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1. Introduction

In this work we investigate the existence of solutions for the following third-order
three point boundary value problem (BVP):

(P1)
{

u′′′ (t) + f(t, u(t)) = 0, 0 < t < 1
u (0) = αu (1) , u′ (1) = βu′ (η) , u′ (0) = 0,

where η ∈ (0, 1) , α, β ∈ R, f : [0, 1]× R → R is a given function. We mainly use the
Banach contraction principle and Leray Schauder nonlinear alternative to prove the
existence and uniqueness results. For this, we formulated the boundary value problem
(P1) as fixed point problem. We also study the compactness of solutions set.

Third-order problems have been intensively studied recently by Graef and Yang [6],
Guo et al [9], Hopkins and Kosmatov [10], and Sun [13]. Applying Krasnoselskii and
Leggett and Williams fixed point theorems, Anderson in [3] considered the three-point
boundary value problem for the same equation equation in the case t1 < t < t2 and
the three point conditions u(t1) = u′(t2) = 0, γu(t3) + δu′′(t3) = 0. Excellent surveys
on theoretical results can be found in Agarwal [1] and R Ma [12]. More results can
be found in [2,4,7,8,11].
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2. Existence and Uniqueness results

Let E = C ([0, 1] , R) , with the norm ||y|| = max
t∈[0,1]

|y (t)|. We assume that

ζ = (1− α) (1− βη) 6= 0.

Now we start by solving an auxiliary problem.
Lemma 2.1. Let y ∈ L1 ([0, 1] , R) . The function

u(t) = −1
2

∫ t

0

(t− s)2 y(s)ds− β

2ζ

(
t2 (1− α) + α

) ∫ η

0

(η − s) y (s) ds (2.1)

+
1
2ζ

∫ 1

0

(1− s)
(
t2 (1− α) + αβη (1− s) + αs

)
y(s)ds

is the unique solution of the BVP

(P2)
{

u′′′ (t) + y(t) = 0, 0 < t < 1
u (0) = αu (1) , u′ (1) = βu′ (η) , u′ (0) = 0.

Proof. Rewriting the differential equation as u′′′(t) = −y(t) and integrating three
times, we obtain u(t) = − 1

2

∫ t

0
(t− s)2 y(s)ds+At2 +Bt+C, the constants A, B and

C are given by the three point boundary conditions.

To solve the BVP (P1) we make the following hypothesis:
(i) t → f(t, x) is measurable for all x ∈ R.
(ii) x → f(t, x) is continuous for almost all t ∈ [0, 1].
Theorem 2.2. Assume that there exists a nonnegative function k ∈ L1 ([0, 1] , R+)

such that
|f(t, x)− f(t, y)| ≤ k(t) |x− y| ,∀x, y ∈ R, t ∈ [0, 1] . (2.2)

and

A =
∫ 1

0

[
(|ζ|+ |αβ|) (1− s)2 + (1 + 2 |α|) (|β|+ 1) (1− s)

]
k(s)ds < 2 |ζ| ,

then the BVP (P1) has a unique solution u in E.
Proof. We transform the boundary value problem (P1) to a fixed point problem,

define the integral operator T : E → E by

Tu(t) = −1
2

∫ t

0

(t− s)2 f (s, u (s)) ds (2.3)

− β

2ζ

(
t2 (1− α) + α

) ∫ η

0

(η − s) f (s, u (s)) ds

+
1
2ζ

∫ 1

0

(1− s)
(
t2 (1− α) + αβη (1− s) + αs

)
f (s, u (s)) ds,

We shall prove that T is a contraction. Let u, v ∈ E, then

|Tu(t)− Tv(t)| ≤ 1
2

∫ 1

0

(1− s)2 |f (s, u (s))− f (s, v (s))| ds (2.4)
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+
1
2

∣∣∣∣βζ
∣∣∣∣ (1 + 2 |α|)

∫ 1

0

(1− s) |f (s, u (s))− f (s, v (s))| ds

+
1

2 |ζ|

∫ 1

0

(1− s) (1 + 2 |α|+ |αβ| (1− s)) |f (s, u (s))− f (s, v (s))| ds

Using (2.2) we obtain

|Tu(t)− Tv(t)| ≤ 1
2

∫ 1

0

(1− s)2 k(s) |u (s)− v (s)| ds (2.5)

+
1
2

∣∣∣∣βζ
∣∣∣∣ (1 + 2 |α|)

∫ 1

0

(1− s) k(s) |u (s)− v (s)| ds

+
1

2 |ζ|

∫ 1

0

(1− s) (1 + 2 |α|+ |αβ| (1− s)) k(s) |u (s)− v (s)| ds

≤ 1
2 |ζ|

∫ 1

0

[
(|ζ|+ |αβ|) (1− s)2 + (1 + 2 |α|) (|β|+ 1) (1− s)

]
k(s) |u (s)− v (s)| ds

taking the supremum it yields ‖Tu− Tv‖ < ‖u− v‖ . Consequently T is a contraction,
so, it has a unique fixed point which is the unique solution of the BVP (P1).

Now we give some existence results for the BVP (P1).
Theorem 2.3. Assume that f (t, 0) 6= 0 and there exist nonnegative functions

k, h ∈ L1 ([0, 1] , R+) such that

|f (t, x)| ≤ k (t) |x|+ h (t) , (t, x) ∈ [0, 1]× R, (2.6)(
1 + η

|αβ|
2 |ζ|

) ∫ 1

0

(1− s)2 k (s) ds +
|β| (1 + 2 |α|)

2 |ζ|

∫ η

0

(η − s)k (s) ds (2.7)

+
(1 + 2 |α|)

2 |ζ|

∫ 1

0

(1− s) k (s) ds < 1

Then the BVP (P1) has at least one nontrivial solution u∗ ∈ E.
To prove this theorem, we apply Leray Schauder nonlinear alternative:
Lemma 2.4. [5]. Let F be a Banach space and Ωa bounded open subset of F ,

0 ∈ Ω. T : Ω → F be a completely continuous operator. Then, either there exists
x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there exists a fixed point x∗ ∈ Ω.

Proof. First let us define the open bounded Ω ⊂ E. Set

M =
(

1 +
|1 + 2α|

2 |ζ|

) ∫ 1

0

(1− s)2 k(s)ds +
|β| (1 + 2 |α|)

2 |ζ|

∫ η

0

(η − s) k(s)ds

+
(1 + 2 |α|)

2 |ζ|

∫ 1

0

(1− s) k(s)ds

and

N =
(

1 +
|1 + 2α|

2 |ζ|

) ∫ 1

0

(1− s)2 h(s)ds +
|β| (1 + 2 |α|)

2 |ζ|

∫ η

0

(η − s) h(s)ds

+
(1 + 2 |α|)

2 |ζ|

∫ 1

0

(1− s) h(s)ds.
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By hypothesis (2.7) we know that M < 1. Since f (t, 0) 6= 0 , then there exists an
interval [σ, τ ] ⊂ [0, 1] such that min

σ≤t≤r
|f (t, 0)| > 0. Since h (t) ≥ |f (t, 0)| , ∀t ∈ [0, 1] ,

then N > 0. Let m =
N

1−M
, then bounded open set Ω is defined by Ω = {u ∈

C[0, 1] : ‖u‖ < m}.
The proof of T completely continuous operator on Ω, will be done in some steps.
(i) T is continuous.
Indeed, let (un) be a sequence that converges to u in E. Then

|Tun(t)− Tu(t)| ≤ 1
2

∫ 1

0

(1− s)2 |f (s, un (s))− f (s, u (s))| ds (2.8)

+
1
2

∣∣∣∣βζ
∣∣∣∣ (1 + 2 |α|)

∫ 1

0

(1− s) |f (s, un (s))− f (s, u (s))| ds

+
1

2 |ζ|

∫ 1

0

(1− s) (1 + 2 |α|+ |αβ| (1− s)) |f (s, un (s))− f (s, u (s))| ds

≤
(

1 +
(|β|+ 1) (1 + 2 |α|) + |αβ|

|ζ|

)
‖f (., un (.))− f (., u (.))‖L1

which implies ‖Tun − Tu‖ → 0, as n →∞.
(ii)Let Br = {u ∈ E; ‖u‖ ≤ r} be a bounded subset. We prove that T (Ω ∩Br)

relatively compact:
a)For some u ∈ Ω ∩Br and using (2.6) we have

‖Tu‖ ≤ M ‖u‖+ N ≤ Mr + N,

yielding that T (Ω ∩Br) is uniformly bounded.
b) T (Ω ∩Br) is equicontinuous. Indeed for all t1, t2 ∈ [0, 1] , u ∈ Ω, we have by

applying (2.6)
‖Tu(t1)− Tu(t2)‖ ≤ M ‖u(t1)− u(t2)‖ ,

when t1 → t2, then ‖Tu(t1)− Tu(t2)‖ tends to 0, consequently T (Ω ∩Br) is equicon-
tinuous. From Arzela -Ascoli Theorem we deduce that T is completely continuous
operator.

Now we can able to apply Leray Schauder nonlinear alternative for T : Ω → E.
Assume that u ∈ ∂Ω, λ > 1 such Tu = λu, then

λm = λ ||u|| = ||Tu|| = max
0≤t≤1

|(Tu) (t)| ≤

||u||
[(

1 + η
|αβ|
2 |ζ|

) ∫ 1

0

(1− s)2 k (s) ds +
|β| (1 + 2 |α|)

2 |ζ|

∫ η

0

(η − s)k (s) ds

+
(1 + 2 |α|)

2 |ζ|

∫ 1

0

(1− s) k(s)ds

]
+(

1 + η
|αβ|
2 |ζ|

) ∫ 1

0

(1− s)2 h(s)ds +
|β| (1 + 2 |α|)

2 |ζ|

∫ η

0

(η − s) h(s)ds

+
(1 + 2 |α|)

2 |ζ|

∫ 1

0

(1− s) h(s)ds = M ‖u‖+ N.
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From this we obtain λ ≤ M + N
m = 1, this contradicts the fact that λ > 1. By Lemma

4 we conclude that the operator T has a fixed point u∗ ∈ Ω and then the BVP (P1)
has a nontrivial solution u∗ ∈ E.

Theorem 2.5. The set of solutions of the BVP (P1) is compact.
Proof. Let Σ = {u ∈ E;u solution of BVP (P1)} , let us show, by using Arzela-

Ascoli Theorem (Any subset of E is compact if and only if it is bounded, closed and
equicontinuous), that Σ is compact.

(i) Let (un)n≥1 be a sequence in Σ, then

un(t) = −1
2

∫ t

0

(t− s)2 f (s, un (s)) ds (2.10)

− β

2ζ

(
t2 (1− α) + α

) ∫ η

0

(η − s) f (s, un (s)) ds

+
1
2ζ

∫ 1

0

(1− s)
(
t2 (1− α)

)
+ αβη ((1− s) + αs) f (s, un (s)) ds.

Using the same reasoning as in the proof of Theorem 2.3, we prove that Σ is
bounded and equicontinuous. Now we prove that Σ is closed. From the condition
(2.6) we have

|f (t, un)| ≤ k (t) |un|+ h (t) ≤ k (t)m + h (t) = gm(t). (2.11)

The Lebesgue dominated convergence Theorem and the assumption(ii) on f guaranty
that

u(t) = lim un(t) =

−1
2

∫ t

0

(t− s)2 f (s, u (s)) ds− β

2ζ

(
t2 (1− α) + α

) ∫ η

0

(η − s) f (s, u (s)) ds

+
1
2ζ

∫ 1

0

(1− s)
(
t2 (1− α) + αβη (1− s) + αs

)
f (s, u (s)) ds,∀t ∈ [0, 1]

hence u ∈ Σ and consequently Σ is compact.

Example 2.6. Consider the three point BVP{
u′′′ + 2

√
3u3

3+u4

√
t + te−t = 0, 0 < t < 1

u (0) = −2u (1) , u′ (1) = 3u′
(

1
2

)
, u′ (0) = 0

(2.12)

We have α = −2, β = 3, η = 1
2 , ζ = 3

2 , f(t, x) = 2
√

3u3

3+u4

√
t + te−t and, |f(t, x)| ≤

k(t)|x| + h(t), where k(t) =
√

t, h(t) = te−t, k, h ∈ L1 ([0, 1] , R+) . Using Theorem
2.3, it yields

M =
4
3

∫ 1

0

(1− s)2
√

sds +
5
3

∫ 1

0

(1− s)
√

sds + 5
∫ η

0

(η − s)
√

sds

= 0, 88286 < 1

Then BVP (2.12) has at least one nontrivial solution u∗ in E.
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Example 2.7. Consider the three point BVP{
u′′′ + tu√

3
√

t2+1
− et + cos t2 = 0, 0 < t < 1,

u (0) = 1
3u (1) , u′ (1) = − 1

2u′
(

1
4

)
, u′ (0) = 0

(2.13)

where α = 1
3 , β = − 1

2 , η = 1
4 , |ζ| = 3

4 . Applying Theorem 2.2, we get

|f(t, x)− f(t, y)| ≤ k(t) |x− y| ,∀x, y ∈ R, t ∈ [0, 1] .

where k (t) = t√
3
√

t2+1
. By simple calculus we get

A =
∫ 1

0

11
12

(1− s)2
s√

3
√

s2 + 1
+

5
2

(1− s)
s√

3
√

s2 + 1
ds

= 0.25 < 3/2

then BVP (2.13) has a unique solution in E.
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