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Abstract. In this work, we present some new fixed point theorems for nonexpansive maps, 1-set
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1. Introduction

Nonexpansive maps appear in many nonlinear problems modeled by Hammerstein
and integral equations arising from mechanics, electricity and population dynamics.
Given a Banach space (E, ‖.‖) and a mapping f : E −→ E, recall that f is called
nonexpansive if ‖f(x) − f(y)‖ ≤ ‖x − y‖, ∀ (x, y) ∈ E2. Although the Banach fixed
point theorem and the Schauder fixed point theorem as developed in [14, 32, 35] cannot
be applied, the fixed point theory for such mappings has attracted much attention
in the last couple of years (see [15, 19, 23, 26] and the references therein). In this
respect, a fundamental existence theorem was discovered in 1965 (see [4, 21, 27]) for
nonexpansive maps f : Q −→ Q where Q is a nonempty, closed, bounded, convex
subset of a uniformly convex Banach space E (see Theorem 2.3). This result was
followed by an intensive research work developed in the rich recent literature; for a
survey of some of these results, we refer the reader to [1, 2, 14, 18, 28] and to references
therein. We should point out that the geometric structure of the Banach space E plays
a decisive role in the development of the existence theory for nonexpansive mappings
(see, e.g., [7, 8, 10, 20]).
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In 1987, Furi and Pera [16] introduced the following boundary condition to replace
f(Q) ⊂ Q in some fixed point theorems where f is a continuous map:

(FP)

 if {(xj , µj)}j≥1 is a sequence in ∂Q× [0, 1]
converging to (x, µ) with x = µf(x) and 0 ≤ µ < 1,
then µjf(xj) ∈ Q for j sufficiently large.

Like the classical Leray-Schauder boundary condition, this condition has recently been
extensively employed to obtain new fixed point theorems (see, e.g., [1, 12, 29]). It
is the aim of this work to complement the existing rich literature by proving some
new fixed point theorems for nonexpansive mappings satisfying (FP) and defined on
closed, convex, not necessarily bounded subsets of general Banach spaces. Indeed, if
Q is a closed, convex, and unbounded subset of a Banach space enjoying the fixed
point property, then it is not true, as the translation map with null vector shows, that
a nonexpansive map T : Q −→ Q has a fixed point. More precisely, Ray [31] proved
that if Q is a closed, convex, unbounded subset of a Hilbert space, then there exist
fixed-point free nonexpansive mappings (see also Sines’s proof in [33]). Moreover, in
[13] and [26], interesting fixed point theorems have been recently obtained in case Q
is not necessarily bounded. The aim of this paper is complement some of these results
and the plan is organized as follows.

Useful ingredients including important notions about retractions, contractions as
well as recent results on nonexpansive maps are first gathered together in Section 2.
Some new fixed point theorems for nonexpansive mappings and 1-set contractions de-
fined in nonempty, closed, convex subsets of Banach spaces are then presented in Sec-
tion 3. For this purpose, a recent compactness argument regarding the approximate
fixed point set is used. Then we prove a fixed point theorem for a 1-set contraction
mapping f satisfying (FP) and such that I − f is demi-closed in a reflexive Banach
space where I is the identity operator. An existence result for nonexpansive maps is
also derived. Comparison with already known results are provided. We end the paper
in Section 4 with a fixed point theorem in a Banach algebra and an application to an
integral equation. This paper is mainly inspired by the recent works by Agarwal et
al [1], Isac-Németh [23], Kaewcharoen-Kirk [26], and the authors [13].

2. Preliminaries

2.1. Basic notions.

Definition 2.1. Let E be a Banach space and B ⊂ PB(E) where PB(E) denotes the
set of all bounded subsets of E. For any subset A ∈ B, define

α(A) = inf {ε > 0 : A =
i=n⋃
i=1

Ωi, diam (Ωi) ≤ ε, ∀ i = 1, . . . , n}.

α is called the Kuratowski measure of noncompactness, α−MNC for brevity.

For more details on the main properties of α − MNC, we refer the reader to
[3, 10]. We point out that of particular importance is the regularity property stating
that α(A) = 0 if and only if A is relatively compact.
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Definition 2.2. Let E1, E2 be two Banach spaces and f : E1 −→ E2 a mapping
which maps bounded subsets of E1 into bounded subsets of E2.

(a) f is called α−Lipschitz with constant k (or a k−set contraction) if there exists
some constant k ≥ 0 such that α(f(A)) ≤ kα(A), for any bounded subset A ⊂ E1.

(b) f is an α−contraction whenever f is an α−Lipschitz with constant 0 < k < 1.

Note that a nonexpansive map is a 1-set contraction (see Lemma 1.1 and Remark
1.5 in [13]). In 1955, G. Darbo [9] proved that if Q is a closed, convex and bounded
subset of a Banach space, then every α−contraction f : Q −→ Q has at least one
fixed point. But this theorem does not apply for 1-set contractions.

Definition 2.3.
(a) A subset A of a Banach space E is a nonexpansive retract of E if there exists a
nonexpansive mapping r : E −→ A such that rx = x for all x ∈ A. The map r is
called a nonexpansive retraction. Using the Minkowski functional (see [32], Lemma
4.2.5, p.27), r may be chosen such that r(x) ∈ ∂A whenever x 6∈ A.

(b) We say that a Banach space E has the nonexpansive retract property (shortly NRP)
if each of its nonempty closed convex subsets is a nonexpansive retract of E.

In a Hilbert space, the ball retraction is nonexpansive (see [10] or [24], Thm. 6.1.4).
The fixed point set of any nonexpansive map f : A −→ A is a nonempty nonexpansive
retract of A (see Bruk [5, 6]). Any uniformly convex Banach space is reflexive [34] and
has the nonexpansive retract property [7, 8, 10]. Recall that a space E is said to be
uniformly convex if for every ε > 0, there exists δ > 0 such that for each (x, y) ∈ E2,
we have

‖x− y‖ ≥ ε, ‖x‖ ≤ 1, ‖y‖ ≤ 1 ⇒
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ.

For instance, Hilbert spaces and Lebesgue spaces Lp(Ω) (1 < p < ∞) are uniformly
convex spaces (see, e.g., [34]).

2.2. Approximate and δ−fixed points. Basic approach to nonexpansive mappings
is through approximation by contractive mappings. The following notation will be
used throughout this paper. Let (E, ‖ · ‖) be a Banach space, Q a nonempty subset
of E, and f : Q −→ E a mapping. Define the set of the approximate fixed points

S = S(f,Q) = {(xn)n∈N ⊂ Q : xn =
(

1− 1
n

)
f(xn), ∀n ∈ N∗}. (2.1)

By the Banach fixed point theorem, it is clear that for each n ∈ N∗, S is nonempty
whenever f is nonexpansive and Q is a nonempty, closed, convex subset. Let A ⊂ E
be a nonempty bounded subset and α the Kuratowski measure of noncompactness.
For some real parameters ε > 0 and c > 0 with 0 < c < α(A) + ε, define the sets (see
[13])

Nε(A) = {(x, y) ∈ A2 : α(A)− ε ≤ ‖x− y‖ ≤ α(A) + ε}. (2.2)

N c
ε (A) = {(x, y) ∈ A2 : c ≤ ‖x− y‖ ≤ α(A) + ε}. (2.3)

We will say that a map f is an α−contraction on Nε(A) if there exists 0 < k < 1
such that α(f(B)) ≤ kα(B) for every subset B with B × B \ ∆B ⊂ Nε(A); here
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∆B = {(x, x), x ∈ B} is the diagonal of B. Finally, for some positive δ and A ⊆ Q,
following Kaewcharoen and Kirk [26] (see also [19], [32]), denote by

Fδ(f,A) = {x ∈ A : ‖x− f(x)‖ ≤ δ}, (2.4)

the set of the δ−fixed points of f in A. Note that if f is bounded, then S(f,Q)
is contained in some δ-fixed point set Fδ(f,Q). For the sake of completeness, recall
that Bruck [6] has proved that Fδ(f,Q) is rectifiably path-wise connected whenever
f : A −→ A is nonexpansive and A is a nonempty bounded convex subset of a Banach
space. The following theorem tells us when this set is nonempty.

Theorem 2.1. Let E be a Banach space, C ⊂ E a nonempty closed convex and
f : C −→ C a nonexpansive mapping. Then for any δ > 0, f has a δ−fixed point in
C.

Indeed, assume that C = B(0, R). Then for any λ ∈ (0, 1), the mapping λf is a
contraction and then admits a fixed point xλ ∈ C. We have

0 ≤ ‖f(xλ)− xλ‖ = ‖f(xλ)− λf(xλ)‖ = (1− λ)‖f(xλ)‖ ≤ (1− λ)R.

The claim then follows by passing to the limit as λ → 1−. As an easy consequence,
we derive

Theorem 2.2. Let C ⊂ E be a closed subset of a Banach space and f : C −→ E a
compact, nonexpansive mapping. Then f has a fixed point in C.

In fact, when we only know that f is compact, continuous but not necessarily
nonexpansive, then the existence of fixed points is equivalent to the existence of
δ−fixed points for each positive δ (see [[14], Proposition 3.1]). However, when f is
nonexpansive, the assumption that f is compact may be removed if the Banach space
has a special geometric structure. The following result has been proved independently
by Browder [4], Göhde [21] and Kirk [27] in 1965 first in case of a Hilbert space and
then in uniformly convex Banach spaces (for the proof, see e.g., either [Theorem 1.3,
[14]] or [Thm. 10.A, [35]] or [17, 18]).

Theorem 2.3. Let Q be a nonempty, closed, bounded, convex subset in a uniformly
convex space E. Then each nonexpansive map f : Q −→ Q has at least one fixed
point.

For the sake of completeness, recall that the assumption that the Banach space E
is uniformly convex space can be relaxed if the nonempty, closed, bounded, convex
subset Q has a normal structure (for the proof, we refer to the above references or
to [25]). Q is said to have a normal structure if for every closed, bounded, convex
subset Q′ ⊂ Q which contains at least two points, there is a point x0 ∈ Q′ such
that supx∈Q′ ‖x− x0‖ < diam (Q′). For instance, every compact, convex subset of a
Banach space has a normal structure.

2.3. On the boundedness of Fδ(f,Q). Let Q be a nonempty closed convex subset
of a Banach space E such that 0 ∈ Q and let f : Q −→ E be a mapping.

Definition 2.4. We say that f has the property (K) if there exists a nonempty,
bounded, closed, convex subset K ⊂ E such that f(K ∩Q) ⊂ K.
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In [26], Kaewcharoen and Kirk obtained some necessary and sufficient condition
for the set Fδ(f,Q) defined in (2.4) to be bounded.

Lemma 2.4. ([26], Lemma 2.1) Suppose f : Q −→ E is asymptotically contractive
([30]) i.e.

lim sup
‖x−y‖→+∞

‖f(x)− f(y)‖
‖x− y‖|

< 1. (2.5)

Then for each δ > 0, Fδ(f,Q) is bounded.

Lemma 2.5. ([26], Lemma 2.2) Suppose f : Q −→ Q is nonexpansive and there
exists δ > 0 such that Fδ(f,Q) is nonempty and bounded. Then there exists p ∈ Q
such that (fn(p))n is a bounded subset of Q.

Lemma 2.6. ([26], Lemma 2.3) Suppose f : Q −→ E is nonexpansive and (fn(p))n

is a bounded subset of Q for some p ∈ Q. Then f satisfies the property (K). In
particular if f(Q) ⊂ Q, then there is a bounded, closed, convex subset of Q which is
mapped into itself by f .

We end this section with a useful result for the sequel.

2.4. A compactness result. Let S be given by (2.1) and define the set

SK = S ∩K, (2.6)

where K is a closed, bounded, convex subset.

Lemma 2.7. ([13], Lemma 3.1) Let E be a Banach space, Q 3 0 a convex, closed
subset of E, and f : Q −→ Q a nonexpansive mapping satisfying the property (K).
Assume that there exist δ0, ε0 > 0 such that for all c ∈ (0, α(SK) + ε0), we have

[Fδ0(f, SK)× Fδ0(f, SK)] ∩N c
ε0

(f, SK) = ∅. (2.7)

Then α(SK) = 0.

Remark 2.1. If we look closely in the proof of this lemma in [13], we notice that
the condition that f maps Q onto itself has only been used to prove that the set SK

is nonempty. Thus if f : Q −→ E and SK 6= ∅, then the conclusion of the lemma
remains true.

Remark 2.2. Even when Fδ(f,Q) is bounded, we do not know whether or not the set
S is bounded; thus we cannot define α(S). To this end we have used the boundedness
of K, which exists by Lemma 2.6, to define α(K ∩ S) and then the set N c

ε (f, SK) for
some c, ε > 0. However the set S is bounded and hence we may take SK = S whenever
either one of the following condition is satisfied:

(a) f(Q) is bounded.
(b) f is a contraction.
(c) f is asymptotically contractive.
(d) f verifies the asymptotic condition ([22]):

lim sup
x∈Q, ‖x‖−→+∞

G(fx, x)
‖x‖2

< 1, (2.8)

where G : E × E −→ R is a map such that
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(G1) G(λx, y) = λG(x, y) for all x, y ∈ E and λ > 0.
(G2) ‖x‖2 ≤ G(x, x) for all x ∈ E.

3. Main results

3.1. Nonexpansive maps with the Furi-Pera condition. In the general setting
of Banach spaces satisfying the NRP, we can state our first existence result. In the
sequel, the closed convex set Q is not required to be bounded.

Theorem 3.1. Let E be a Banach space satisfying the NRP and Q 3 0 a convex closed
subset of E. Let f : Q −→ E be a nonexpansive mapping satisfying the property (K).
Assume that (2.7) both with the Furi-Pera condition hold. Then f has a fixed point
in Q.

Proof.
Step 1. Approximate fixed points for frK . Let r : E −→ Q ∩ K be a nonexpansive
retraction where K is a closed convex subset and, for each n ∈ N∗, consider the
nonlinear equation

x = (1− 1/n)frK(x), (3.1)
where rK = r|K is the restriction of r on the set K and frk = f ◦ rK : K −→ K.
Without loss of generality, assume that 0 ∈ K ∩ Q. Indeed, in case 0 /∈ K, one
may take any p ∈ K ∩ Q and instead of equation (3.1) rather consider the equation
x = (1−1/n)frK(x)+p/n, n ∈ N∗. Now, since f(K∩Q) ⊂ K and rK : K −→ K∩Q
we have that frK : K −→ K. By convexity of K and the fact that p ∈ K ∩Q ⊂ K,
we deduce that for all x ∈ K, (1 − 1/n)frK(x) + p/n ∈ K. Also, since f and r
are nonexpansive, then for each n ∈ N∗, the mapping fn : K −→ K defined by
fn(x) = (1− 1/n)frK(x) + p/n is a contraction. By the Banach fixed point theorem,
for each n ∈ N∗, fn admits a unique fixed point xn ∈ K. This implies that the equation
(3.1) has a unique solution xn for each n ∈ N∗.

Step 2. Approximate fixed points for f. Our aim now is to prove that, for each n ∈ N∗,
the equation

x = (1− 1/n)f(x) (3.2)
has a solution. For this, it is enough to prove that the sequence (xn)n lies in Q where,
for each n ∈ N∗, xn is a solution of the equation (3.1). Arguing by contradiction,
assume that (xn)n 6⊂ Q. Let xn0 6∈ Q for some n0 ∈ N∗. Since Q is closed, there
exists 0 < δ < dist(xn0 , Q). Following the proof of [[1], Thm. 5.10], choose an integer
N ∈ N∗ such that N > 1/δ; then, for all integer i ≥ N , consider the open set
Ui = {x ∈ E : d(x,Q) < 1

i }. It is clear that dist(xn0 , Q) > δ and 1/i < δ imply
that xn0 /∈ U i. In addition, for each i ≥ N , Ui ∩ K 6= ∅ because Q ∩ K ⊂ Ui ∩ K
and, by definition, Q ∩K 6= ∅. Thus, the mapping (1− 1/n0)frK : U i −→ K is well
defined and it is further a contraction; in addition (1−1/n0)frK(U i) is bounded since
rK(U i∩K) ⊂ Q∩K and, by the property (K), f(Q∩K) ⊂ K with K bounded. Since
xn0 /∈ U i, a nonlinear alternative (Theorem 3.2 of [1]) guarantees that there exists
(yi, µi) ∈ ∂Ui × (0, 1) such that yi = µi(1− 1/n0)frK(yi). Note that since xn0 /∈ U i,
then the map (1− 1/n0)fr has no fixed point in U i. As a consequence

µi(1− 1/n0)frK(yi) /∈ Q, ∀ i ≥ N. (3.3)
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Now define the set

Dn0 = {x ∈ E : ∃µ ∈ [0, 1], x = µ(1− 1/n0)frK(x)}.

Dn0 is nonempty because it contains 0, xn0 and yi, for all i ≥ N. Moreover, the set
Dn0 is compact. Indeed

Dn0 ⊆ co ((1− 1/n0)frK(Dn0) ∪ {0})

yields that
α(Dn0) ≤ α (co((1− 1/n0)frK(Dn0) ∪ {0})) ,

where α is the Kuratowski MNC. However, since f and r are nonexpansive, then we
have the estimates

α(Dn0) ≤ α(co
(
(1− 1/n0)frK(Dn0)

)
≤ (1− 1/n0)α(rK(Dn0))
≤ (1− 1/n0)α(Dn0).

Then α(Dn0) = 0 yielding that Dn0 is compact since it is closed. Now, for each
i ≥ N and 0 ≤ µi ≤ 1, we have that d(yi, Q) = 1

i since yi ∈ ∂Ui ∩ Dn0 . Then, up
to a subsequence, µi −→ µ∗ ∈ [0, 1] and, by the compactness of Dn0 , yi −→ y∗ ∈ Q,
as i → +∞. Moreover yi = µi(1 − 1/n0)frK(yi) tends to µ∗(1 − 1/n0)frK(y∗) by
continuity. Hence y∗ = µ∗(1− 1/n0)frK(y∗). In addition xn0 /∈ Q yields that µ∗ 6= 1,
otherwise we have by uniqueness y∗ = xn0 , which is a contradiction. Therefore
0 ≤ µ∗ < 1. Finally rK(yi) ∈ ∂Q follows from yi /∈ Q and the definition of the
retraction r. In addition y∗ = rK(y∗) and µ′i = (1 − 1/n0)µj , µ′ = (1 − 1/n0)µ∗.
Since f satisfies the Furi-Pera condition, we infer that µi(1− 1/n0)frK(yi) ∈ Q for i
sufficiently large. This contradicts (3.3) and the fact that yi /∈ Q, for i ≥ N.

Thus, for each n ∈ N∗, xn ∈ Q ∩ K. Hence rK(xn) = xn and xn = (1 −
1/n)frK(xn) = (1 − 1/n)f(xn). To sum up, we have proved that the equation
xn = (1− 1/n)f(xn) has a solution for each n ∈ N∗.

Step 3. Passing to the limit. It remains to prove that the sequence (xn)n, where xn

is a solution of equation (3.2), is convergent. Let SK = {xn ∈ Q ∩ K : xn =
(1 − 1/n)f(xn), ∀n ∈ N} = S ∩K. Owing to Steps 1, 2, the set SK is a nonempty
bounded set. Lemma 2.7 (see also Remark 2.1) both with (2.7) imply that the set
SK is compact, hence sequentially compact. Therefore we can extract a sequence
converging to x. Finally, by continuity of f , we obtain that x is a fixed point of f. �

Remark 3.1. With the condition (2.7), Theorem 3.1 extends a result obtained in
[[1], Thm. 5.11] for E a Hilbert space and Q ⊂ E a bounded subset. Moreover let us
mention that (2.7) allows us to obtain [[1], Thm. 5.10] for nonexpansive maps instead
of k−set contractions with 0 ≤ k < 1 (see Theorem 3.3 below).

3.2. The case of 1-set contractions. We have

Theorem 3.2. Let E be a Banach space satisfying the NRP and Q 3 0 a convex
closed subset. Let f : Q −→ E be a continuous 1-set contraction map satisfying the
property (K) and the (FP) condition. Assume that there exists ε0 > 0 such that f is
an α−contraction on Nε0(SK). Then f has a fixed point in Q.
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Proof. Let r : E −→ Q ∩ K be a nonexpansive retraction and, for each n ∈ N∗,
consider the equation

x = (1− 1/n)frK(x), (3.4)
where rK = r|K is the restriction of r on the set K. Since r is nonexpansive and f is a
1-set contraction satisfying the property (K), then the map (1− 1/n)frK : K −→ K
is a (1− 1/n)−set contraction. By Darbo’s fixed point theorem [9], for every n ∈ N∗,
(3.4) has at least one solution xn. Then, for every fixed n ∈ N∗, consider the nonempty
set Sn = {x ∈ E : x = (1 − 1/n)frK(x)}. Clearly Sn is closed and even compact;
indeed

α(Sn) ≤ (1− 1/n0)α(rK(Sn)) ≤ (1− 1/n0)α(Sn).
Hence we may choose δ < dist(Q,Sn), N > 1/δ and follow the proof of Theorem
3.1 to prove, by contradiction, that Q ∩ Sn 6= ∅. The only difference is that here, we
rather apply [[1], Thm. 5.7] instead of [[1], Thm. 3.2]. By picking one xn ∈ Q ∩ Sn,
for each n ∈ N∗, we then construct in this way a sequence (xn)n∈N ⊂ Q such that

xn = (1− 1/n)f(xn), ∀n ∈ N∗,
yielding that S 6= ∅, where S = (xn)n. According to the proof of [[13], Thm. 3.5], we
obtain that α(SK) = 0, where SK = S ∩ K. Consequently SK is compact; then we
may extract from (xn)n a sequence converging to some limit x. By continuity of f,
we deduce that f has at least one fixed point, as claimed. �

Remark 3.2. In Theorem 3.2, we have considered 1-set contractions which are α-
contractions on some subset of Banach spaces with the NRP; this theorem could be
compared with the following result.

Theorem 3.3. ([1], Thm. 5.10, p.59) Let X be a Hilbert space, Q 3 0 a closed,
convex subset of X, and let f : Q −→ E be a continuous k−contraction with 0 ≤ k < 1.
Assume that f(Q) is a bounded set in E and that the Furi-Pera condition holds. Then
f has at least one fixed point in Q.

3.3. The case I − f is demi-closed. First we start with

Definition 3.1. Let A be a subset of a Banach space E. A mapping g : A −→ E is
said to be demi-closed if for any y ∈ E and any sequence (xn)n∈N ⊂ A, the condition
(xn) converges weakly to x and ‖g(xn)− y‖ → 0 imply that x ∈ A and g(x) = y.

When Q is a closed, convex, and bounded subset of a Banach space, the following
special existence result has been proved by O’Regan in [[29], Thm. 2.9]:

Theorem 3.4. Let (E, ‖ · ‖) be a Banach space and Q 3 0 a convex closed bounded
subset. Let f : Q −→ E be a 1-set contraction with (I−f)(Q) closed. If the Furi-Pera
condition holds, then f has a fixed point.

Now, we state and prove our final existence result in which again Q is an arbitrary
closed convex subset and (I − f)(Q) closed is replaced by I − f demi-closed.

Theorem 3.5. Let (E, ‖ · ‖) be a reflexive Banach space satisfying the NRP and
Q 3 0 a convex closed subset of E. Let f : Q −→ E be a 1-set contraction with I − f
demi-closed. If the Furi-Pera condition and the property (K) are satisfied, then f has
a fixed point.
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Proof. Let r : E −→ Q ∩ K be a nonexpansive retraction and, for each n ∈ N∗,
consider the equation

x = (1− 1/n)frK(x), (3.5)

where rK = r|K is the restriction of r on the set K. Without loss of generality, assume
that 0 ∈ K ∩ Q. Indeed, in case 0 /∈ K, one may take any p ∈ K ∩ Q and, instead
of equation (3.5), rather consider the equation x = (1 − 1/n)frK(x) + p/n, n ∈ N∗
instead. Now, since f(K ∩Q) ⊂ K and rK : K −→ K ∩Q, we have that frK : K −→
K. By convexity of K and the fact that p ∈ K ∩ Q ⊂ K, we deduce that for every
x ∈ K, we have that (1− 1/n)frK(x) + p/n ∈ K. Also, since f is a 1-set contraction
and r is nonexpansive, then for each n ∈ N∗, the mapping fn : K −→ K defined by
fn(x) = (1−1/n)frK(x)+p/n is an α−contraction with constant 1−1/n. By Darbo’s
fixed point theorem [9], fn admits at least one fixed point xn ∈ K. This implies that
the equation (3.5) has a solution for each n ∈ N∗. Arguing as in the proof of Theorem
3.2, we can prove that for each n ∈ N∗, the equation

x = (1− 1/n)f(x) (3.6)

has at least one solution. Finally, since (xn)n ⊂ K, K is bounded, and E is reflexive,
then up to a subsequence, xn ⇀ x, as n → +∞. Since I − f is demi-closed, we
conclude that the equation x = f(x) has a solution, proving the theorem. �

Since nonexpansive maps are 1-set contractions, from Theorem 3.5, we infer the
following one:

Corollary 3.6. Let (E, ‖ · ‖) be a reflexive Banach space satisfying the NRP and
Q 3 0 a convex closed subset. Let f : Q −→ E be a nonexpansive map with I − f
demi-closed and such that (FP) and the property (K) hold. Then f has a fixed point.

Remark 3.3. Corollary 3.6 may be compared with the following recent result by Isac
and Németh. Indeed we have replaced the stronger condition F (Q) ⊂ Q by (FP) and
the condition (2.8) is dropped and substituted by the weaker property (K) (see Lemmas
2.4, 2.5, 2.6).

Theorem 3.7. ([23], Thm. 3.1) Let (E, ‖.‖) be a reflexive Banach space and Q ⊆ E a
nonempty unbounded closed convex set with 0 ∈ Q. Let f : Q −→ E be a nonexpansive
map such that f(Q) ⊂ Q and I − f is demi-closed. If f satisfies the condition (2.8),
then f has a fixed point.

Remark 3.4. Note that if the Banach space E were uniformly convex, then I − f
demi-closed follows from f : Q −→ E nonexpansive, whenever Q ⊂ E is any closed,
bounded, convex subset (F. Browder’s demi-closedness principle [4]) (see also [Prop.
10.9, [35]]). In this case, we need not to assume that I − f is demi-closed.

4. Applications

We begin with
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Definition 4.1. Let E be a Banach space and f : E −→ E a mapping. f is
called D−Lipschitzian with D−function φf if there exists a continuous nondecreasing
function φf : R+ −→ R+ such that φf (0) = 0 and

‖f(x)− f(y)‖ ≤ φf (‖x− y‖), ∀ (x, y) ∈ E2.

In particular, if φf (r) = kr for some constant 0 < k < 1, then f is a contraction.

4.1. A fixed point theorem in Banach algebras.

Theorem 4.1. Let Q 3 0 be a convex, closed, bounded subset of a Banach algebra E
and let A,B : Q −→ E be two mappings satisfying

(a) A is D−Lipschitzian with D−function φA.
(b) B is completely continuous.
(c) AB(Q) is bounded and AB satisfies the Furi-Pera condition.
Then f = AB satisfies the property (K) and the equation x = AxBx has a solution
whenever MφA(r) ≤ r, ∀ r > 0 and MφA(r) < r, ∀ r ∈ (0, α(SK) + ω], for some
ω > 0. Here M := ‖B(Q)‖ and SK is as defined in (2.6).

Proof. According to the proof of [[13], Lemma 4.1], the mapping f = AB is a contin-
uous 1-set contraction. Similarly, we can see that f is an α−contraction on Nω(SK),
since MφA(r) < r, ∀ r : 0 < r ≤ α(SK)+ω. Applying Theorem 3.2, we conclude that
the map AB has a fixed point. �

Theorem 4.1 improves [[12], Theorem 3.1] and a similar result obtained in [11]. As
a result, the following example of application is a slight improvement of [[12], Example
2].

4.2. An integral equation. (a) Consider the Banach space

X = C0(R, R) = {x ∈ C(R, R), lim
|t|→+∞

x(t) = 0}

endowed with the sup-norm

‖x‖X = sup
t∈R

{|x(t)|}.

Let a continuous function f : [0, 1]× R −→ R satisfy

|f(s, x)− f(s, y)| ≤ θ(|x− y|), s ∈ [0, 1],

where

θ(r) ≤ r, ∀ r > 0 and θ(r) < r, ∀ r ∈ (0, α(SK) + ω), for some ω > 0.

In [12], this latter condition on θ was assumed for every positive real number r.
(b) Let Ax(t) = f(t, x(t)) be the Nemytskii operator and B the mapping defined by

Bx(t) =
∫ +∞

−∞
G(t, s)h

(
s, x(s)

)
ds,

where the nonlinear function h : R2 −→ R is continuous and verifies the growth
condition:

|h(t, x)| ≤ q(t)Ψ(|x|), ∀ t, x ∈ R (4.1)
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where q ∈ C0(R, R+) ∩ L1(R, R+) and Ψ : R+ −→ R+ is a continuous nondecreasing
function. We assume that the kernel G : R2 −→ R is continuous and satisfies

∃ % > 0, σ > 0, |G(t, s)| ≤ % exp−σ|t−s|, ∀s, t ∈ R, (4.2)

with 2%
σ ‖q‖1Ψ(R) ≤ 1. We can show that B is completely continuous (see the proof

of [[12], Thm. 2.1] for the details). Finally, consider the bounded, closed and convex
subset of X :

Ω = {x ∈ X : ‖x‖ ≤ R},
where the positive constant R is to be selected later on.
(c) Assume that for any compact subset K ⊂ R, there exists a positive constant
MK > 0 such that for any x ∈ X and λ ∈ [0, 1)

x = λAxBx =⇒ (|x(t)| ≤ MK , ∀ t ∈ K). (4.3)

(d) The mapping F satisfies the Furi-Pera condition. Indeed, let (xj , λj) ∈ ∂Ω× [0, 1]
be a sequence such that, as j → +∞, λj −→ λ and xj −→ x with λF (x) = x
and 0 ≤ λ < 1. We show that λjF (xj) ∈ Ω where F (xj) = AxjBxj . Since Ψ is
nondecreasing, we get

|Bx(t)| ≤ Ψ(R)
∫ +∞

−∞
G(t, s)q(s)ds := γ(t).

Moreover, for each j, we have

‖λiF (xj)‖ ≤ ‖Axj‖ · ‖Bxj‖

≤ (θ(‖xj‖) + ‖f(·, 0)‖) γ(t),

≤ (R + ‖f(·, 0)‖) γ(t).

Since lim
t→±∞

γ(t) = 0, there exist some t1, t2 (t1 < t2) and a sufficiently small positive

constant M1 > 0 such that

‖λjF (xj)(t)‖ ≤ M1, ∀ t ∈ (−∞, t1) ∪ (t2,+∞). (4.4)

In addition, for t ∈ K = [t1, t2] and (xj)j∈N ⊂ ∂S, the sequence (xj)j∈N converges to
x = λF (x) uniformly, as j → +∞. Then for j large enough and t ∈ K, we have, from
conditions (4.3) and (4.4), the estimate

‖λjF (xj)(t) ≤ λ|F (x)(t)|+ 1
2
≤ MK +

1
2
· (4.5)

Combining (4.4) and (4.5) and taking R = max(M1,MK+ 1
2 ), we arrive at the estimate

‖λjF (xj)(t)‖ ≤ R, ∀ t ∈ R, ∀ j ∈ N,

showing that the Furi-Pera condition is fulfilled.
(e) We have that Mφ(r) ≤ ‖q‖1Ψ(R)θ(r) ≤ θ(r), ∀ r > 0 because 2%

σ ‖q‖1Ψ(R) ≤ 1.
Therefore all conditions of Theorem 4.1 are met, which implies that the nonlinear
equation

(f(t, x(t)))
(∫ +∞

−∞
G(t, s)h

(
s, x(s)

)
ds

)
= x(t), t ∈ R
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admits at least one solution x ∈ C0(R, R).
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