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Abstract. A class of second order differential systems with nonlocal conditions8>><
>>:

u′′(t) + f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + f2(t, u(t), v(t)) = 0, t ∈ (0, 1),

u′(0) = v′(0) = 0, u(1) = αu(η), v(1) = αv(η)

is considered under some conditions concerning the first eigenvalue of the relevant linear problem.

By constructing a cone K1 × K2 which is the Cartesian product of two cones and computing the
fixed point index in K1 ×K2, the existence of positive solutions for the systems is established. An

example is provided to illustrate the main results.
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1. Introduction

In this paper, we study the existence of positive solutions for the following second
order differential systems with nonlocal conditions

u′′(t) + f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + f2(t, u(t), v(t)) = 0, t ∈ (0, 1),

u′(0) = v′(0) = 0, u(1) = αu(η), v(1) = αv(η),

(1.1)

where α, η ∈ (0, 1) are given constants, fi ∈ C(I × R+ × R+, R+) (i = 1, 2), in which
I = [0, 1], R+ = [0,+∞).

The subject of nonlocal boundary value problems (BVPs) is an important branch
of differential equations. Over the past decades, great efforts have been devoted to the
study of nonlinear multi-point BVPs due to their theoretical challenge and extensive
real-word application. Recently, much attention has been focused on investigating the
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existence and multiplicity of positive solutions for nonlinear nonlocal BVPs [1,9,11,13-
18,20,21]. On the other hand, many problems in applied mathematics lead to the
study of systems of differential equations, for instance, in population dynamics and
chemical engineering [5,8]. Recently, many authors studied systems BVPs for differ-
ential equations, for example [2,7,10,12,19,22]. In [2], the authors established some
fixed point theorems for systems of two equations in Banach spaces, and then applied
them to the nonlinear differential equations two point BVP

u′′ + f(t, u, v) = 0, t ∈ [0, π],

v′′ + g(t, u, v) = 0, t ∈ [0, π],

u(0) = u(π) = v(0) = v(π) = 0,

where the nonlinearities f and g in the two equations are sublinear. In [12], a new
version of Krasnosel’skii’s fixed point theorem in cones is obtained for systems of
operator equations. As an application, the author investigated the existence and
multiplicity of positive periodic solutions of nonlinear differential system{

u′1(t) = −a1(t)u1(t) + ε1f1(t, u1(t), u2(t)),

u′2(t) = −a2(t)u2(t) + ε2f2(t, u1(t), u2(t)),

where f1 and f2 are posed with some kinds of monotonicity conditions. In [10, 22]
the following three point BVP for a second order differential systems

u′′ + f(t, v) = 0, t ∈ (0, 1),

v′′ + g(t, u) = 0, t ∈ (0, 1),

u(0) = v(0) = 0, u(1) = αu(η), v(1) = αv(η)

is considered, where η ∈ (0, 1), 0 < αη < 1, and the existence and multiplicity results
of positive solutions were shown by using Krasnosel’skii fixed point theorem and fixed
point index theory in cones. In [7], Henderson et al. studied the positive solutions for
second order differential systems.

Motivated by the above works, we will consider the generic second order differential
systems with nonlocal conditions. In the present paper, the existence of positive
solutions is obtained by means of the fixed point index theory under some conditions
concerning the first eigenvalue with respect to the relevant linear problem. We remark
here that we deal with our problem on the Cartesian product of two cones. By
constructing a cone K1 × K2 which is the Cartesian product of two cones in the
Banach space C[0, 1] and computing the fixed point index in K1 ×K2, the existence
of positive solutions is established. Since the nonlinear term is superlinear in one
equation and sublinear in the other equation, and the assumptions made involve the
first eigenvalue of the relevant linear problem, it seems to be difficult to prove our
results by using the fixed point theorems of cone expansion and compression as were
done in [7,10,12,19]. Our methods are different from those used in [2,7,10,12,19,22],
but utilize some methods in [3, 4]. Our results generalize and extend some known
results.

By a positive solution of problem (1.1), we mean a pair of functions (u, v) ∈
C2(I, R+)× C2(I, R+) which satisfies (1.1) and u(t) > 0, v(t) > 0 for all t ∈ I.
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We impose the following assumptions:

(H1) lim sup
u→0

max
t∈I

sup
v∈R+

f1(t,u,v)
u < λ1 < lim inf

u→∞
min
t∈I

inf
v∈R+

f1(t,u,v)
u .

(H2) lim sup
v→∞

max
t∈I

sup
u∈R+

f2(t,u,v)
v < λ1 < lim inf

v→0
min
t∈I

inf
u∈R+

f2(t,u,v)
v .

(H3) For a fixed t ∈ I and u ∈ R+, sup
v∈R+

f1(t, u, v) < +∞.

(H4) For a fixed t ∈ I and v ∈ R+, sup
u∈R+

f2(t, u, v) < +∞.

In the assumptions (H1) and (H2), λ1 is the first eigenvalue of the linear problem{
u′′(t) + λu(t) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) = αu(η).

Based on the knowledge of linear differential equations, we know that λ1 is the minimal
positive root of the equation cos

√
x = α cos η

√
x and 0 < λ1 < π2

4 .
The rest of the paper is organized as follows. In Section 2, we present some

preliminaries. In Section 3, the result of existence of positive solutions is established.
Finally, we formulate a concrete example to illustrate our result.

2. Preliminaries

Let E = C[0, 1], then E is a Banach space with the norm ‖u‖ = maxt∈I |u(t)|. Set
P = {u ∈ E : u(t) ≥ 0, t ∈ I}.
Lemma 2.1 ([17]). Let α, η ∈ (0, 1), then for h ∈ P , the problem{

u′′(t) + h(t) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) = αu(η)

has a unique solution u(t) =
∫ 1

0
G(t, s)h(s)ds, where the Green’s function G(t, s) is

defined by

G(t, s) =



1− αη

1− α
− s, 0 ≤ s ≤ η, 0 ≤ t ≤ s,

1− s

1− α
, η ≤ s ≤ 1, 0 ≤ t ≤ s,

1− αη

1− α
− t, 0 ≤ s ≤ η, s ≤ t ≤ 1,

1− αs

1− α
− t, η ≤ s ≤ 1, s ≤ t ≤ 1.

It is easy to verify that G(t, s) has the following properties:
(i) G(t, s) is a nonnegative continuous function on I × I.
(ii) G(t, s) ≤ G(0, s) for any t, s ∈ I.
(iii) G(t, s) ≥ α(1−η)

1−αη G(0, s) for any t, s ∈ I.
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Let K = {u ∈ P : mint∈I u(t) ≥ α(1−η)
1−αη ‖u‖}, then K is a cone in E. For any

λ ∈ I, u, v ∈ P , we define the mappings Av(λ, ·), Bu(λ, ·) : P → P and Tλ(·, ·) :
P × P → P × P by

Av(λ, u)(t) =
∫ 1

0

G(t, s)[(1− λ)u2(s) + λf1(s, u(s), v(s))]ds, t ∈ I,

Bu(λ, v)(t) =
∫ 1

0

G(t, s)[(1− λ)
√

v(s) + λf2(s, u(s), v(s))]ds, t ∈ I,

and
Tλ(u, v)(t) = (Av(λ, u)(t), Bu(λ, v)(t)) , t ∈ I.

It is well known that the positive solution of problem (1.1) is equivalent to the non-
zero fixed point of T1 in K × K. We first give the following result for a completely
continuous operator.
Lemma 2.2 Tλ : K ×K → K ×K is completely continuous.
Proof. From the continuity of f1, f2 and G(t, s), by standard arguments, Av, Bu :
P → P are completely continuous, and hence Tλ is completely continuous. In the
following, we shall prove that Tλ(K ×K) ⊂ K ×K. For (u, v) ∈ K ×K and t ∈ I, it
is clear that Av(λ, u)(t) ≥ 0, and

Av(λ, u)(t) =
∫ 1

0

G(t, s)[(1− λ)u2(s) + λf1(s, u(s), v(s))]ds

≤
∫ 1

0

G(0, s)[(1− λ)u2(s) + λf1(s, u(s), v(s))]ds,

then

‖Av(λ, u)‖ ≤
∫ 1

0

G(0, s)[(1− λ)u2(s) + λf1(s, u(s), v(s))]ds.

Thus

Av(λ, u)(t) =
∫ 1

0

G(t, s)[(1− λ)u2(s) + λf1(s, u(s), v(s))]ds

≥ α(1− η)
1− αη

∫ 1

0

G(0, s)[(1− λ)u2(s) + λf1(s, u(s), v(s))]ds

≥ α(1− η)
1− αη

‖Av(λ, u)‖, t ∈ I,

i.e.

min
t∈I

Av(λ, u)(t) ≥ α(1− η)
1− αη

‖Av(λ, u)‖.

Therefore, Av(λ, u) ⊂ K. Similarly, we can show that Bu(λ, v) ⊂ K. Hence, Tλ(K ×
K) ⊂ K ×K.

The following two lemmas are needed in our arguments.
Lemma 2.3 ([4]). Let E be a Banach space and let Ki ⊂ E (i = 1, 2) be a closed
convex cone in E. For ri > 0 (i = 1, 2), denote Kri = {u ∈ Ki : ‖u‖ < ri}, ∂Kri =
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{u ∈ Ki : ‖u‖ = ri}. Suppose Ai : Ki → Ki is completely continuous. If ui 6=
Aiui, ui ∈ ∂Kri

, then

i(A,Kr1 ×Kr2 ,K1 ×K2) = i(A1,Kr1 ,K1) · i(A2,Kr2 ,K2),

where A(u, v) := (A1u, A2v), (u, v) ∈ K1 ×K2.
Lemma 2.4 ([6]). Let A : K → K be a completely continuous operator, and denote
Kr = {u ∈ K : ‖u‖ < r}, ∂Kr = {u ∈ K : ‖u‖ = r}.

(i) If ‖Au‖ > ‖u‖, u ∈ ∂Kr, then i(A,Kr,K) = 0;
(ii) If ‖Au‖ < ‖u‖, u ∈ ∂Kr, then i(A,Kr,K) = 1.

3. Main results

Theorem 3.1 Assume that conditions (H1)− (H4) hold. Then problem (1.1) has at
least one positive solution.
Proof. For λ = 0, Av(0, u)(t) =

∫ 1

0
G(t, s)u2(s)ds. Taking

r0 = (
∫ 1

0

G(0, s)ds)−1 =
2(1− α)
1− αη2

,

then for u ∈ ∂Kr, 0 < r < r0, we have

‖Av(0, u)‖ ≤
∫ 1

0

G(0, s)u2(s)ds ≤ ‖u‖2
∫ 1

0

G(0, s)ds =
r2

r0
< r = ‖u‖.

By Lemma 2.4, we get that i(Av(0, ·),Kr,K) = 1, 0 < r < r0. On the other hand,

taking R0 =
[

α3(1−η)3

(1−αη)3

∫ 1

0
G(0, s)ds

]−1

(> r0), then for u ∈ ∂KR, R > R0, we have

‖Av(0, u)‖ ≥α(1− η)
1− αη

∫ 1

0

G(0, s)u2(s)ds

≥α(1− η)
1− αη

∫ 1

0

G(0, s)ds

[
α(1− η)
1− αη

‖u‖
]2

=
[
α(1− η)
1− αη

]3

‖u‖2
∫ 1

0

G(0, s)ds

=
R2

R0
> R = ‖u‖.

By Lemma 2.4, we have i(Av(0, ·),KR,K) = 0. Similarly, we can show that

‖Bu(0, v)‖ ≤
√
‖v‖

∫ 1

0

G(0, s)ds,

‖Bu(0, v)‖ ≥
[
α(1− η)
1− αη

] 3
2 √

‖v‖
∫ 1

0

G(0, s)ds.

Choose

R0 =
(∫ 1

0

G(0, s)ds

)2

, r0 =
[
α(1− η)
1− αη

]3 (∫ 1

0

G(0, s)ds

)2

,
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then 0 < r0 < R0 < +∞. For r ∈ (0, r0), R > R0, we get that

‖Bu(0, v)‖ < ‖v‖, v ∈ ∂KR,

‖Bu(0, v)‖ > ‖v‖, v ∈ ∂Kr.

Thus, by Lemma 2.4, for r ∈ (0, r0), R > R0, we have

i(Bu(0, ·),Kr,K) = 0, i(Bu(0, ·),KR,K) = 1.

The additivity of fixed point index and Lemma 2.3 yield that

i(T0, (KR \Kr)× (KR \Kr),K ×K)

=i(Av(0, ·),KR \Kr,K) · i(Bu(0, ·),KR \Kr,K) = −1.

In the following, we shall show that

i(Tλ, (KR1 \Kr1)× (KR2 \Kr2),K ×K) = i(T0, (KR1 \Kr1)× (KR2 \Kr2),K ×K),

here r1 ∈ (0, r0), R1 > R0, r2 ∈ (0, r0), R2 > R0 will be determined later. By the
homotopy invariance of fixed point index, we need only to prove that

(u, v) 6= Tλ(u, v), (u, v) ∈ ∂
[
(KR1 \Kr1)× (KR2 \Kr2)

]
. (3.1)

We divide the proof into four steps.
Step 1. By the first inequality of (H1), there exist 0 < ε1 < λ1 and 0 < r1 <
min{r0, λ1 − ε1} such that

f1(t, u, v) ≤ (λ1 − ε1)u, t ∈ I, 0 < u ≤ r1, v ∈ R+. (3.2)

We shall prove that (u, v) 6= Tλ(u, v) for all λ ∈ I and (u, v) ∈ ∂Kr1 ×K. In fact, if
there exist λ0 ∈ I and (u0, v0) ∈ ∂Kr1 ×K such that (u0, v0) = Tλ0(u0, v0), then by
the definition of operator Tλ0 , (u0, v0) satisfies{

− u′′0(t) = (1− λ0)u2
0(t) + λ0f1(t, u0, v0), t ∈ I,

u′0(0) = 0, u0(1) = αu0(η).
(3.3)

By (3.2) and (3.3), we have

−u′′0(t) ≤ (1− λ0)u2
0(t) + λ0(λ1 − ε1)u0(t) < (λ1 − ε1)u0(t), t ∈ I. (3.4)

Multiplying inequality (3.4) by (tan
√

λ1 − tan
√

λ1η) cos
√

λ1t and integrating over
[0, η], and multiplying inequality (3.4) by (tan

√
λ1− tan

√
λ1t) cos

√
λ1t and integrat-

ing over [η, 1], respectively, and then using the additivity of integration, we have

− tan
√

λ1

∫ 1

0

u′′0(t) cos
√

λ1tdt + tan
√

λ1η

∫ η

0

u′′0(t) cos
√

λ1tdt

+
∫ 1

η

u′′0(t) sin
√

λ1tdt

≤(λ1 − ε1) tan
√

λ1

∫ 1

0

u0(t) cos
√

λ1tdt

− (λ1 − ε1) tan
√

λ1η

∫ η

0

u0(t) cos
√

λ1tdt− (λ1 − ε1)
∫ 1

η

u0(t) sin
√

λ1tdt.
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Using integration by parts in the left side and the fact that cos
√

λ1 = α cos η
√

λ1,
through some tedious calculations we have

tan
√

λ1

∫ 1

0

u0(t) cos
√

λ1tdt− tan
√

λ1η

∫ η

0

u0(t) cos
√

λ1tdt

−
∫ 1

η

u0(t) sin
√

λ1tdt ≤ 0,

(3.5)

hence

(tan
√

λ1 − tan
√

λ1η)
∫ η

0

u0(t) cos
√

λ1tdt

≤
∫ 1

η

u0(t) sin
√

λ1tdt− tan
√

λ1

∫ 1

η

u0(t) cos
√

λ1tdt ≤ 0.

But

(tan
√

λ1 − tan
√

λ1η)
∫ η

0

u0(t) cos
√

λ1tdt > 0,

which is a contradiction.
Step 2. By the second inequality of (H1), there exist ε2 > 0 and H > 0 such that

f1(t, u, v) ≥ (λ1 + ε2)u, t ∈ I, u > H, v ∈ R+.

Let C1 = (λ1 + ε2)2 + supt∈I,u∈[0,H],v∈R+ |f1(t, u, v)− (λ1 + ε2)u|, by (H3) we know
C1 < +∞. Thus it is easy to see that

f1(t, u, v) ≥ (λ1 + ε2)u− C1, t ∈ I, u ∈ R+, v ∈ R+, (3.6)

u2 ≥ (λ1 + ε2)u− (λ1 + ε2)2 ≥ (λ1 + ε2)u− C1, u ∈ R+. (3.7)
If there exist λ0 ∈ I and (u0, v0) ∈ K × K such that (u0, v0) = Tλ0(u0, v0), then
(u0, v0) satisfies (3.3). By (3.3), (3.6) and (3.7), we have

−u′′0(t) ≥ (λ1 + ε2)u0(t)− C1, t ∈ I.

Following the procedure used in (3.5), we have

tan
√

λ1

∫ 1

0

u0(t) cos
√

λ1tdt− tan
√

λ1η

∫ η

0

u0(t) cos
√

λ1tdt

−
∫ 1

η

u0(t) sin
√

λ1tdt ≤ C1(1− α)
ε2

√
λ1α cos

√
λ1η

,

consequently

(tan
√

λ1 − tan
√

λ1η)
∫ η

0

u0(t) cos
√

λ1tdt ≤ C1(1− α)
ε2

√
λ1α cos

√
λ1η

,

and
α(1− η)
1− αη

(tan
√

λ1 − tan
√

λ1η)‖u0‖
∫ η

0

cos
√

λ1tdt ≤ C1(1− α)
ε2

√
λ1α cos

√
λ1η

.

So,

‖u0‖ ≤
C1(1− α)(1− αη)

ε2

√
λ1α(1− η) tan

√
λ1η sin

√
λ1(1− η)

. (3.8)
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If we choose R = C1(1−α)(1−αη)

ε2
√

λ1α(1−η) tan
√

λ1η sin
√

λ1(1−η)
+ 1 and R1 ≥ max{R0, R}, then

(u, v) 6= Tλ(u, v) for t ∈ I and (u, v) ∈ ∂KR1 ×K.
Step 3. By the second inequality of (H2), there exist ε3 > 0 and 0 < h < 1

(λ1+ε3)2

such that
f2(t, u, v) ≥ (λ1 + ε3)v, t ∈ I, 0 ≤ v ≤ h, u ∈ R+. (3.9)

By 0 ≤ v ≤ h < 1
(λ1+ε3)2

, we have
√

v ≥ (λ1 + ε3)v, 0 ≤ v ≤ h. (3.10)

Choosing 0 < r2 < min{r0, h}, by (3.9), (3.10), and proceeding as in Step 1, we can
get that (u, v) 6= Tλ(u, v) for t ∈ I and (u, v) ∈ K × ∂Kr2 .
Step 4. By the first inequality of (H2), there exist 0 < ε4 < λ1 and M > 0 such that

f2(t, u, v) ≤ (λ1 − ε4)v, t ∈ I, v > M, u ∈ R+.

Taking C2 = 1
4(λ1−ε4)

+ supt∈I,v∈[0,M ],u∈R+ f2(t, u, v), by (H4) we know C2 < +∞.
Then it is easy to see that

f2(t, u, v) ≤ (λ1 − ε4)v + C2, t ∈ I, u ∈ R+, v ∈ R+, (3.11)
√

v ≤ (λ1 − ε4)v + C2, v ∈ R+. (3.12)

As for the arguments in Step 2, if (u0, v0) = Tλ0(u0, v0) for λ0 ∈ I and (u0, v0) ∈
K ×K, we can show that

‖v0‖ ≤
C2(1− α)(1− αη)

ε4

√
λ1α(1− η) tan

√
λ1η sin

√
λ1(1− η)

:= R̃.

Choose R2 > max{R0, R̃}, then we have (u, v) 6= Tλ(u, v) for λ ∈ I and (u, v) ∈
K × ∂KR2 .

Combining the above four Steps, we have proved that (3.1) is valid, then

i(T1, (KR1 \Kr1)× (KR2 \Kr2),K ×K)

=i(T0, (KR1 \Kr1)× (KR2 \Kr2),K ×K) = −1.

Therefore, T1 has a fixed point (u∗, v∗) ∈ (KR1 \ Kr1) × (KR2 \ Kr2). Obviously,
(u∗, v∗) is a positive solution of problem (1.1). This completes the proof.
Remark 3.2 Because f1 is superlinear and f2 is sublinear, it is difficult to construct
a single cone in product space and use the norm-type expansion and compression
theorem. Since f1 and f2 in the two equations have different features, the solution
operator corresponding to one of the equations has the properties of cone expansion
and the other equation has the properties of cone compression.
Remark 3.3 Through similar but more complicated arguments, we could obtain a
similar result for the following m-point BVP of second order differential systems

u′′(t) + f(t, u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),

u′(0) = v′(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi), v(1) =
m−2∑
i=1

βiv(ηi),
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where αi, ηi ∈ (0, 1) (i = 1, 2, · · · ,m − 2) are given constants, f, g ∈ C(I × R+ ×
R+, R+).

4. An example

Consider the following three point BVP

u′′(t) + (1 + t2)u2 + u3 2 + sin v

1 + v
= 0, t ∈ (0, 1),

v′′(t) + (2− t)v
1
3 + v

1
2
3 + sin u

1 + u
= 0, t ∈ (0, 1),

u′(0) = v′(0) = 0, u(1) =
2
3
u

(
1
2

)
, v(1) =

2
3
v

(
1
2

)
.

(4.1)

Problem (4.1) can be regarded as a problem of the form (1.1) with α = 2
3 , η = 1

2 ,

f1(t, u, v) = (1 + t2)u2 + u3 2 + sin v

1 + v
, f2(t, u, v) = (2− t)v

1
3 + v

1
2
3 + sin u

1 + u
.

It is easy to verify that the conditions (H3) and (H4) hold. In addition,

0 ≤ lim sup
u→0

max
t∈I

sup
v∈R+

f1(t, u, v)
u

≤ lim sup
u→0

(2u + 3u2) = 0,

lim inf
u→∞

min
t∈I

inf
v∈R+

f1(t, u, v)
u

≥ lim inf
u→∞

u = +∞,

0 ≤ lim sup
v→∞

max
t∈I

sup
u∈R+

f2(t, u, v)
v

≤ lim sup
v→∞

(2v−
2
3 + 3v−

1
2 ) = 0,

lim inf
v→0

min
t∈I

inf
u∈R+

f2(t, u, v)
v

≥ lim sup
v→0

v−
2
3 = +∞,

then conditions (H1) and (H2) are satisfied. Hence, problem (4.1) has at least one
positive solution by Theorem 3.1.
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