EXISTENCE OF SOLUTIONS OF A NONLINEAR THIRD ORDER BOUNDARY VALUE PROBLEM

ASSIA GUEZANE-LAKOUD * AND ASSIA FRIOUI **
*Laboratory of Advanced Materials, Faculty of Sciences, University Badji Mokhtar, B.P. 12, 23000, Annaba, Algeria
E-mail: a-guezane@yahoo.fr
** Department of Mathematics, Faculty of Sciences, University 08 Mai Guelma, Algeria
E-mail: frioui.assia@yahoo.fr

Abstract

This paper deals with a third-order three-point boundary value problem. Applying the Banach contraction principle and Leray Schauder nonlinear alternative, we establish the existence of solutions for the considered problem.

Key Words and Phrases: Fixed point theorem, three-point boundary value problem, non trivial solution, third-order equation.
2010 Mathematics Subject Classification: 34B10, 34B15, 34B18. 34G20, 47H10.

1. Introduction

In this work we investigate the existence of solutions for the following third-order three point boundary value problem (BVP):

$$
\left(P_{1}\right)\left\{\begin{array}{c}
u^{\prime \prime \prime}(t)+f(t, u(t))=0,0<t<1 \\
u(0)=\alpha u(1), u^{\prime}(1)=\beta u^{\prime}(\eta), u^{\prime}(0)=0
\end{array}\right.
$$

where $\eta \in(0,1), \alpha, \beta \in \mathbb{R}, f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is a given function. We mainly use the Banach contraction principle and Leray Schauder nonlinear alternative to prove the existence and uniqueness results. For this, we formulated the boundary value problem $\left(P_{1}\right)$ as fixed point problem. We also study the compactness of solutions set.

Third-order problems have been intensively studied recently by Graef and Yang [6], Guo et al [9], Hopkins and Kosmatov [10], and Sun [13]. Applying Krasnoselskii and Leggett and Williams fixed point theorems, Anderson in [3] considered the three-point boundary value problem for the same equation equation in the case $t_{1}<t<t_{2}$ and the three point conditions $u\left(t_{1}\right)=u^{\prime}\left(t_{2}\right)=0, \gamma u\left(t_{3}\right)+\delta u^{\prime \prime}\left(t_{3}\right)=0$. Excellent surveys on theoretical results can be found in Agarwal [1] and R Ma [12]. More results can be found in $[2,4,7,8,11]$.

2. Existence and UniQueness Results

Let $E=C([0,1], \mathbb{R})$, with the norm $\|y\|=\max _{t \in[0,1]}|y(t)|$. We assume that

$$
\zeta=(1-\alpha)(1-\beta \eta) \neq 0 .
$$

Now we start by solving an auxiliary problem.
Lemma 2.1. Let $y \in L^{1}([0,1], \mathbb{R})$. The function

$$
\begin{align*}
u(t)=- & \frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) d s-\frac{\beta}{2 \zeta}\left(t^{2}(1-\alpha)+\alpha\right) \int_{0}^{\eta}(\eta-s) y(s) d s \tag{2.1}\\
& +\frac{1}{2 \zeta} \int_{0}^{1}(1-s)\left(t^{2}(1-\alpha)+\alpha \beta \eta(1-s)+\alpha s\right) y(s) d s
\end{align*}
$$

is the unique solution of the $B V P$

$$
\left(P_{2}\right)\left\{\begin{array}{c}
u^{\prime \prime \prime}(t)+y(t)=0,0<t<1 \\
u(0)=\alpha u(1), u^{\prime}(1)=\beta u^{\prime}(\eta), u^{\prime}(0)=0 .
\end{array}\right.
$$

Proof. Rewriting the differential equation as $u^{\prime \prime \prime}(t)=-y(t)$ and integrating three times, we obtain $u(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) d s+A t^{2}+B t+C$, the constants A, B and C are given by the three point boundary conditions.

To solve the BVP $\left(P_{1}\right)$ we make the following hypothesis:
(i) $t \rightarrow f(t, x)$ is measurable for all $x \in \mathbb{R}$.
(ii) $x \rightarrow f(t, x)$ is continuous for almost all $t \in[0,1]$.

Theorem 2.2. Assume that there exists a nonnegative function $k \in L^{1}\left([0,1], \mathbb{R}_{+}\right)$ such that

$$
\begin{equation*}
|f(t, x)-f(t, y)| \leq k(t)|x-y|, \forall x, y \in \mathbb{R}, t \in[0,1] . \tag{2.2}
\end{equation*}
$$

and

$$
A=\int_{0}^{1}\left[(|\zeta|+|\alpha \beta|)(1-s)^{2}+(1+2|\alpha|)(|\beta|+1)(1-s)\right] k(s) d s<2|\zeta|
$$

then the $B V P\left(P_{1}\right)$ has a unique solution u in E.
Proof. We transform the boundary value problem $\left(P_{1}\right)$ to a fixed point problem, define the integral operator $T: E \rightarrow E$ by

$$
\begin{array}{r}
T u(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} f(s, u(s)) d s \tag{2.3}\\
-\frac{\beta}{2 \zeta}\left(t^{2}(1-\alpha)+\alpha\right) \int_{0}^{\eta}(\eta-s) f(s, u(s)) d s \\
+\frac{1}{2 \zeta} \int_{0}^{1}(1-s)\left(t^{2}(1-\alpha)+\alpha \beta \eta(1-s)+\alpha s\right) f(s, u(s)) d s
\end{array}
$$

We shall prove that T is a contraction. Let $u, v \in E$, then

$$
\begin{equation*}
|T u(t)-T v(t)| \leq \frac{1}{2} \int_{0}^{1}(1-s)^{2}|f(s, u(s))-f(s, v(s))| d s \tag{2.4}
\end{equation*}
$$

$$
\begin{array}{r}
+\frac{1}{2}\left|\frac{\beta}{\zeta}\right|(1+2|\alpha|) \int_{0}^{1}(1-s)|f(s, u(s))-f(s, v(s))| d s \\
+\frac{1}{2|\zeta|} \int_{0}^{1}(1-s)(1+2|\alpha|+|\alpha \beta|(1-s))|f(s, u(s))-f(s, v(s))| d s
\end{array}
$$

Using (2.2) we obtain

$$
\begin{align*}
&|T u(t)-T v(t)| \leq \frac{1}{2} \int_{0}^{1}(1-s)^{2} k(s)|u(s)-v(s)| d s \tag{2.5}\\
&+\frac{1}{2}\left|\frac{\beta}{\zeta}\right|(1+2|\alpha|) \int_{0}^{1}(1-s) k(s)|u(s)-v(s)| d s \\
&+\frac{1}{2|\zeta|} \int_{0}^{1}(1-s)(1+2|\alpha|+|\alpha \beta|(1-s)) k(s)|u(s)-v(s)| d s \\
& \leq \frac{1}{2|\zeta|} \int_{0}^{1}\left[(|\zeta|+|\alpha \beta|)(1-s)^{2}\right.+(1+2|\alpha|)(|\beta|+1)(1-s)] k(s)|u(s)-v(s)| d s
\end{align*}
$$

taking the supremum it yields $\|T u-T v\|<\|u-v\|$. Consequently T is a contraction, so, it has a unique fixed point which is the unique solution of the BVP $\left(P_{1}\right)$.

Now we give some existence results for the BVP $\left(P_{1}\right)$.
Theorem 2.3. Assume that $f(t, 0) \neq 0$ and there exist nonnegative functions $k, h \in L^{1}\left([0,1], \mathbb{R}_{+}\right)$such that

$$
\begin{gather*}
|f(t, x)| \leq k(t)|x|+h(t),(t, x) \in[0,1] \times \mathbb{R} \tag{2.6}\\
\left(1+\eta \frac{|\alpha \beta|}{2|\zeta|}\right) \int_{0}^{1}(1-s)^{2} k(s) d s+\frac{|\beta|(1+2|\alpha|)}{2|\zeta|} \int_{0}^{\eta}(\eta-s) k(s) d s \tag{2.7}\\
+\frac{(1+2|\alpha|)}{2|\zeta|} \int_{0}^{1}(1-s) k(s) d s<1
\end{gather*}
$$

Then the BVP $\left(P_{1}\right)$ has at least one nontrivial solution $u^{*} \in E$.
To prove this theorem, we apply Leray Schauder nonlinear alternative:
Lemma 2.4. [5]. Let F be a Banach space and Ωa bounded open subset of F, $0 \in \Omega . T: \bar{\Omega} \rightarrow F$ be a completely continuous operator. Then, either there exists $x \in \partial \Omega, \lambda>1$ such that $T(x)=\lambda x$, or there exists a fixed point $x^{*} \in \bar{\Omega}$.

Proof. First let us define the open bounded $\Omega \subset E$. Set

$$
\begin{aligned}
M=\left(1+\frac{|1+2 \alpha|}{2|\zeta|}\right) & \int_{0}^{1}(1-s)^{2} k(s) d s+\frac{|\beta|(1+2|\alpha|)}{2|\zeta|} \int_{0}^{\eta}(\eta-s) k(s) d s \\
& +\frac{(1+2|\alpha|)}{2|\zeta|} \int_{0}^{1}(1-s) k(s) d s
\end{aligned}
$$

and

$$
\begin{aligned}
N=\left(1+\frac{|1+2 \alpha|}{2|\zeta|}\right) & \int_{0}^{1}(1-s)^{2} h(s) d s+\frac{|\beta|(1+2|\alpha|)}{2|\zeta|} \int_{0}^{\eta}(\eta-s) h(s) d s \\
& +\frac{(1+2|\alpha|)}{2|\zeta|} \int_{0}^{1}(1-s) h(s) d s
\end{aligned}
$$

By hypothesis (2.7) we know that $M<1$. Since $f(t, 0) \neq 0$, then there exists an interval $[\sigma, \tau] \subset[0,1]$ such that $\min _{\sigma \leq t \leq r}|f(t, 0)|>0$. Since $h(t) \geq|f(t, 0)|, \forall t \in[0,1]$, then $N>0$. Let $m=\frac{N}{1-M}$, then bounded open set Ω is defined by $\Omega=\{u \in$ $C[0,1]:\|u\|<m\}$.

The proof of T completely continuous operator on Ω, will be done in some steps.
(i) T is continuous.

Indeed, let $\left(u_{n}\right)$ be a sequence that converges to u in E. Then

$$
\begin{array}{r}
\left|T u_{n}(t)-T u(t)\right| \leq \frac{1}{2} \int_{0}^{1}(1-s)^{2}\left|f\left(s, u_{n}(s)\right)-f(s, u(s))\right| d s \tag{2.8}\\
+\frac{1}{2}\left|\frac{\beta}{\zeta}\right|(1+2|\alpha|) \int_{0}^{1}(1-s)\left|f\left(s, u_{n}(s)\right)-f(s, u(s))\right| d s \\
+\frac{1}{2|\zeta|} \int_{0}^{1}(1-s)(1+2|\alpha|+|\alpha \beta|(1-s))\left|f\left(s, u_{n}(s)\right)-f(s, u(s))\right| d s \\
\leq\left(1+\frac{(|\beta|+1)(1+2|\alpha|)+|\alpha \beta|}{|\zeta|}\right)\left\|f\left(., u_{n}(.)\right)-f(., u(.))\right\|_{L_{1}}
\end{array}
$$

which implies $\left\|T u_{n}-T u\right\| \rightarrow 0$, as $n \rightarrow \infty$.
(ii)Let $B_{r}=\{u \in E ;\|u\| \leq r\}$ be a bounded subset. We prove that $T\left(\Omega \cap B_{r}\right)$ relatively compact:
a)For some $u \in \Omega \cap B_{r}$ and using (2.6) we have

$$
\|T u\| \leq M\|u\|+N \leq M r+N
$$

yielding that $T\left(\Omega \cap B_{r}\right)$ is uniformly bounded.
b) $T\left(\Omega \cap B_{r}\right)$ is equicontinuous. Indeed for all $t_{1}, t_{2} \in[0,1], u \in \Omega$, we have by applying (2.6)

$$
\left\|T u\left(t_{1}\right)-T u\left(t_{2}\right)\right\| \leq M\left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\|,
$$

when $t_{1} \rightarrow t_{2}$, then $\left\|T u\left(t_{1}\right)-T u\left(t_{2}\right)\right\|$ tends to 0 , consequently $T\left(\Omega \cap B_{r}\right)$ is equicontinuous. From Arzela -Ascoli Theorem we deduce that T is completely continuous operator.

Now we can able to apply Leray Schauder nonlinear alternative for $T: \bar{\Omega} \rightarrow E$. Assume that $u \in \partial \Omega, \lambda>1$ such $T u=\lambda u$, then

$$
\begin{array}{r}
\lambda m=\lambda\|u\|=\|T u\|=\max _{0 \leq t \leq 1}|(T u)(t)| \leq \\
\|u\|\left[\left(1+\eta \frac{|\alpha \beta|}{2|\zeta|}\right) \int_{0}^{1}(1-s)^{2} k(s) d s+\frac{|\beta|(1+2|\alpha|)}{2|\zeta|} \int_{0}^{\eta}(\eta-s) k(s) d s\right. \\
\left.+\frac{(1+2|\alpha|)}{2|\zeta|} \int_{0}^{1}(1-s) k(s) d s\right]+ \\
\left(1+\eta \frac{|\alpha \beta|}{2|\zeta|}\right) \int_{0}^{1}(1-s)^{2} h(s) d s+\frac{|\beta|(1+2|\alpha|)}{2|\zeta|} \int_{0}^{\eta}(\eta-s) h(s) d s \\
+\frac{(1+2|\alpha|)}{2|\zeta|} \int_{0}^{1}(1-s) h(s) d s=M\|u\|+N .
\end{array}
$$

From this we obtain $\lambda \leq M+\frac{N}{m}=1$, this contradicts the fact that $\lambda>1$. By Lemma 4 we conclude that the operator T has a fixed point $u^{*} \in \bar{\Omega}$ and then the BVP $\left(P_{1}\right)$ has a nontrivial solution $u^{*} \in E$.

Theorem 2.5. The set of solutions of the $B V P\left(P_{1}\right)$ is compact.
Proof. Let $\Sigma=\left\{u \in E ; u\right.$ solution of BVP $\left.\left(P_{1}\right)\right\}$, let us show, by using ArzelaAscoli Theorem (Any subset of E is compact if and only if it is bounded, closed and equicontinuous), that Σ is compact.
(i) Let $\left(u_{n}\right)_{n \geq 1}$ be a sequence in Σ, then

$$
\begin{gather*}
u_{n}(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} f\left(s, u_{n}(s)\right) d s \tag{2.10}\\
-\frac{\beta}{2 \zeta}\left(t^{2}(1-\alpha)+\alpha\right) \int_{0}^{\eta}(\eta-s) f\left(s, u_{n}(s)\right) d s \\
+\frac{1}{2 \zeta} \int_{0}^{1}(1-s)\left(t^{2}(1-\alpha)\right)+\alpha \beta \eta((1-s)+\alpha s) f\left(s, u_{n}(s)\right) d s .
\end{gather*}
$$

Using the same reasoning as in the proof of Theorem 2.3 , we prove that Σ is bounded and equicontinuous. Now we prove that Σ is closed. From the condition (2.6) we have

$$
\begin{equation*}
\left|f\left(t, u_{n}\right)\right| \leq k(t)\left|u_{n}\right|+h(t) \leq k(t) m+h(t)=g_{m}(t) . \tag{2.11}
\end{equation*}
$$

The Lebesgue dominated convergence Theorem and the assumption(ii) on f guaranty that

$$
\begin{gathered}
u(t)=\lim u_{n}(t)= \\
-\frac{1}{2} \int_{0}^{t}(t-s)^{2} f(s, u(s)) d s-\frac{\beta}{2 \zeta}\left(t^{2}(1-\alpha)+\alpha\right) \int_{0}^{\eta}(\eta-s) f(s, u(s)) d s \\
+\frac{1}{2 \zeta} \int_{0}^{1}(1-s)\left(t^{2}(1-\alpha)+\alpha \beta \eta(1-s)+\alpha s\right) f(s, u(s)) d s, \forall t \in[0,1]
\end{gathered}
$$

hence $u \in \Sigma$ and consequently Σ is compact.
Example 2.6. Consider the three point BVP

$$
\left\{\begin{array}{c}
u^{\prime \prime \prime}+2 \frac{\sqrt{3} u^{3}}{3+u^{4}} \sqrt{t}+t e^{-t}=0, \quad 0<t<1 \tag{2.12}\\
u(0)=-2 u(1), u^{\prime}(1)=3 u^{\prime}\left(\frac{1}{2}\right), u^{\prime}(0)=0
\end{array}\right.
$$

We have $\alpha=-2, \beta=3, \eta=\frac{1}{2}, \zeta=\frac{3}{2}, f(t, x)=2 \frac{\sqrt{3} u^{3}}{3+u^{4}} \sqrt{t}+t e^{-t}$ and, $|f(t, x)| \leq$ $k(t)|x|+h(t)$, where $k(t)=\sqrt{t}, h(t)=t e^{-t}, k, h \in L_{1}\left([0,1], \mathbb{R}_{+}\right)$. Using Theorem 2.3, it yields

$$
\begin{aligned}
M=\frac{4}{3} \int_{0}^{1}(1-s)^{2} \sqrt{s} d s & +\frac{5}{3} \int_{0}^{1}(1-s) \sqrt{s} d s+5 \int_{0}^{\eta}(\eta-s) \sqrt{s} d s \\
& =0,88286<1
\end{aligned}
$$

Then BVP (2.12) has at least one nontrivial solution u^{*} in E.

Example 2.7. Consider the three point BVP

$$
\left\{\begin{array}{c}
u^{\prime \prime \prime}+\frac{t u}{\sqrt{3} \sqrt{t^{2}+1}}-e^{t}+\cos t^{2}=0,0<t<1 \tag{2.13}\\
u(0)=\frac{1}{3} u(1), u^{\prime}(1)=-\frac{1}{2} u^{\prime}\left(\frac{1}{4}\right), u^{\prime}(0)=0
\end{array}\right.
$$

where $\alpha=\frac{1}{3}, \beta=-\frac{1}{2}, \eta=\frac{1}{4},|\zeta|=\frac{3}{4}$. Applying Theorem 2.2, we get

$$
|f(t, x)-f(t, y)| \leq k(t)|x-y|, \forall x, y \in \mathbb{R}, t \in[0,1]
$$

where $k(t)=\frac{t}{\sqrt{3} \sqrt{t^{2}+1}}$. By simple calculus we get

$$
\begin{aligned}
A & =\int_{0}^{1} \frac{11}{12}(1-s)^{2} \frac{s}{\sqrt{3} \sqrt{s^{2}+1}}+\frac{5}{2}(1-s) \frac{s}{\sqrt{3} \sqrt{s^{2}+1}} d s \\
& =0.25<3 / 2
\end{aligned}
$$

then BVP (2.13) has a unique solution in E.

References

[1] R.P. Agarwal, Focal boundary value problems for differential and difference equations, Kluwer Academic Publ., 1998.
[2] D.R. Anderson, Green's function for a third-order generalized right focal problem, J. Math. Anal. Appl., 288(2003), 1-14.
[3] D. Anderson and R. Avery; Multiple positive solutions to third-order discrete focal boundary value problem, Acta Math. Appl. Sinica, 19(2003), 117-122.
[4] M. Benchohra, J.J. Nieto and A. Ouahab, Second-order boundary value problem with integral boundary conditions. Boundary Value Problems, Vol 2011, ID 260309, 9 pages.
[5] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[6] J.R. Graef, Bo Yang, Existence and nonexistence of positive solutions of a nonlinear third order boundary value problem, Electronic J. Qualitative Theory Diff. Eq., Proc. 8'th Coll. Qualitative Theory of Diff. Equ., 9(2008), 1-13.
[7] A. Guezane-Lakoud, S. Kelaiaia, Solvability of a three-point nonlinear boundary value problem, Electronic J. Diff. Eq., 2010(2010), no. 139, 1-9.
[8] A. Guezane-Lakoud and R. Khaldi, Study of a third-order three-point boundary value problem, AIP Conf. Proc., 1309(2010), 329-335.
[9] L.J. Guo, J.P. Sun, and Y.H. Zhao, Existence of positive solutions for nonlinear third-order three-point boundary value problem, Nonlinear Anal., 68(2008), 3151-3158.
[10] B. Hopkins and N. Kosmatov, Third-order boundary value problems with sign-changing solutions, Nonlinear Anal., 67(2007), 126-137.
[11] S. Li, Positive solutions of nonlinear singular third-order two-point boundary value problem, J. Math. Anal. Appl., 323(2006), 413-425.
[12] R. Ma, A survey on nonlocal boundary value problems, Applied Math. E-Notes, 7(2007), 257279.
[13] Y. Sun, Positive solutions of singular third-order three-point boundary value problem, J. Math. Anal. Appl., 306(2005), 589-603.

Received: February 2, 2011; Accepted: October 6, 2011.

