Abstract. We will apply the fixed point method for proving the stability and superstability of J^*–homomorphisms and J^*–derivations associated to a generalized Jensen type functional equation between J^*–algebras.

Key Words and Phrases: Approximate J^*–homomorphism; approximate J^*–derivation; J^*–algebra; alternative fixed point; generalized Jensen functional equation.

2010 Mathematics Subject Classification: 46L57, 16W25, 39B82, 47B47, 47H10.

1. Introduction

Our knowledge concerning the continuity properties of epimorphisms on Banach algebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed algebras, is now fairly complete and satisfactory (see [24, 44, 45]). A basic continuity problem consists in determining algebraic conditions on a Banach algebra A which ensure that derivations on A are continuous. In 1996, Villena [45] proved that derivations on semisimple Jordan-Banach algebras are continuous. In [24], the authors dealt with derivations acting on Banach-Jordan pairs. By a J^*–algebra we mean a closed subspace A of a C*-algebra such that $xx^*x \in B$ whenever $x \in B$. Several well known spaces have the structure of a J^*–algebra (cf.[17]). For example, (i) every Cartan factor of type I, i.e., the space of all bounded operators $B(H,K)$ between Hilbert spaces H and K; (ii) every Cartan factor of type IV, i.e., a closed *–subspace B of $B(H)$ in which the square of each operator in B is scalar multiple of identity operator on H; (iii) every ternary algebra of operators [8, 18]. A J^*–homomorphism between J^*–algebras A and B is defined to be a C–linear mapping $H : A \to B$ such that

$$H(aa^*a) = H(a)H(a)^*H(a)$$
for all \(a \in A \), and a \(J^* \)-derivation on a \(J^* \)-algebras \(A \) is defined to be a \(C \)-linear mapping \(D : A \to A \) such that

\[
D(aa^*a) = D(a)a^*a + aD(a)^*a + aa^*D(a)
\]

for all \(a \in A \). In particular, every \(* \)-homomorphism between \(C^* \)-algebras is a \(J^* \)-homomorphism and every \(* \)-derivation on a \(C^* \)-algebra is a \(J^* \)-derivation.

The stability problem of functional equations originated from a question of Ulam [43] concerning the stability of group homomorphisms. Hyers [19] provided a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [41] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [41] has provided a lot of influence in the development of what we now call generalized Hyers–Ulam stability or as Hyers–Ulam–Rassias stability of functional equations. In 1994, a generalization of the Rassias theorem was obtained by Gavruta [15] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach. For more details about various results concerning such problems the reader is referred to [6, 9, 11, 14, 16, 20, 21, 22] and [37]–[42].

C. Park, J.C. Hou and Th.M. Rassias proved the stability of homomorphisms and derivations in Banach algebras, Banach ternary algebras, \(C^* \)-algebras, Lie \(C^* \)-algebras and \(C^* \)-ternary algebras [25]–[35]. Moreover, in [29], Park established the stability of \(* \)-homomorphisms of a \(C^* \)-algebra (see also [30]).

We note that a mapping \(f \) satisfying the following Jensen equation

\[
2f(\frac{x+y}{2}) = f(x) + f(y)
\]

is called Jensen. Stability of Jensen functional equation has been studied by using the direct method as well as the fixed point method at [3, 5, 20, 23, 42]. Recently, Eshaghi Gordji and Najati [12] proved the stability and superstability of \(J^* \)-homomorphisms between \(J^* \)-algebras for the Jensen type functional equation

\[
f(\frac{x+y}{2}) + f(\frac{x-y}{2}) - f(x) = 0.
\]

In addition, Eshaghi Gordji et al. [10] established the stability and superstability of \(J^* \)-derivations in \(J^* \)-algebras for the following Jensen type functional equation

\[
rf(\frac{x+y}{r}) + rf(\frac{x-y}{r}) - 2f(x) = 0.
\]

In this paper, we investigate the stability and superstability of \(J^* \)-homomorphisms and \(J^* \)-derivations in \(J^* \)-algebras for the generalized Jensen type functional equation

\[
\mu f(\frac{\sum_{i=1}^{n} x_i}{n}) + \mu \sum_{j=2}^{n} f(\frac{\sum_{i=1,i\neq j}^{n} x_i - (n-1)x_j}{n}) - f(\mu x_1) = 0 \tag{1}
\]

for all \(\mu \in \mathbb{T} = \{ \lambda \in \mathbb{C}; |\lambda| = 1 \} \), where \(n \geq 2 \).

Before proceeding to the main results, we recall a fundamental result in fixed point theory.

Theorem 1.1. [7]. Suppose that we are given a complete generalized metric space \((\Omega, d)\) and a strictly contractive function \(T : \Omega \to \Omega \) with Lipschitz constant \(L \). Then for each given \(x \in \Omega \), either

\[d(T^m x, T^{m+1} x) = \infty \quad \text{for all } m \geq 0, \]

or there exists a natural number \(m_0 \) such that

- \(d(T^m x, T^{m+1} x) < \infty \) for all \(m \geq m_0 \);
- the sequence \(\{ T^m x \} \) is convergent to a fixed point \(y^* \) of \(T \);
- \(y^* \) is the unique fixed point of \(T \) in the set \(\Lambda = \{ y \in \Omega : d(T^{m_0} x, y) < \infty \} \);
- \(d(y, y^*) \leq 1 - L d(T y, y) \) for all \(y \in \Lambda \).

Radu and Cădariu \([2, 3, 36]\) applied the fixed point method to the investigation of functional equations (see also \([4, 13, 22]\)).

This paper is organized as follows: By using the fixed point method, in Section 2, we prove the superstability and stability of \(J^* \)-homomorphisms in \(J^* \)-algebras for the functional equation (1), and also using Gajda’s example \([14]\) to give a counterexample for a singular case. In Section 3, we prove the superstability and stability of \(J^* \)-derivations on \(J^* \)-algebras for the functional equation (1), and also we present a counterexample for a singular case.

Throughout this paper assume that \(A, B \) are two \(J^* \)-algebras. For convenience, we use the following abbreviation for given a mapping \(f : A \to B \),

\[
\triangle f(x_1, x_2, \ldots, x_n, a) = \mu f\left(\frac{\sum_{i=1}^{n} x_i + aa^* a}{n}\right) + \mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1 \neq j} x_i - (n-1)x_j + aa^* a}{n}\right) - f(\mu x_1)
\]

for all \(\mu \in \mathbb{T} \) and all \(x_1, x_2, \ldots, x_n, a \in A \), where \(n \geq 2 \).

2. Approximation of \(J^* \)-homomorphisms in \(J^* \)-algebras

We will use the following lemma:

Lemma 2.1. Let both \(X \) and \(Y \) be real vector spaces. If a mapping \(f : X \to Y \) satisfies (1) with \(\mu = 1 \), then \(f : X \to Y \) is additive.

Proof. Letting \(x_i = 0 \) (\(1 \leq i \leq n \)) in (1), we obtain \(f(0) = 0 \). Setting \(x_1 = x \) and \(x_i = 0 \) (\(2 \leq i \leq n \)) in (1), we get

\[
n f\left(\frac{x}{n}\right) = f(x)
\]

for all \(x \in X \). Setting \(x_i = 0 \) (\(3 \leq i \leq n \)) in (1) and using (2), we get

\[
n - 1 \frac{1}{n} f(x_1 + x_2) + \frac{1}{n} f(x_1 - (n-1)x_2) = f(x_1)
\]

for all \(x_1, x_2 \in X \). Putting \(x_1 = x_1 + (n-1)x_2 \) in (3), we get

\[
n - 1 \frac{1}{n} f(x_1 + nx_2) + \frac{1}{n} f(x_1) = f(x_1 + (n-1)x_2)
\]

for all \(x_1, x_2 \in X \). Replacing \(x_1 \) by 0 and \(x_2 \) by \(x \) in (4) and using (2), we get

\[
f ((n-1)x) = (n-1)f(x)
\]
for all \(x \in X \). Replacing \(x_1 \) by 0 and \(x_2 \) by \(x \) in (3) and using (5), we get \(f(-x) = -f(x) \) for all \(x \in X \), i.e., \(f \) is an odd function. Setting \(x_2 = x_1 - x \) in (3), we get

\[
\frac{n-1}{n} f(x_2) + \frac{1}{n} f(n(x_1 - (n-1)x_2)) = f(x_1)
\]

(6)

for all \(x_1, x_2 \in X \). Replacing \(x_1 \) by \(\frac{x_1}{n} \) and \(x_2 \) by \(\frac{-x_2}{n-1} \) in (6), by (2), (5) and the oddness of \(f \), we obtain

\[
f(x_1 + x_2) = f(x_1) + f(x_2)
\]

for all \(x_1, x_2 \in X \). So \(f \) is additive. \(\square \)

In the following we formulate and prove a theorem in superstability of \(J^* \)-homomorphisms for the functional equation (1).

Theorem 2.2. Let \(\ell \in \{-1,1\} \) be given and let \(0 \neq \ell |s| < \ell \). Assume \(f : A \rightarrow B \) is a mapping for which \(f(sx) = sf(x) \) for all \(x \in A \). Suppose there exists a function \(\phi : A^{n+1} \rightarrow [0,\infty) \) such that

\[
\|\Delta f(x_1, x_2, \ldots, x_n, a) - \mu f(a) f(a)^* f(a)\| \leq \phi(x_1, x_2, \ldots, x_n, a)
\]

(7)

for all \(x_1, \ldots, x_n, a \in A \). If there exists an \(L < 1 \) such that

\[
\phi(x_1, x_2, \ldots, x_n, a) \leq \frac{L}{|s|^2} \phi(s^f x_1, s^f x_2, \ldots, s^f x_n, s^f a)
\]

(8)

for all \(x_1, \ldots, x_n, a \in A \), then \(f \) is a \(J^* \)-homomorphism.

Proof. It follows from (8) that

\[
\lim_{m \to \infty} |s|^{m\ell} \phi\left(\frac{x_1}{s^{m\ell}}, \frac{x_2}{s^{m\ell}}, \ldots, \frac{x_n}{s^{m\ell}}, \frac{a}{s^{m\ell}}\right) = 0
\]

(9)

for all \(x_1, \ldots, x_n, a \in A \). Setting \(\mu = 1 \) and \(x_i = 0 \) (1 \(\leq i \leq n \)) in (7), we obtain

\[
\|f(aa^*) - f(a) f(a)^* f(a)\| = \lim_{m \to \infty} |s|^{3m\ell} \|f((\frac{a}{s^{m\ell}})(\frac{a^*}{s^{m\ell}}))
\]

\[
- f((\frac{a}{s^{m\ell}}) f((\frac{a}{s^{m\ell}})^* f((\frac{a}{s^{m\ell}})))
\]

\[
\leq \lim_{m \to \infty} |s|^{3m\ell} \phi(0, 0, \ldots, \frac{a}{s^{m\ell}}) \leq \lim_{m \to \infty} |s|^{m\ell} \phi(0, 0, \ldots, \frac{a}{s^{m\ell}}) = 0
\]

for all \(a \in A \). So

\[
f(aa^*) = f(a) f(a)^* f(a)
\]

for all \(a \in A \). Similarly put \(a = 0 \) in (7), then

\[
\|\mu f(\frac{\sum_{i=1}^n x_i}{n}) + \mu \sum_{j=2}^n f(\frac{\sum_{i=1,i\neq j}^n x_i - (n-1)x_j}{n}) - f(\mu x_1)\|
\]

\[
= \lim_{m \to \infty} |s|^{m\ell} \|\mu f(\frac{\sum_{i=1}^n x_i}{s^{m\ell} n}) + \mu \sum_{j=2}^n f(\frac{\sum_{i=1,i\neq j}^n x_i - (n-1)x_j}{s^{m\ell} n}) - f(\mu x_1)\|
\]

\[
\leq \lim_{m \to \infty} |s|^{m\ell} \phi\left(\frac{x_1}{s^{m\ell}}, \frac{x_2}{s^{m\ell}}, \ldots, \frac{x_n}{s^{m\ell}}, 0\right) = 0
\]
for all \(x_1, \ldots, x_n \in A \). So
\[
\mu f\left(\sum_{i=1}^{n} \frac{x_i}{n} \right) + \mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_i - (n-1)x_j}{n} \right) = f(\mu x_1)
\]
for all \(\mu \in T \) and all \(x_1, \ldots, x_n \in A \). Thus by Lemma 2.1, the mapping \(f \) is additive.

Letting \(x_i = x \) (1 \(\leq i \leq n \)) and \(a = 0 \) in (7), we have
\[
\|f(\mu x) - f(x)\| = \lim_{m \to \infty} |s|^{mk} \|f(\mu \frac{x}{s^{mk}}) - f(\frac{x}{s^{mk}})\|
\]
\[
\leq \lim_{m \to \infty} |s|^{mk} \|f(\frac{x}{s^{mk}}, \ldots, \frac{x}{s^{mk}}, 0) - f(\frac{x}{s^{mk}}, \ldots, \frac{x}{s^{mk}}, 0)\| = 0
\]
for all \(\mu \in T \) and all \(x \in A \). One can show that the mapping \(f : A \to B \) is \(C \)-linear, and we conclude that \(f \) is a \(J^* \)-homomorphism.

Corollary 2.3. Let \(\ell \in \{-1, 1\} \) be given and let \(0 \neq \ell |s| < \ell, \ell p < \ell \) and \(\delta, \theta, p \) be non-negative real numbers. Suppose that \(f : A \to B \) is a mapping satisfying (7) for all \(x \in A \), and the following inequality
\[
\|\Delta f(x_1, x_2, \ldots, x_n, a) - \mu f(a) \phi(a)^n f(a)\| \leq \frac{1 + \ell}{2} \delta + \theta \left(\sum_{i=1}^{n} \|x_i\|^p + \|a\|^p \right)
\]
for all \(\mu \in T \) and all \(x_1, x_2, \ldots, x_n, a \in A \), then \(f \) is a \(J^* \)-homomorphism.

Proof. Let \(\phi(x_1, x_2, \ldots, x_n, a) := \frac{1}{n} \phi\left(\frac{x_1}{n}, \frac{x_2}{n}, \ldots, \frac{x_n}{n}, \frac{a}{n} \right) \) for all \(x_1, x_2, \ldots, x_n, a \in A \) in Theorem 2.2. Then we choose \(L = |s|^{(1-p)} \) and we get the desired result. \(\square \)

We prove the following generalized Hyers–Ulam stability problem for \(J^* \)-homomorphisms on \(J^* \)-algebras for the functional equation (1).

Theorem 2.4. Let \(f : A \to B \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\phi : A^{n+1} \to [0, \infty) \) satisfying (7). If there exists an \(L < 1 \) such that
\[
\phi(x_1, x_2, \ldots, x_n, a) \leq n \phi\left(\frac{x_1}{n}, \frac{x_2}{n}, \ldots, \frac{x_n}{n}, \frac{a}{n} \right)
\]
for all \(x_1, \ldots, x_n, a \in A \), then there exists a unique \(J^* \)-homomorphism \(H : A \to B \) such that
\[
\|f(x) - H(x)\| \leq \frac{1}{n(1-L)} \phi(nx, 0, 0, \ldots, 0)
\]
for all \(x \in A \).

Proof. Letting \(\mu = 1, x_1 = x, x_i = 0 \) (2 \(\leq i \leq n \)) and \(a = 0 \) in (7), we obtain
\[
\|nf(x) - f(x)\| \leq \phi(x, 0, \ldots, 0)
\]
for all \(x \in A \). Replacing \(x \) by \(nx \) in (12), we get
\[
\|\frac{1}{n} f(nx) - f(x)\| \leq \frac{1}{n} \phi(nx, 0, \ldots, 0)
\]
for all \(x \in A \). Consider the set \(X := \{g \mid g : A \to B\} \) and introduce the generalized metric on \(X \) as follows:
\[
d(g, h) := \inf \left\{ C \in \mathbb{R}^+ : \|g(x) - h(x)\| \leq C \phi(nx, 0, \ldots, 0), \forall x \in A \right\}.
\]
It is easy to show that \((X,d)\) is a generalized complete metric space \([3, 4]\).

Now we define the linear mapping \(T : X \to X\) by
\[
T(h)(x) = \frac{1}{n} h(nx) \quad \text{for all } x \in A.
\]

It is easy to see that
\[
d(T(g), T(h)) \leq Ld(g, h)
\]
for all \(g, h \in X\). It follows from (13) that
\[
d(f, T(f)) \leq \frac{1}{n} < \infty.
\] (14)
By Theorem 1.1, \(T\) has a unique fixed point in the set
\[
X_1 := \{g \in X : d(f, g) < \infty\}.
\]

Let \(H\) be the fixed point of \(T\). \(H\) is the unique mapping with
\[
H(nx) = nH(x) \quad \text{for all } x \in A,
\]
such that there exists \(C \in (0, \infty)\) satisfying
\[
\|f(x) - H(x)\| \leq C\phi(nx, 0, \ldots, 0)
\]
for all \(x \in A\). On the other hand we have \(\lim_{m \to \infty} d(T^m(f), H) = 0\). It follows that
\[
\lim_{m \to \infty} \frac{1}{n^m} f(n^m x) = H(x)
\] (15)
for all \(x \in A\). Also by Theorem 1.1, we have
\[
d(f, H) \leq \frac{1}{1 - L}d(f, T(f))
\] (16)
It follows from (14) and (16), that
\[
d(f, H) \leq \frac{1}{n(1 - L)}
\]
This implies inequality (11). It follows from (10) that
\[
\lim_{m \to \infty} \frac{1}{n^m} \phi(n^m x_1, n^m x_2, \ldots, n^m x_n, n^m a) = 0
\] (17)
for all \(x_1, \ldots, x_n, a \in A\). By the same reasoning as the proof of Theorem 2.2, One can show that the mapping \(H : A \to B\) is \(C\)-linear. It follows from (7), (15) and (17) that
\[
\|H(aa^* a) - H(a)H(a)^* H(a)\| = \lim_{m \to \infty} \frac{1}{n^m} \|H((n^m a)(n^m a^*)(n^m a))
\]
\[
- H(n^m a)H(n^m a)^* H(n^m a)\|
\]

\[
\leq \lim_{m \to \infty} \frac{1}{n^m} \phi(0, 0, \ldots, n^m a)
\]
\[
\leq \lim_{m \to \infty} \frac{1}{n^m} \phi(0, 0, \ldots, n^m a) = 0
\]
for all \(a \in A\). Thus
\[
H(aa^* a) = H(a)H(a)^* H(a)
\]
for all \(a \in A\). Hence \(H : A \to B\) is a \(J^*\)-homomorphism. \(\square\)

Corollary 2.5. Let \(\theta, p\) be non–negative real numbers such that \(p < 1\). Suppose that a function \(f : A \to B\) satisfies
\[
\|\triangle f(x_1, x_2, \ldots, x_n, a) - \mu f(a)f(a)^* f(a)\| \leq \theta \sum_{i=1}^{n} (\|x_i\|^p + \|a\|^p)
\]
for all $\mu \in T$ and all $x_1, \ldots, x_n, a \in A$. Then there exists a unique J^*-homomorphism $H : A \to B$ such that

$$\|f(x) - H(x)\| \leq \frac{\theta}{n!-1} \|x\|^p$$

for all $x \in A$.

The case in which $p = 1$ was excluded in Corollary 2.5. Indeed this result is not valid when $p = 1$. Here we use Gajda’s example [14] to construct a Counterexample.

Example 2.6. Let $\phi : C \to C$ be defined by

$$\phi(x) := \begin{cases} x & \text{for } |x| < 1; \\ 1 & \text{for } |x| \geq 1. \end{cases}$$

Consider the function $f : C \to C$ to be defined by the formula

$$f(x) := \sum_{n=0}^{\infty} n^{-m}\phi(n^m x)$$

Let

$$D_\mu f(x_1, \ldots, x_n, a) := \mu f(\sum_{i=1}^{n} x_i + a\alpha_n) + \mu \sum_{j=2}^{n} f(\sum_{i=1}^{n} x_i - (n-1)x_j + a\alpha_n) - f(\mu x_1) - \mu f(a)f(a)$$

for all $\mu \in T$ and all $x_1, x_2, \ldots, x_n, a \in C$. Then f satisfies

$$|D_\mu f(x_1, \ldots, x_n, a)| \leq \frac{n^4 + n^3 + 6n^2 - 7n + 2}{(n - 1)^2} \left(\sum_{i=1}^{n} |x_i| + |a|\right)$$

for all $\mu \in T$ and all $x_1, x_2, \ldots, x_n, a \in C$, and the range of $|f(x) - A(x)|/|x|$ for $x \neq 0$ is unbounded for each additive function $A : C \to C$.

Proof. It is clear that f is bounded by $\frac{n}{n+1}$ on C. If $\sum_{i=1}^{n} |x_i| + |a| = 0$ or $\sum_{i=1}^{n} |x_i| + |a| \geq 1$, then

$$|D_\mu f(x_1, \ldots, x_n, a)| \leq \frac{n^4 - n^2 + n}{(n - 1)^3} \leq \frac{n^4 - n^2 + n}{(n - 1)^3} \left(\sum_{i=1}^{n} |x_i| + |a|\right)$$

Now suppose that $0 < \sum_{i=1}^{n} |x_i| + |a| < 1$. Then there exists an integer $k \geq 0$ such that

$$\frac{1}{n^{k+1}} \leq \sum_{i=1}^{n} |x_i| + |a| < \frac{1}{n^k}$$

Therefore

$$n^k \left|\sum_{i=1}^{n} x_i + a\alpha_n\right|, n^k \left|\sum_{i=1}^{n} x_i + a\alpha_n - (n - 1)x_j\right|, n^k |\mu x_1|, n^k |a| < 1$$

for all $j = 2, 3, \ldots, n$ and all $t = 0, 1, \ldots, k - 1$. From the definition of f and (19), we have

$$|f(a)| \leq k|a| + \sum_{m=k}^{\infty} n^{-m} |\phi(n^m a)| \leq k|a| + \frac{n}{n^k(n - 1)}.$$
\begin{align*}
|D_\mu f(x_1, \ldots, x_n, a)| & \leq k|a|^3 + \frac{n(n + 1)}{n^k(n - 1)} + |f(a)|^3 \\
& \leq (k + k^3)|a|^3 + \frac{n^2 + 2n}{n^k(n - 1)} + 3n(n - 1)k^2 + 3n^2k|a| \\
& \leq \frac{(n - 1)^2k^3 + 3n(n - 1)k^2 + ((n - 1)^2 + 3n^2)k|a| + n^2 + 2n}{n^k(n - 1)^2} \\
& \leq \frac{2(n - 1)^2 + 3n(n - 1) + 3n^2}{(n - 1)^2} |a| + \frac{n^3 + 2n^2}{(n - 1)} \left(\sum_{i=1}^{n} |x_i| + |a| \right)
\end{align*}

Therefore \(f \) satisfies (18). Let \(A : \mathbb{C} \to \mathbb{C} \) be an additive function such that

\[
|f(x) - A(x)| \leq \alpha |x|
\]

for all \(x \in \mathbb{C} \), where \(\alpha > 0 \) is a constant. Then there exists a constant \(c \in \mathbb{C} \) such that \(A(x) = cx \) for all rational numbers \(x \). Thus we have

\[
|f(x)| \leq (\alpha + |c|)|x|
\]

for all rational numbers \(x \). Let \(t \in \mathbb{N} \) with \(t > \alpha + |c| \). If \(x \) is a rational number in \((0, n^{1-t}) \), then \(n^m x \in (0, 1) \) for all \(m = 0, 1, \ldots, t - 1 \). Therefore

\[
f(x) \geq \sum_{m=0}^{t-1} n^{-m} \phi(n^m x) = tx > (\alpha + |c|)x
\]

which contradicts (20).

3. Approximation of \(J^* \)-derivations in \(J^* \)-algebras

In this section, we prove the superstability and stability of \(J^* \)-derivations on \(J^* \)-algebras for the functional equation (1).

Theorem 3.1. Let \(\ell \in \{-1, 1\} \) be given and let \(0 \neq |s| \ell > \ell \). Suppose \(f : A \to A \) is a mapping for which \(f(sx) = sf(x) \) for all \(x \in A \). Suppose there exists a function \(\psi : A^{n+1} \to [0, \infty) \) such that

\[
\|\triangle f(x_1, x_2, \ldots, x_n, a) - \mu f(a)a^*a - \mu a f(a)^*a - \mu aa^*f(a)\| \leq \psi(x_1, x_2, \ldots, x_n, a) \tag{21}
\]

for all \(x_1, \ldots, x_n, a \in A \). If there exists an \(L < 1 \) such that

\[
\psi(x_1, x_2, \ldots, x_n, a) \leq \ell|s|\psi\left(\frac{x_1}{s^\ell}, \frac{x_2}{s^\ell}, \ldots, \frac{x_n}{s^\ell}, \frac{a}{s^\ell}\right) \tag{22}
\]

for all \(x_1, \ldots, x_n, a \in A \), then \(f \) is a \(J^* \)-derivation.

Proof. By using equation \(f(sx) = sf(x) \) and (21), we have \(f(0) = 0 \) and

\[
\|\mu f\left(\sum_{i=1}^{n} \frac{x_i}{n}\right) + \mu \sum_{j=2}^{n} f\left(\sum_{i=1, i \neq j}^{n} x_i - \frac{(n - 1)x_j}{n}\right) - f(\mu x_1)\|
\]
It is easy to see that for all \(x \) for all \(\psi \) function \(\text{Theorem 3.3.} \)

\[\|f(aa^*a) - f(a)^*a - af(a)^*a - aa^*f(a)\| \leq |s|^{-3m} \psi(0, 0, \ldots, 0, s^{m^*}a) \]

for all \(x_1, \ldots, x_n, a \in A \) and all integers \(m \). It follows from (22), that

\[\lim_{m \to \infty} |s|^{-m} \psi(s^{m^*}x_1, s^{m^*}x_2, \ldots, s^{m^*}x_n, s^{m^*}a) = 0 \]

for all \(x_1, \ldots, x_n, a \in A \). Hence, we get from (23), (24) and (25) that

\[\mu f(\sum_{i=1}^{n} x_i) + \mu \sum_{j=2}^{n} f(\sum_{i=1, i \neq j}^{n} x_i - (n - 1)x_j) = f(\mu x_1), \]

\[f(aa^*a) = f(a)^*a + af(a)^*a + aa^*f(a) \]

for all \(x_1, \ldots, x_n, a \in A \). Therefore \(f \) is additive and \(f(\mu x) = \mu f(x) \) for all \(\mu \in T \) and \(x \in A \). By the same reasoning as in the proof of Theorem 2.2, one can show that the mapping \(f : A \to A \) is \(C \)-linear, and we conclude that \(f \) is a \(J^* \)-derivation.

Corollary 3.2. Let \(\ell \in \{-1, 1\} \) be given and let \(0 \neq \ell|s| > \ell, \ell p > \ell \) and \(\beta, \epsilon, p \) be non-negative real numbers. Suppose that \(f : A \to A \) is a mapping satisfying \(f(sx) = sf(x) \) for all \(x \in A \), and the following inequality

\[\|\Delta f(x_1, x_2, \ldots, x_n, a) - \mu f(\mu a^*a - \mu af(a)^*a - \mu aa^*f(a)) \|
\]

\[\leq \frac{1 + \ell}{2} \beta + \epsilon \left(\sum_{i=1}^{n} \|x_i\|^p + \|a\|^p \right) \]

for all \(\mu \in T \) and all \(x_1, x_2, \ldots, x_n, a \in A \), then \(f \) is a \(J^* \)-derivation.

Theorem 3.3. Let \(f : A \to A \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\psi : A^{n+1} \to [0, \infty) \) satisfying (21). If there exists an \(L < 1 \) such that

\[\psi(x_1, x_2, \ldots, x_n, a) \leq nL \psi \left(\frac{x_1}{n}, \frac{x_2}{n}, \ldots, \frac{x_n}{n}, a \right) \]

for all \(x_1, \ldots, x_n, a \in A \), then there exists a unique \(J^* \)-derivation \(D : A \to A \) such that

\[\|f(x) - D(x)\| \leq \frac{L}{1 - L} \psi(x, 0, 0, \ldots, 0) \]

for all \(x \in A \).

Proof. It follows from (26) that

\[\lim_{m \to \infty} \frac{1}{m^m} \psi(n^m x_1, n^m x_2, \ldots, n^m x_n, n^m a) = 0 \]

for all \(x_1, \ldots, x_n, a_1, \ldots, a_n \in A \). Consider the set \(X' := \{g : A \to X\} \) and introduce the generalized metric on \(X' \) as follows:

\[d(g, h) := \inf \{C \in \mathbb{R}^+ : \|g(x) - h(x)\| \leq C \psi(x, 0, \ldots, 0), \forall x \in A\} \]

It is easy to show that \((X', d) \) is a generalized complete metric space.

Now we define the linear mapping \(J : X' \to X' \) by \(J(h)(x) = \frac{1}{n} h(nx) \) for all \(x \in A \). It is easy to see that

\[d(J(g), J(h)) \leq Ld(g, h) \]

for all \(g, h \in X' \).
Letting \(\mu = 1, x_1 = x, x_i = 0 \) \((2 \leq i \leq n)\) and \(a = 0 \) in (21), we obtain
\[
\|nf(x_n^N) - f(x)\|_X \leq \psi(x,0,\ldots,0)
\]
for all \(x \in A \). Thus by using (26), we obtain
\[
\|1/nf(nx) - f(x)\|_X \leq 1/n\psi(nx,0,\ldots,0) \leq L\psi(x,0,\ldots,0)
\]
for all \(x \in A \), that is,
\[
d(f,J(f)) \leq L < \infty.
\]
By Theorem 1.1, \(J \) has a unique fixed point in the set \(X_2 := \{ h \in X' : d(f,h) < \infty \} \).
Let \(D \) be the fixed point of \(J \). We note that \(D \) is the unique mapping with \(D(nx) = nD(x) \) for all \(x \in A \), such that there exists \(C \in (0,\infty) \) satisfying
\[
\|f(x) - D(x)\| \leq C\psi(x,0,\ldots,0)
\]
for all \(x \in A \). On the other hand we have
\[
\lim_{m \to \infty} d(J^{mN}(f),D) = 0,
\]
so
\[
\lim_{m \to \infty} \frac{1}{nm} f(n^{mN}x) = D(x)
\]
for all \(x \in A \). Also by Theorem 1.1, we have
\[
d(f,D) \leq \frac{1}{1-L} d(f,J(f))
\]
It follows from (31) and (32), that
\[
d(f,D) \leq \frac{L}{1-L}
\]
This implies inequality (27). By the same reasoning as in the proof of Theorem 2.2, one can show that the mapping \(f : A \to A \) is \(C \)-linear. It follows from (21) and (28) that
\[
\|D(aa^*a) - D(a)a^*a - aD(a)^*a - aa^*D(a)\|
\]
\[
= \lim_{m \to \infty} \frac{1}{nm} \left\| D((n^{mN}a)(n^{mN}a^*)(n^{mN}a)) - D(n^{mN}a)(n^{mN}a)^*(n^{mN}a) - (n^{mN}a)D(n^{mN}a)^*(n^{mN}a) - (n^{mN}a)(n^{mN}a^*)D(n^{mN}a) \right\|
\]
\[
\leq \frac{1}{n^{3m}} \psi(0,0,\ldots,0,n^{mN}a) \leq \frac{1}{n^m} \psi(0,0,\ldots,0,n^{mN}a) = 0
\]
for all \(a \in A \). Therefore
\[
D(aa^*a) = D(a)a^*a + aD(a)^*a + aa^*D(a)
\]
for all \(a \in A \). Hence \(D : A \to A \) is a \(J^* \)-derivation. \(\square \)

Corollary 3.4. Let \(\varepsilon, p \) be non–negative real numbers such that \(p < 1 \). Suppose that a function \(f : A \to A \) satisfies
\[
\|\triangle f(x_1,x_2,\ldots,x_n,a) - \mu f(a)a^*a - \mu af(a)^*a - \mu a^*f(a)\|
\]
for all $\mu \in \mathbb{T}$ and all $x_1, \ldots, x_n, a \in A$. Then there exists a unique J^*-derivation $D : A \to A$ such that

$$
\| f(x) - D(x) \| \leq \frac{n^{p-1} \varepsilon}{1 - n^{p-1}} \| x \|^p
$$

for all $x \in A$.

For the case $p = 1$, similar to the Example 2.6, we have the following counterexample.

Example 3.5. Let $\psi : \mathbb{C} \to \mathbb{C}$ be defined by

$$
\psi(x) := \begin{cases}
 x & \text{for } |x| < 1; \\
 1 & \text{for } |x| \geq 1.
\end{cases}
$$

Consider the function $f : \mathbb{C} \to \mathbb{C}$ to be defined by the formula

$$
f(x) := \sum_{m=0}^{\infty} n^{-m} \psi(n^m x)
$$

Let

$$
D_\mu f(x_1, \ldots, x_n, a) :=
\mu f\left(\frac{\sum_{i=1}^{n} x_i + a\overline{a}}{n}\right)
+ \mu \sum_{j=2}^{n} f\left(\frac{\sum_{i=1, i \neq j}^{n} x_i - (n-1)x_j + a\overline{a}}{n}\right) - f(\mu x_1)
$$

for all $\mu \in \mathbb{T}$ and all $x_1, x_2, \ldots, x_n, a \in \mathbb{C}$. Then f satisfies

$$
|D_\mu f(x_1, \ldots, x_n, a)| \leq \frac{n^3 + n^2 + 7n - 4}{n-1} \left(\sum_{i=1}^{n} |x_i| + |a|\right)
$$

for all $\mu \in \mathbb{T}$ and all $x_1, x_2, \ldots, x_n, a \in \mathbb{C}$, and the range of $|f(x) - A(x)|/|x|$ for $x \neq 0$ is unbounded for each additive function $A : \mathbb{C} \to \mathbb{C}$.

Proof. It is clear that f is bounded by $\frac{n}{n-1}$ on \mathbb{C}. If $\sum_{i=1}^{n} |x_i| + |a| = 0$ or $\sum_{i=1}^{n} |x_i| + |a| \geq 1$, then

$$
|D_\mu f(x_1, \ldots, x_n, a)| \leq \frac{n^2 + (1 + 3|a|^2)n}{(n-1)} \leq \frac{n^2 + (1 + 3|a|^2)n}{(n-1)} \left(\sum_{i=1}^{n} |x_i| + |a|\right)
$$

Now suppose that $0 < \sum_{i=1}^{n} |x_i| + |a| < 1$. Then there exists an integer $k \geq 0$ such that

$$
\frac{1}{n^{k+1}} \leq \sum_{i=1}^{n} |x_i| + |a| < \frac{1}{n^k}
$$

(34)
Therefore
\[n' \sum_{i=1}^{n} x_i + a \sum_{i=1}^{n} x_i + a(a - (n-1)x_j), n'|x_1|, n'|a| < 1 \]
for all \(j = 2, 3, \ldots, n \) and all \(t = 0, 1, \ldots, k - 1 \). From the definition of \(f \) and (34), we have
\[
|f(a)| \leq k|a| + \sum_{m=k}^{\infty} n^{-m} |\psi(n^m a)| \leq k|a| + \frac{n}{n^k(n-1)},
\]
\[
|D_n f(x_1, \ldots, x_n, a)| \leq k|a|^3 + \frac{n(n+1)}{n^k(n-1)} + 3|a|^2 |f(a)|
\]
\[
\leq 4k|a|^3 + \frac{n^2 + n}{n^k(n-1)} + \frac{3n}{n^k(n-1)} |a|^2
\]
\[
\leq \frac{4(n-1)k + 3n}{n^k(n-1)} |a|^2 + \frac{n^2 + n}{n^k(n-1)}
\]
\[
\leq \frac{4(n-1)k + 3n}{n^k(n-1)} |a| + \frac{n^3 + n^2}{n-1} \left(\sum_{i=1}^{n} |x_i| + |a| \right)
\]
\[
\leq \frac{n^3 + n^2 + 7n - 4}{(n-1)} \left(\sum_{i=1}^{n} |x_i| + |a| \right)
\]
Therefore \(f \) satisfies (33). Let \(A : \mathbb{C} \to \mathbb{C} \) be an additive function such that
\[
|f(x) - A(x)| \leq \alpha|x|
\]
for all \(x \in \mathbb{C} \), where \(\alpha > 0 \) is a constant. Then there exists a constant \(c \in \mathbb{C} \) such that \(A(x) = cx \) for all rational numbers \(x \). Thus we have
\[
|f(x)| \leq (\alpha + |c|)|x| \quad (35)
\]
for all rational numbers \(x \). Let \(t \in \mathbb{N} \) with \(t > \alpha + |c| \). If \(x \) is a rational number in \((0, n^{1-t}) \), then \(n^m x \in (0, 1) \) for all \(m = 0, 1, \ldots, t - 1 \). Hence
\[
f(x) \geq \sum_{m=0}^{t-1} n^{-m} \phi(n^m x) = tx > (\alpha + |c|)x
\]
which contradicts (35). \(\square \)

Acknowledgement. The authors would like to extend their thanks to referee for his (her) valuable comments and suggestions which helped simplify and improve the results of paper.
References

Received: July 6, 2010; Accepted: October 12, 2011.