J^{*}-HOMOMORPHISMS AND J^{*}-DERIVATIONS ON J^{*}-ALGEBRAS FOR A GENERALIZED JENSEN TYPE FUNCTIONAL EQUATION

M. ESHAGHI GORDJI*, H. KHODAEI*, TH. M. RASSIAS* AND R. KHODABAKHSH**
*Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
E-mail: madjid.eshaghi@gmail.com, hkhodaei.math@yahoo.com, trassias@math.ntua.gr
** Department of Mathematics, National Technical University of Athens
Zografou, Campus 15780 Athens, Greece
E-mail: raziehkhodabakhsh@gmail.com

Abstract

We will apply the fixed point method for proving the stability and superstability of J^{*}-homomorphisms and J^{*}-derivations associated to a generalized Jensen type functional equation between J^{*}-algebras Key Words and Phrases: Approximate J^{*}-homomorphism; approximate J^{*}-derivation; J^{*}-algebra; alternative fixed point; generalized Jensen functional equation. 2010 Mathematics Subject Classification: 46L57, 16W25, 39B82, 47B47, 47H10.

1. Introduction

Our knowledge concerning the continuity properties of epimorphisms on Banach algebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed algebras, is now fairly complete and satisfactory (see [24, 44, 45]). A basic continuity problem consists in determining algebraic conditions on a Banach algebra A which ensure that derivations on A are continuous. In 1996, Villena [45] proved that derivations on semisimple Jordan-Banach algebras are continuous. In [24], the authors dealt with derivations acting on Banach-Jordan pairs. By a J^{*}-algebra we mean a closed subspace A of a C^{*}-algebra such that $x x^{*} x \in B$ whenever $x \in B$. Several well known spaces have the structure of a J^{*}-algebra (cf.[17]). For example, (i) every Cartan factor of type I, i.e, the space of all bounded operators $B(H, K)$ between Hilbert spaces H and K; (ii) every Cartan factor of type $I V$, i.e, a closed ${ }^{*}$-subspace B of $B(H)$ in which the square of each operator in B is scalar multiple of indentity operator on $H ;(i i i)$ every ternary algebra of operators [8, 18]. A J^{*}-homomorphism between J^{*}-algebras A and B is defined to be a \mathbb{C}-linear mapping $H: A \rightarrow B$ such that

$$
H\left(a a^{*} a\right)=H(a) H(a)^{*} H(a)
$$

for all $a \in A$, and a J^{*}-derivation on a J^{*}-algebras A is defined to be a \mathbb{C}-linear mapping $D: A \rightarrow A$ such that

$$
D\left(a a^{*} a\right)=D(a) a^{*} a+a D(a)^{*} a+a a^{*} D(a)
$$

for all $a \in A$. In particular, every $*$-homomorphism between C^{*}-algebras is a J^{*}-homomorphism and every $*$-derivation on a C^{*}-algebra is a J^{*}-derivation.

The stability problem of functional equations originated from a question of Ulam [43] concerning the stability of group homomorphisms. Hyers [19] provided a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [41] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [41] has provided a lot of influence in the development of what we now call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations. In 1994, a generalization of the Rassias theorem was obtained by Gǎvruţa [15] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. For more details about various results concerning such problems the reader is referred to $[6,9,11,14,16,20,21,22]$ and [37]-[42].
C. Park, J.C. Hou and Th.M. Rassias proved the stability of homomorphisms and derivations in Banach algebras, Banach ternary algebras, C*-algebras, Lie C*algebras and C^{*}-ternary algebras [25]-[35]. Moreover, in [29], Park established the stability of $*$-homomorphisms of a C^{*}-algebra (see also [30]).

We note that a mapping f satisfying the following Jensen equation $2 f\left(\frac{x+y}{2}\right)=$ $f(x)+f(y)$ is called Jensen. Stability of Jensen functional equation has been studied by using the direct method as well as the fixed point method at [3, 5, 20, 23, 42]. Recently, Eshaghi Gordji and Najati [12] proved the stability and superstability of J^{*}-homomorphisms between J^{*}-algebras for the Jensen type functional equation

$$
f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)-f(x)=0 .
$$

In addition, Eshaghi Gordji et al. [10] established the stability and superstability of J^{*}-derivations in J^{*}-algebras for the following Jensen type functional equation

$$
r f\left(\frac{x+y}{r}\right)+r f\left(\frac{x-y}{r}\right)-2 f(x)=0 .
$$

In this paper, we investigate the stability and superstability of J^{*}-homomorphisms and J^{*}-derivations in J^{*}-algebras for the generalized Jensen type functional equation

$$
\begin{equation*}
\mu f\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}}{n}\right)-f\left(\mu x_{1}\right)=0 \tag{1}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$, where $n \geq 2$.
Before proceeding to the main results, we recall a fundamental result in fixed point theory.

Theorem 1.1. [7]. Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive function $T: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each given $x \in \Omega$, either

$$
d\left(T^{m} x, T^{m+1} x\right)=\infty \quad \text { for all } m \geq 0
$$

or there exists a natural number m_{0} such that

- $d\left(T^{m} x, T^{m+1} x\right)<\infty$ for all $m \geq m_{0}$;
- the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
- y^{*} is the unique fixed point of T in the set $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\}$;
- $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.

Radu and Cădariu [2, 3, 36] applied the fixed point method to the investigation of functional equations (see also [4, 13, 22]).
This paper is organized as follows: By using the fixed point method, in Section 2, we prove the superstability and stability of J^{*}-homomorphisms in J^{*}-algebras for the functional equation (1), and also using Gajda's example [14] to give a counterexample for a singular case. In Section 3, we prove the superstability and stability of J^{*}-derivations on J^{*}-algebras for the functional equation (1), and also we present a counterexample for a singular case.

Throughout this paper assume that A, B are two J^{*}-algebras.
For convenience, we use the following abbreviation for given a mapping $f: A \rightarrow B$,

$$
\begin{gathered}
\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)=\mu f\left(\frac{\sum_{i=1}^{n} x_{i}+a a^{*} a}{n}\right) \\
+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}+a a^{*} a}{n}\right)-f\left(\mu x_{1}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in A$, where $n \geq 2$.

2. Approximation of J^{*}-homomorphisms in J^{*}-algebras

We will use the following lemma:
Lemma 2.1. Let both X and Y be real vector spaces. If a mapping $f: X \rightarrow Y$ satisfies (1) with $\mu=1$, then $f: X \rightarrow Y$ is additive.

Proof. Letting $x_{i}=0(1 \leq i \leq n)$ in (1), we obtain $f(0)=0$. Setting $x_{1}=x$ and $x_{i}=0(2 \leq i \leq n)$ in (1), we get

$$
\begin{equation*}
n f\left(\frac{x}{n}\right)=f(x) \tag{2}
\end{equation*}
$$

for all $x \in X$. Setting $x_{i}=0(3 \leq i \leq n)$ in (1) and using (2), we get

$$
\begin{equation*}
\frac{n-1}{n} f\left(x_{1}+x_{2}\right)+\frac{1}{n} f\left(x_{1}-(n-1) x_{2}\right)=f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$. Putting $x_{1}=x_{1}+(n-1) x_{2}$ in (3), we get

$$
\begin{equation*}
\frac{n-1}{n} f\left(x_{1}+n x_{2}\right)+\frac{1}{n} f\left(x_{1}\right)=f\left(x_{1}+(n-1) x_{2}\right) \tag{4}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$. Replacing x_{1} by 0 and x_{2} by x in (4) and using (2), we get

$$
\begin{equation*}
f((n-1) x)=(n-1) f(x) \tag{5}
\end{equation*}
$$

for all $x \in X$. Replacing x_{1} by 0 and x_{2} by x in (3) and using (5), we get $f(-x)=$ $-f(x)$ for all $x \in X$, i.e., f is an odd function. Setting $x_{2}=x_{2}-x_{1}$ in (3), we get

$$
\begin{equation*}
\frac{n-1}{n} f\left(x_{2}\right)+\frac{1}{n} f\left(n x_{1}-(n-1) x_{2}\right)=f\left(x_{1}\right) \tag{6}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$. Replacing x_{1} by $\frac{x_{1}}{n}$ and x_{2} by $-\frac{x_{2}}{n-1}$ in (6), by (2), (5) and the oddness of f, we obtain

$$
f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in X$. So f is additive.
In the following we formulate and prove a theorem in superstability of J^{*}-homomorphisms for the functional equation (1).

Theorem 2.2. Let $\ell \in\{-1,1\}$ be given and let $0 \neq \ell|s|<\ell$. Assume $f: A \rightarrow B$ is a mapping for which $f(s x)=s f(x)$ for all $x \in A$. Suppose there exists a function $\phi: A^{n+1} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)-\mu f(a) f(a)^{*} f(a)\right\| \leq \phi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \tag{7}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$. If there exists an $L<1$ such that

$$
\begin{equation*}
\phi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \leq \frac{L}{|s|^{\ell}} \phi\left(s^{\ell} x_{1}, s^{\ell} x_{2}, \ldots, s^{\ell} x_{n}, s^{\ell} a\right) \tag{8}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$, then f is a J^{*}-homomorphism.
Proof. It follows from (8) that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}|s|^{m \ell} \phi\left(\frac{x_{1}}{s^{m \ell}}, \frac{x_{2}}{s^{m \ell}}, \ldots, \frac{x_{n}}{s^{m \ell}}, \frac{a}{s^{m \ell}}\right)=0 \tag{9}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$. Setting $\mu=1$ and $x_{i}=0(1 \leq i \leq n)$ in (7), we obtain

$$
\begin{aligned}
\| f\left(a a^{*} a\right) & -f(a) f(a)^{*} f(a)\left\|=\lim _{m \rightarrow \infty}|s|^{3 m \ell}\right\| f\left(\left(\frac{a}{s^{m \ell}}\right)\left(\frac{a^{*}}{s^{m \ell}}\right)\left(\frac{a}{s^{m \ell}}\right)\right) \\
& -f\left(\frac{a}{s^{m \ell}}\right) f\left(\frac{a}{s^{m \ell}}\right)^{*} f\left(\frac{a}{s^{m \ell}}\right) \| \\
& \leq\left.\lim _{m \rightarrow \infty}\left|s^{3 m \ell} \phi\left(0,0, \ldots, \frac{a}{s^{m \ell}}\right) \leq \lim _{m \rightarrow \infty}\right| s\right|^{m \ell} \phi\left(0,0, \ldots, \frac{a}{s^{m \ell}}\right)=0
\end{aligned}
$$

for all $a \in A$. So

$$
f\left(a a^{*} a\right)=f(a) f(a)^{*} f(a)
$$

for all $a \in A$. Similarly put $a=0$ in (7), then

$$
\begin{aligned}
& \left\|\mu f\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}}{n}\right)-f\left(\mu x_{1}\right)\right\| \\
& =\lim _{m \rightarrow \infty}|s|^{m \ell}\left\|\mu f\left(\frac{\sum_{i=1}^{n} x_{i}}{s^{m \ell} n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}}{s^{m \ell} n}\right)-f\left(\mu \frac{x_{1}}{s^{m \ell}}\right)\right\| \\
& \leq \lim _{m \rightarrow \infty}|s|^{m \ell} \phi\left(\frac{x_{1}}{s^{m \ell}}, \frac{x_{2}}{s^{m \ell}}, \ldots, \frac{x_{n}}{s^{m \ell}}, 0\right)=0
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in A$. So

$$
\mu f\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}}{n}\right)=f\left(\mu x_{1}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, \ldots, x_{n} \in A$. Thus by Lemma 2.1, the mapping f is additive.
Letting $x_{i}=x(1 \leq i \leq n)$ and $a=0$ in (7), we have

$$
\begin{gathered}
\|f(\mu x)-\mu f(x)\|=\lim _{m \rightarrow \infty}|s|^{m \ell}\left\|f\left(\mu \frac{x}{s^{m \ell}}\right)-\mu f\left(\frac{x}{s^{m \ell}}\right)\right\| \\
\leq \lim _{m \rightarrow \infty}|s|^{m \ell} \phi\left(\frac{x}{s^{m \ell}}, \frac{x}{s^{m \ell}}, \ldots, \frac{x}{s^{m \ell}}, 0\right)=0
\end{gathered}
$$

for all $\mu \in \mathbb{T}$ and all $x \in A$. One can show that the mapping $f: A \rightarrow B$ is \mathbb{C}-linear, and we conclude that f is a J^{*}-homomorphism.

Corollary 2.3. Let $\ell \in\{-1,1\}$ be given and let $0 \neq \ell|s|<\ell$, $\ell p<\ell$ and δ, θ, p be non-negative real numbers. Suppose that $f: A \rightarrow B$ is a mapping satisfying $f(s x)=s f(x)$ for all $x \in A$, and the following inequality

$$
\left\|\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)-\mu f(a) f(a)^{*} f(a)\right\| \leq \frac{1+\ell}{2} \delta+\theta\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}+\|a\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in A$, then f is a J^{*}-homomorphism.
Proof. Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right):=\frac{1+\ell}{2} \delta+\theta\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}+\|a\|^{p}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}$, $a \in A$ in Theorem 2.2. Then we choose $L=|s|^{\ell(1-p)}$ and we get the desired result.

We prove the following generalized Hyers-Ulam stability problem for J^{*}-homomorphisms on J^{*}-algebras for the functional equation (1).

Theorem 2.4. Let $f: A \rightarrow B$ be a mapping with $f(0)=0$ for which there exists a function $\phi: A^{n+1} \rightarrow[0, \infty)$ satisfying (7). If there exists an $L<1$ such that

$$
\begin{equation*}
\phi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \leq n L \phi\left(\frac{x_{1}}{n}, \frac{x_{2}}{n}, \ldots, \frac{x_{n}}{n}, \frac{a}{n}\right) \tag{10}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$, then there exists a unique J^{*}-homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{1}{n(1-L)} \phi(n x, 0,0, \ldots, 0) \tag{11}
\end{equation*}
$$

for all $x \in A$.
Proof. Letting $\mu=1, x_{1}=x, x_{i}=0(2 \leq i \leq n)$ and $a=0$ in (7), we obtain

$$
\begin{equation*}
\left\|n f\left(\frac{x}{n}\right)-f(x)\right\| \leq \phi(x, 0, \ldots, 0) \tag{12}
\end{equation*}
$$

for all $x \in A$. Replacing x by $n x$ in (12), we get

$$
\begin{equation*}
\left\|\frac{1}{n} f(n x)-f(x)\right\| \leq \frac{1}{n} \phi(n x, 0, \ldots, 0) \tag{13}
\end{equation*}
$$

for all $x \in A$. Consider the set $X:=\{g \mid g: A \rightarrow B\}$ and introduce the generalized metric on X as follows:

$$
d(g, h):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \phi(n x, 0, \ldots, 0), \forall x \in A\right\}
$$

It is easy to show that (X, d) is a generalized complete metric space $[3,4]$
Now we define the linear mapping $T: X \rightarrow X$ by $T(h)(x)=\frac{1}{n} h(n x)$ for all $x \in A$. It is easy to see that

$$
d(T(g), T(h)) \leq L d(g, h)
$$

for all $g, h \in X$. It follows from (13) that

$$
\begin{equation*}
d(f, T(f)) \leq \frac{1}{n}<\infty \tag{14}
\end{equation*}
$$

By Theorem 1.1, T has a unique fixed point in the set $X_{1}:=\{g \in X: d(f, g)<\infty\}$. Let H be the fixed point of $T . H$ is the unique mapping with $H(n x)=n H(x)$ for all $x \in A$, such that there exists $C \in(0, \infty)$ satisfying

$$
\|f(x)-H(x)\| \leq C \phi(n x, 0, \ldots, 0)
$$

for all $x \in A$. On the other hand we have $\lim _{m \rightarrow \infty} d\left(T^{m}(f), H\right)=0$. It follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{n^{m}} f\left(n^{m} x\right)=H(x) \tag{15}
\end{equation*}
$$

for all $x \in A$. Also by Theorem 1.1, we have

$$
\begin{equation*}
d(f, H) \leq \frac{1}{1-L} d(f, T(f)) \tag{16}
\end{equation*}
$$

It follows from (14) and (16), that

$$
d(f, H) \leq \frac{1}{n(1-L)}
$$

This implies inequality (11). It follows from (10) that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{n^{m}} \phi\left(n^{m} x_{1}, n^{m} x_{2}, \ldots, n^{m} x_{n}, n^{m} a\right)=0 \tag{17}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$. By the same reasoning as the proof of Theorem 2.2, One can show that the mapping $H: A \rightarrow B$ is \mathbb{C}-linear. It follows from (7), (15) and (17) that

$$
\begin{aligned}
& \left\|H\left(a a^{*} a\right)-H(a) H(a)^{*} H(a)\right\|=\lim _{m \rightarrow \infty} \frac{1}{n^{3 m}} \| H\left(\left(n^{m} a\right)\left(n^{m} a^{*}\right)\left(n^{m} a\right)\right) \\
& -H\left(n^{m} a\right) H\left(n^{m} a\right)^{*} H\left(n^{m} a\right) \| \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{n^{3 m}} \phi\left(0,0, \ldots, n^{m} a\right) \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{n^{m}} \phi\left(0,0, \ldots, n^{m} a\right)=0
\end{aligned}
$$

for all $a \in A$. Thus

$$
H\left(a a^{*} a\right)=H(a) H(a)^{*} H(a)
$$

for all $a \in A$. Hence $H: A \rightarrow B$ is a J^{*}-homomorphism.
Corollary 2.5. Let θ, p be non-negative real numbers such that $p<1$. Suppose that a function $f: A \rightarrow B$ satisfies

$$
\left\|\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)-\mu f(a) f(a)^{*} f(a)\right\| \leq \theta \sum_{i=1}^{n}\left(\left\|x_{i}\right\|^{p}+\|a\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, \ldots, x_{n}, a \in A$. Then there exists a unique J^{*}-homomorphism $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\| \leq \frac{\theta}{n^{1-p}-1}\|x\|^{p}
$$

for all $x \in A$.
The case in which $p=1$ was excluded in Corollary 2.5. Indeed this result is not valid when $p=1$. Here we use Gajda's example [14] to construct a Counterexample.

Example 2.6. Let $\phi: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
\phi(x):=\left\{\begin{array}{lll}
x & \text { for } & |x|<1 \\
1 & \text { for } & |x| \geq 1
\end{array}\right.
$$

Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ to be defined by the formula

$$
f(x):=\sum_{m=0}^{\infty} n^{-m} \phi\left(n^{m} x\right)
$$

Let
$D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right):=\mu f\left(\frac{\sum_{i=1}^{n} x_{i}+a \bar{a} a}{n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}+a \bar{a} a}{n}\right)-f\left(\mu x_{1}\right)-$ $\mu f(a) \overline{f(a)} f(a)$
for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in \mathbb{C}$. Then f satisfies

$$
\begin{equation*}
\left|D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right)\right| \leq \frac{n^{4}+n^{3}+6 n^{2}-7 n+2}{(n-1)^{2}}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right) \tag{18}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in \mathbb{C}$, and the range of $|f(x)-A(x)| /|x|$ for $x \neq 0$ is unbounded for each additive function $A: \mathbb{C} \rightarrow \mathbb{C}$.
Proof. It is clear that f is bounded by $\frac{n}{n-1}$ on \mathbb{C}. If $\sum_{i=1}^{n}\left|x_{i}\right|+|a|=0$ or $\sum_{i=1}^{n}\left|x_{i}\right|+$ $|a| \geq 1$, then

$$
\left|D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right)\right| \leq \frac{n^{4}-n^{2}+n}{(n-1)^{3}} \leq \frac{n^{4}-n^{2}+n}{(n-1)^{3}}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right)
$$

Now suppose that $0<\sum_{i=1}^{n}\left|x_{i}\right|+|a|<1$. Then there exists an integer $k \geq 0$ such that

$$
\begin{equation*}
\frac{1}{n^{k+1}} \leq \sum_{i=1}^{n}\left|x_{i}\right|+|a|<\frac{1}{n^{k}} \tag{19}
\end{equation*}
$$

Therefore

$$
n^{t}\left|\sum_{i=1}^{n} x_{i}+a \bar{a} a\right|, n^{t}\left|\sum_{i=1}^{n} x_{i}+a \bar{a} a-(n-1) x_{j}\right|, n^{t}\left|\mu x_{1}\right|, n^{t}|a|<1
$$

for all $j=2,3, \ldots, n$ and all $t=0,1, \ldots, k-1$. From the definition of f and (19), we have

$$
|f(a)| \leq k|a|+\sum_{m=k}^{\infty} n^{-m}\left|\phi\left(n^{m} a\right)\right| \leq k|a|+\frac{n}{n^{k}(n-1)}
$$

$$
\begin{aligned}
& \left|D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right)\right| \leq k|a|^{3}+\frac{n(n+1)}{n^{k}(n-1)}+|f(a)|^{3} \\
& \leq\left(k+k^{3}\right)|a|^{3}+\frac{n^{2}+2 n}{n^{k}(n-1)}+\frac{3 n(n-1) k^{2}+3 n^{2} k}{n^{2 k}(n-1)^{2}}|a| \\
& \leq \frac{(n-1)^{2} k^{3}+3 n(n-1) k^{2}+\left((n-1)^{2}+3 n^{2}\right) k}{n^{2 k}(n-1)^{2}}|a|+\frac{n^{2}+2 n}{n^{k}(n-1)} \\
& \leq \frac{2(n-1)^{2}+3 n(n-1)+3 n^{2}}{(n-1)^{2}}|a|+\frac{n^{3}+2 n^{2}}{(n-1)}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right) \\
& \leq \frac{n^{4}+n^{3}+6 n^{2}-7 n+2}{(n-1)^{2}}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right)
\end{aligned}
$$

Therefore f satisfies (18). Let $A: \mathbb{C} \rightarrow \mathbb{C}$ be an additive function such that

$$
|f(x)-A(x)| \leq \alpha|x|
$$

for all $x \in \mathbb{C}$, where $\alpha>0$ is a constant. Then there exists a constant $c \in \mathbb{C}$ such that $A(x)=c x$ for all rational numbers x. Thus we have

$$
\begin{equation*}
|f(x)| \leq(\alpha+|c|)|x| \tag{20}
\end{equation*}
$$

for all rational numbers x. Let $t \in \mathbb{N}$ with $t>\alpha+|c|$. If x is a rational number in $\left(0, n^{1-t}\right)$, then $n^{m} x \in(0,1)$ for all $m=0,1, \ldots, t-1$. Therefore

$$
f(x) \geq \sum_{m=0}^{t-1} n^{-m} \phi\left(n^{m} x\right)=t x>(\alpha+|c|) x
$$

which contradicts (20).

3. Approximation of J^{*}-Derivations in J^{*}-algebras

In this section, we prove the superstablity and stability of J^{*}-derivations on J^{*}-algebras for the functional equation (1).
Theorem 3.1. Let $\ell \in\{-1,1\}$ be given and let $0 \neq|s| \ell>\ell$. Suppose $f: A \rightarrow A$ is a mapping for which $f(s x)=s f(x)$ for all $x \in A$. Suppose there exists a function $\psi: A^{n+1} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)-\mu f(a) a^{*} a-\mu a f(a)^{*} a-\mu a a^{*} f(a)\right\| \leq \psi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \tag{21}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$. If there exists an $L<1$ such that

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \leq \ell|s|^{\ell} \psi\left(\frac{x_{1}}{s^{\ell}}, \frac{x_{2}}{s^{\ell}}, \ldots, \frac{x_{n}}{s^{\ell}}, \frac{a}{s^{\ell}}\right) \tag{22}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$, then f is a J^{*}-derivation.
Proof. By using equation $f(s x)=s f(x)$ and (21), we have $f(0)=0$ and

$$
\left\|\mu f\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}}{n}\right)-f\left(\mu x_{1}\right)\right\|
$$

$$
\begin{gather*}
\leq|s|^{-m \ell} \psi\left(s^{m \ell} x_{1}, s^{m \ell} x_{2}, \ldots, s^{m \ell} x_{n}, 0\right), \tag{23}\\
\left\|f\left(a a^{*} a\right)-f(a) a^{*} a-a f(a)^{*} a-a a^{*} f(a)\right\| \leq|s|^{-3 m \ell} \psi\left(0,0, \ldots, 0, s^{m \ell} a\right) \tag{24}
\end{gather*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$ and all integers m. It follows from (22), that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}|s|^{-m \ell} \psi\left(s^{m \ell} x_{1}, s^{m \ell} x_{2}, \ldots, s^{m \ell} x_{n}, s^{m \ell} a\right)=0 \tag{25}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$. Hence, we get from (23), (24) and (25) that

$$
\begin{gathered}
\mu f\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)+\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}}{n}\right)=f\left(\mu x_{1}\right), \\
f\left(a a^{*} a\right)=f(a) a^{*} a+a f(a)^{*} a+a a^{*} f(a)
\end{gathered}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$. Therefore f is additive and $f(\mu x)=\mu f(x)$ for all $\mu \in T$ and $x \in A$. By the same reasoning as in the proof of Theorem 2.2 , one can show that the mapping $f: A \rightarrow A$ is \mathbb{C}-linear, and we conclude that f is a J^{*}-derivation.

Corollary 3.2. Let $\ell \in\{-1,1\}$ be given and let $0 \neq \ell|s|>\ell$, $\ell p>\ell$ and β, ε, p be non-negative real numbers. Suppose that $f: A \rightarrow A$ is a mapping satisfying $f(s x)=s f(x)$ for all $x \in A$, and the following inequality

$$
\begin{gathered}
\left\|\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)-\mu f(a) a^{*} a-\mu a f(a)^{*} a-\mu a a^{*} f(a)\right\| \\
\leq \frac{1+\ell}{2} \beta+\varepsilon\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}+\|a\|^{p}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in A$, then f is a $J^{*}-$ derivation.
Theorem 3.3. Let $f: A \rightarrow A$ be a mapping with $f(0)=0$ for which there exists a function $\psi: A^{n+1} \rightarrow[0, \infty)$ satisfying (21). If there exists an $L<1$ such that

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \leq n L \psi\left(\frac{x_{1}}{n}, \frac{x_{2}}{n}, \ldots, \frac{x_{n}}{n}, \frac{a}{n}\right) \tag{26}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a \in A$, then there exists a unique $J^{*}-$ derivation $D: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-D(x)\| \leq \frac{L}{1-L} \psi(x, 0,0, \ldots, 0) \tag{27}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from (26) that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{n^{m}} \psi\left(n^{m} x_{1}, n^{m} x_{2}, \ldots, n^{m} x_{n}, n^{m} a\right)=0 \tag{28}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{n} \in A$. Consider the set $X^{\prime}:=\{g \mid g: A \rightarrow X\}$ and introduce the generalized metric on X^{\prime} as follows:

$$
d(g, h):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \psi(x, 0, \ldots, 0), \forall x \in A\right\}
$$

It is easy to show that $\left(X^{\prime}, d\right)$ is a generalized complete metric space.
Now we define the linear mapping $J: X^{\prime} \rightarrow X^{\prime}$ by $J(h)(x)=\frac{1}{n} h(n x)$ for all $x \in A$. It is easy to see that

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X^{\prime}$.

Letting $\mu=1, x_{1}=x, x_{i}=0(2 \leq i \leq n)$ and $a=0$ in (21), we obtain

$$
\begin{equation*}
\left\|n f\left(\frac{x}{n}\right)-f(x)\right\|_{X} \leq \psi(x, 0, \ldots, 0) \tag{29}
\end{equation*}
$$

for all $x \in A$. Thus by using (26), we obtain

$$
\begin{equation*}
\left\|\frac{1}{n} f(n x)-f(x)\right\|_{X} \leq \frac{1}{n} \psi(n x, 0, \ldots, 0) \leq L \psi(x, 0, \ldots, 0) \tag{30}
\end{equation*}
$$

for all $x \in A$, that is,

$$
\begin{equation*}
d(f, J(f)) \leq L<\infty \tag{31}
\end{equation*}
$$

By Theorem 1.1, J has a unique fixed point in the set $X_{2}:=\left\{h \in X^{\prime}: d(f, h)<\infty\right\}$. Let D be the fixed point of J. We note that D is the unique mapping with $D(n x)=$ $n D(x)$ for all $x \in A$, such that there exists $C \in(0, \infty)$ satisfying

$$
\|f(x)-D(x)\| \leq C \psi(x, 0, \ldots, 0)
$$

for all $x \in A$. On the other hand we have

$$
\lim _{m \rightarrow \infty} d\left(J^{m}(f), D\right)=0
$$

so

$$
\lim _{m \rightarrow \infty} \frac{1}{n^{m \ell}} f\left(n^{m \ell} x\right)=D(x)
$$

for all $x \in A$. Also by Theorem 1.1, we have

$$
\begin{equation*}
d(f, D) \leq \frac{1}{1-L} d(f, J(f)) \tag{32}
\end{equation*}
$$

It follows from (31) and (32), that

$$
d(f, D) \leq \frac{L}{1-L}
$$

This implies inequality (27). By the same reasoning as in the proof of Theorem 2.2, one can show that the mapping $f: A \rightarrow A$ is \mathbb{C}-linear. It follows from (21) and (28) that

$$
\begin{aligned}
& \left\|D\left(a a^{*} a\right)-D(a) a^{*} a-a D(a)^{*} a-a a^{*} D(a)\right\| \\
& \quad=\lim _{m \rightarrow \infty} \| \frac{1}{n^{3 m}}\left(D\left(\left(n^{m} a\right)\left(n^{m} a^{*}\right)\left(n^{m} a\right)\right)-D\left(n^{m} a\right)\left(n^{m} a^{*}\right)\left(n^{m} a\right)-\right. \\
& \quad\left(n^{m} a\right) D\left(n^{m} a\right)^{*}\left(n^{m} a\right)-\left(n^{m} a\right)\left(n^{m} a^{*}\right) D\left(n^{m} a\right) \| \\
& \quad \leq \frac{1}{n^{3 m}} \psi\left(0,0, \ldots, 0, n^{m} a\right) \leq \frac{1}{n^{m}} \psi\left(0,0, \ldots, 0, n^{m} a\right)=0
\end{aligned}
$$

for all $a \in A$. Therefore

$$
D\left(a a^{*} a\right)=D(a) a^{*} a+a D(a)^{*} a+a a^{*} D(a)
$$

for all $a \in A$. Hence $D: A \rightarrow A$ is a J^{*}-derivation.
Corollary 3.4. Let ε, p be non-negative real numbers such that $p<1$. Suppose that a function $f: A \rightarrow A$ satisfies

$$
\left\|\triangle f\left(x_{1}, x_{2}, \ldots, x_{n}, a\right)-\mu f(a) a^{*} a-\mu a f(a)^{*} a-\mu a a^{*} f(a)\right\|
$$

$$
\leq \varepsilon\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}+\|a\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, \ldots, x_{n}, a \in A$. Then there exists a unique $J^{*}-$ derivation $D: A \rightarrow A$ such that

$$
\|f(x)-D(x)\| \leq \frac{n^{p-1} \varepsilon}{1-n^{p-1}}\|x\|^{p}
$$

for all $x \in A$.
For the case $p=1$, similar to the Example 2.6, we have the following counterexample.

Example 3.5. Let $\psi: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
\psi(x):=\left\{\begin{array}{lll}
x & \text { for } & |x|<1 \\
1 & \text { for } & |x| \geq 1
\end{array}\right.
$$

Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ to be defined by the formula

$$
f(x):=\sum_{m=0}^{\infty} n^{-m} \psi\left(n^{m} x\right)
$$

Let

$$
\begin{aligned}
& D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right):= \\
& \mu f\left(\frac{\sum_{i=1}^{n} x_{i}+a \bar{a} a}{n}\right) \\
& +\mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_{i}-(n-1) x_{j}+a \bar{a} a}{n}\right)-f\left(\mu x_{1}\right) \\
& \quad-\mu f(a) \bar{a} a-\mu a \overline{f(a)} a-\mu a \bar{a} f(a)
\end{aligned}
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in \mathbb{C}$. Then f satisfies

$$
\begin{equation*}
\left|D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right)\right| \leq \frac{n^{3}+n^{2}+7 n-4}{n-1}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right) \tag{33}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x_{1}, x_{2}, \ldots, x_{n}, a \in \mathbb{C}$, and the range of $|f(x)-A(x)| /|x|$ for $x \neq 0$ is unbounded for each additive function $A: \mathbb{C} \rightarrow \mathbb{C}$.
Proof. It is clear that f is bounded by $\frac{n}{n-1}$ on \mathbb{C}. If $\sum_{i=1}^{n}\left|x_{i}\right|+|a|=0$ or $\sum_{i=1}^{n}\left|x_{i}\right|+$ $|a| \geq 1$, then

$$
\left|D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right)\right| \leq \frac{n^{2}+\left(1+3|a|^{2}\right) n}{(n-1)} \leq \frac{n^{2}+\left(1+3|a|^{2}\right) n}{(n-1)}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right)
$$

Now suppose that $0<\sum_{i=1}^{n}\left|x_{i}\right|+|a|<1$. Then there exists an integer $k \geq 0$ such that

$$
\begin{equation*}
\frac{1}{n^{k+1}} \leq \sum_{i=1}^{n}\left|x_{i}\right|+|a|<\frac{1}{n^{k}} \tag{34}
\end{equation*}
$$

Therefore

$$
n^{t}\left|\sum_{i=1}^{n} x_{i}+a \bar{a} a\right|, n^{t}\left|\sum_{i=1}^{n} x_{i}+a \bar{a} a-(n-1) x_{j}\right|, n^{t}\left|\mu x_{1}\right|, n^{t}|a|<1
$$

for all $j=2,3, \ldots, n$ and all $t=0,1, \ldots, k-1$. From the definition of f and (34), we have

$$
\begin{aligned}
& |f(a)| \leq k|a|+\sum_{m=k}^{\infty} n^{-m}\left|\psi\left(n^{m} a\right)\right| \leq k|a|+\frac{n}{n^{k}(n-1)}, \\
& \left|D_{\mu} f\left(x_{1}, \ldots, x_{n}, a\right)\right| \leq k|a|^{3}+\frac{n(n+1)}{n^{k}(n-1)}+3|a|^{2}|f(a)| \\
& \quad \leq 4 k|a|^{3}+\frac{n^{2}+n}{n^{k}(n-1)}+\frac{3 n}{n^{k}(n-1)}|a|^{2} \\
& \quad \leq \frac{4(n-1) k+3 n}{n^{k}(n-1)}|a|^{2}+\frac{n^{2}+n}{n^{k}(n-1)} \\
& \quad \leq \frac{4(n-1) k+3 n}{n^{k}(n-1)}|a|+\frac{n^{3}+n^{2}}{(n-1)}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right) \\
& \quad \leq \frac{n^{3}+n^{2}+7 n-4}{(n-1)}\left(\sum_{i=1}^{n}\left|x_{i}\right|+|a|\right)
\end{aligned}
$$

Therefore f satisfies (33). Let $A: \mathbb{C} \rightarrow \mathbb{C}$ be an additive function such that

$$
|f(x)-A(x)| \leq \alpha|x|
$$

for all $x \in \mathbb{C}$, where $\alpha>0$ is a constant. Then there exists a constant $c \in \mathbb{C}$ such that $A(x)=c x$ for all rational numbers x. Thus we have

$$
\begin{equation*}
|f(x)| \leq(\alpha+|c|)|x| \tag{35}
\end{equation*}
$$

for all rational numbers x. Let $t \in \mathbb{N}$ with $t>\alpha+|c|$. If x is a rational number in $\left(0, n^{1-t}\right)$, then $n^{m} x \in(0,1)$ for all $m=0,1, \ldots, t-1$. Hence

$$
f(x) \geq \sum_{m=0}^{t-1} n^{-m} \phi\left(n^{m} x\right)=t x>(\alpha+|c|) x
$$

which contradicts (35).

Acknowledgement. The authors would like to extend their thanks to referee for his (her) valuable comments and suggestions which helped simplify and improve the results of paper.

References

[1] T. Aoki, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan, (1950), 64-66.
[2] L. Cadariu, V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest Timisoara, 41(2003) 25-48.
[3] L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4(2003), Art. ID 4.
[4] L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 346(2004), 43-52.
[5] L. Cadariu, V. Radu, The fixed point method to stability properties of a functional equation of Jensen type, An. Ştiin. Univ. Al. I. Cuza Iaşi, Ser. Noua, Mat., 54(2)(2008), 307-318.
[6] P. W. Cholewa, Remarks on the stability of functional equations, Aequat. Math., 27(1984), 76-86.
[7] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309.
[8] M. Elin, L. Harris, S. Reich, D. Shoikhet, Evolution equations and geometric function theory in J^{*} - algebras, J. Nonlinear Convex Anal., 3(2002), 81-121.
[9] M. Eshaghi Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal., 71(2009), 5629-5643.
[10] M. Eshaghi Gordji, M.B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, A. Ebadian, On the stability of J^{*} - derivations, J. Geometry and Physics, 60(3)(2010), 454-459.
[11] M. Eshaghi Gordji, T. Karimi, S. Kaboli Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Volume 2009, Article ID 870843.
[12] M. Eshaghi Gordji, A. Najati, Approximately J*-homomorphisms: A fixed point approach, J. Geometry and Physics, 60(5)(2010), 809-814.
[13] M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory, 12(1)(2011), 71-82.
[14] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14(1991), 431-434.
[15] P. Gavruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[16] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48(1996), 217-235.
[17] L.A. Harris, Bounded symmetric homogeneous domains in infinite-dimensional space, in: Lecture Notes in Mathematics, vol. 364, Springer, Berlin, 1974.
[18] L.A. Harris, Operator Siegel domains, Proc. Roy. Soc. Edinburgh Sect. A, 79(1977), 137-156.
[19] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[20] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., 126(1998), 3137-3143.
[21] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001.
[22] H. Khodaei, Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1(2010), 22-41.
[23] Y.H. Lee, K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensens equation, J. Math. Anal. Appl., 238(1999), 305-315.
[24] A.F. Lopez, H. Marhnine, C. Zarhouti, Derivations on Banach-Jordan pairs, Quart. J. Math., 52(2001), 269-283.
[25] C. Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc., 132(6)(2004), 1739-1745.
[26] C. Park, Linear $*$-derivations on JB*-algebras, Acta Math. Sci. Ser. B Engl. Ed., 25(2005), 449-454.
[27] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie $*$-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl., 293(2004), 419-434.
[28] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC* - algebra derivations, J. Lie Theory, 15(2005), 393-414.
[29] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc., 36(2005), 79-97.
[30] C. Park, Isomorphisms between C^{*}-ternary algebras, J. Math. Anal. Appl., 327(2007), 101-115.
[31] C. Park, M. Eshaghi Gordji, Comment on "Approximate ternary Jordan derivations on Banach ternary algebras" [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. 51, 044102 (2010); doi:10.1063/1.3299295 (7 pages).
[32] C. Park, J.C. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on $C^{*-a l g e b r a s, ~ J . ~ K o r e a n ~ M a t h . ~ S o c ., ~ 41(3)(2004), ~ 461-477 . ~}$
[33] C. Park, J.C. Hou, S.Q. Oh, Homomorphisms between Lie JC ${ }^{*}$-algebras Lie C^{*}-algebra, Acta Math. Sinica, 21(2005), 1391-1398.
[34] C. Park, Th.M. Rassias, Homomorphisms in $C^{*}-t e r n a r y ~ a l g e b r a s ~ a n d ~ J B *-t r i p l e s, ~ J . ~ M a t h . ~$ Anal. Appl., 337 (2008) 13-20.
[35] C. Park, Th.M. Rassias, Homomorphisms and derivations in proper JCQ*-triples, J. Math. Anal. Appl., 337(2008), 1404-1414.
[36] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003) 91-96.
[37] Th.M. Rassias, New characterization of inner product spaces, Bull. Sci. Math., 108(1984), 9599.
[38] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251(2000), 264-284.
[39] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), 23-130.
[40] Th.M. Rassias, P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173(1993), 325-338.
[41] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[42] T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, J. Math. Anal. Appl., 250(2000), 579-588.
[43] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1940.
[44] H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conf. Ser. in Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987.
[45] A.R. Villena, Derivations on Jordan-Banach algebras, Studia Math., 118(1996), 205-229.
Received: July 6, 2010; Accepted: October 12, 2011.

