2 for any λ ∈

[
2
3 , 1

)
and

u = d(Sx0, Sz) ∈ CT,S(x0, z).
2◦ d(TSx, STx) = | 13x4− 1

9x4|·φ = 2
9x4·φ � R· 23x2·φ = |x2− 1

3x2|·φ = R·d(Sx, Tx)
for R = 1, which means that the pair (T, S) is R-weakly-commuting.

3◦ S is continuous.
Moreover, it can be easily verified that for x̄ = 0, d(T x̄, Tz) � ϕ(z) · v with v =

d(Sx̄, Sz) ∈ CT,S(x̄, z). Since X is obviously (T, S)-orbitally complete, all conditions
of Theorem 3.4 are fulfilled. The point x̄ = 0 is a (unique) common fixed point for T
and S.
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4. p-contractions without regularity condition

The concept of a p-contraction was in the setting of metric spaces introduced in
[16] (see also [10, 14]), and then in the setting of abstract metric spaces in [17]. It was
shown by examples in [16] that it is more general than the classical Banach contraction
and that a p-contraction need not be continuous. Recall the following definition (in
this section we use the classical notation O(x;∞) = {x, Tx, T 2x, . . . }).

Definition 4.1. [17] A self-map T on an abstract metric space (X, d) is called a
p-contraction if there exist x ∈ X and a number λ ∈ [0, 1) such that

d(Ty, T 2y) � ϕ(y) · d(y, Ty)

holds for each y ∈ O(x;∞), where ϕ : O(x;∞) → [0, 1) is a function such that
supy∈O(x;∞) ϕ(y) = λ < 1.

A fixed point result for p-contractions was proved in [17, Theorem 3.5] assuming
that the positive cone P is regular. We shall prove that the first part of this result
holds without even P being normal. The only assumption will be that P is solid
(which ensures that the limit of any sequence is unique if it exists).

Lemma 4.2. Let (X, d) be a T -orbitally complete abstract metric space, where the
positive cone P is solid and T : X → X is a p-contraction, with the respective vector x.
Then there exists limn→∞ Tnx = x̄ ∈ X.
Proof. Let λ and ϕ be as in Definition 4.1. Put T 0x = x and y = Tn−1x ∈ O(x;∞).
Then for each n ∈ N

d(Ty, T 2y) = d(Tnx, Tn+1x) � ϕ(Tn−1x)d(Tn−1x, Tnx) � λd(Tn−1x, Tnx).

It follows that

d(Tnx, Tn+1x) � λd(Tn−1x, Tnx) � · · · � λnd(x, Tx). (9)

Now for m > n, using (9), one obtains

d(Tnx, Tmx) � d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x) + · · ·+ d(Tm−1x, Tmx)

� λnd(x, Tx) + λn+1d(x, Tx) + · · ·+ λm−1d(x, Tx)

= (λn + λn+1 + · · ·+ λm−1)d(x, Tx)

= λn 1− λm−n

1− λ
d(x, Tx) � λn

1− λ
d(x, Tx).

Since λn

1−λ d(x, Tx) → θ in the Banach norm of E, by Remark 2.3.3◦, it follows that
λn

1−λ d(x, Tx) � c for each c � θ and arbitrary n greater than some n0(c) ∈ N. But
then by Remark 2.3.1◦, we obtain that d(Tnx, Tmx) � c, which means that (Tnx) is
a Cauchy sequence in (X, d). Since (X, d) is T -orbitally complete, there exists x̄ ∈ X
such that Tnx → x̄.

The rest of the proof of [17, Theorem 3.5] use only normality (and not regularity)
of the cone P , so we obtain
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Theorem 4.3. Let (X, d) be a T -orbitally complete abstract metric space, where the
positive cone P is normal and T : X → X is a p-contraction. Let limn→∞ Tnx = x̄
(see Lemma 4.2) and suppose that the mapping X 3 z 7→ ‖d(z, Tz)‖ is T -orbitally
lower semicontinuous at the point x̄. Then x̄ is a fixed point of T . This fixed point
is unique if

⋂∞
n=0 Tn(X) is a singleton, where Tn(X) = T (Tn−1(X)) for n ∈ N and

T 0(X) = X.

Adapting an example from [20] we show that the assumption about lower continuity
is essential in the last theorem. The second part of the example shows the importance
of the condition for uniqueness of the fixed point.

Example 4.4. (a) Let X = [0, 1], E = R2, P = { (x, y) : x ≥ 0, y ≥ 0 } and
d(x, y) = (|x− y| , α |x− y|), α ≥ 0. Then (X, d) is a complete abstract metric space.
Define the mapping T : X → X by

Tx =

{
1
2 , x = 0
1
2x2, x 6= 0.

Function I(z) = ‖d(z, Tz)‖ of the form

I(z) =

{
1
2

√
1 + α2, z = 0∣∣z − 1

2z2
∣∣√1 + α2, z 6= 0.

is obviously not T -orbitally lower semicontinuous. It is easy to check that all other
conditions of Theorem 4.3 are fulfilled, but the p-contraction T has no fixed points.

(b) In the same abstract metric space X as in example (a) consider the mapping
T1 : X → X given by

T1x =

{
1, x = 1
1
2x2, x 6= 1.

Here, all the conditions of Theorem 4.3 are fulfilled for the point x = 0 except that⋂∞
n=0 Tn(X) = {0, 1} is not a singleton. The mapping T1 has two fixed points.

We conclude with an easy example in which the conditions of Theorem 4.3 are
satisfied, but the conditions of [4, Theorem 1.1] are not.

Example 4.5. Let X, P and d be as in Example 3.6, and let Tx = 1
2x2. It is easy to

check that T is a p-contraction with λ = 3
4 . On the other hand, Banach contraction

condition would mean that d(Tx, Ty) � 3
4d(x, y) for all x, y ∈ X. This is equivalent

to ∣∣∣∣12x2 − 1
2
y2

∣∣∣∣ · φ(t) ≤ 3
4
|x− y| · φ(t), t ∈ [0, 1],

i.e. |x+y|
2 ≤ 3

4 , and |x + y| ≤ 3
2 . But the last inequality cannot hold for all x, y ∈ [0, 1].
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