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1. Introduction

Fixed point theory is an important and actual topic of nonlinear analysis. Then, for
the most important contributions on the metric and non-metric setting, the reader
can refer Goebel and Kirk [12], Kirk and Sims [17] (and the references therein), Kirk
and Kang [16] and Rus et al. [20]. Let B be an ordered linear space with a cone K
and a class of convergent sequences in B. For more details on convergence structures
one can consider Zabrejko [23] and De Pascale, Marino and Pietramala [7].

Here, we start by the following definition.

Definition 1.1 Let X be a nonempty set. Suppose that the mapping d : X×X → B
satisfies:

(i) θ 6 d(x, y), for all x, y ∈ X, and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) 6 d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a cone metric (also a K-metric ) on X, and (X, d) is called a cone

metric space (also a K-metric space).

A sequence {xn} ⊂ X, is called convergent, if there exists an element x ∈ X such
that the sequence {d(xn, x)} is convergent to θ in the space B. Zabrejko [23] presented
a very interesting revised version of the fixed point theory in K-metric and K-normed
linear spaces and gave three fixed point theorems that cover numerous applications,
e.g. in numerical methods and theory of integral equations (see also [18]). Clearly
one can formulate specializations of these results for special types of K-metric. For
more considerations on K-metric spaces, for example in terms of the weakly Picard
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operators, the reader can see [21]. In [21] the authors have also considered K-metrics
induced by a functional.

Huang and Zhang [13] recently have considered cone metric space, where the set
of real numbers is replaced by an ordered Banach space E with a class of convergent
sequences. They have established some fixed point theorems for contractive type
mappings in a normal cone metric space. Subsequently, other authors [1, 3, 4, 8, 9,
10, 15, 19, 22] have generalized the results of Huang and Zhang [13] and have studied
the existence of common fixed points of a pair of self mappings satisfying a contractive
type condition in the framework of cone metric spaces.

It is natural to ask the following question: given a cone metric space (X, d), is it
possible to define a metric ρ on X such that (X, d) and (X, ρ) have the same class of
convergent sequences?

A positive response was given recently by Du [10], that has investigated the equiv-
alence of vectorial versions of fixed point theorems in cone metric spaces and scalar
versions of fixed point theorems in metric spaces. Du showed that the Banach contrac-
tion principles in metric spaces and in cone metric spaces are equivalent, associating
to every cone metric a metric with the same class of convergent sequences. Succes-
sively, also Feng and Mao [11] have investigated the equivalence of cone metric spaces
and metric spaces.

It’s well known that the contraction mapping principle, formulated and proved in
the Ph. D. dissertation of Banach in 1920, which was published in 1922, is one of the
most important theorems in classical functional analysis.

Ćirić [5] first introduced the notion of quasi-contractions and proved fixed point
theorem for this class of mappings. Successively Ćirić’s result was extended to non-
linear quasi-contractions by Ivanov [14] and Arandelović et al. [2].

In this paper we obtain points of coincidence and common fixed points for two self
mappings satisfying a nonlinear contractive condition of Ćirić type. As application,
using the scalarization method of Du, we deduce a result of common fixed point in
cone metric spaces.

2. Preliminaries

By Ψ we denote the set of real functions ψ : [0,+∞[→ [0,+∞[ which have the
following properties:

(i) ψ is nondecreasing;
(ii) ψ(0) = 0;
(iii) limx→+∞(x− ψ(x)) = +∞;
(iv) limt→r+ ψ(t) < r for all r > 0.

Remark 2.1 From (iv) and ψ(r) ≤ limt→r+ ψ(t) < r, we deduce that ψ(r) < r for
all r > 0. Furthermore (i) and (iv) imply that limn→+∞ ψn(r) = 0 for all r > 0.

In this section we prove some results of common fixed point for ψ-quasi-
contractions. Let (X, d) be a metric space and f, g : X → X be mappings, f and g
are a ψ-quasi-contraction if there exists ψ : [0,+∞[→ [0,+∞[ such that

d(fx, fy) ≤ max{ψ(d(gx, gy)), ψ(d(fx, gx)), ψ(d(fy, gy)), ψ(d(gx, fy)), ψ(d(fx, gy))},
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for all x, y ∈ X.
Suppose f(X) ⊂ g(X). For every x0 ∈ X we consider the sequence {xn} ⊂ X de-

fined by gxn = fxn−1 for all n ∈ N, we say that {fxn} is a f -g-sequence of initial point
x0. Define On(x0) = {gx0, fx0, fx1, . . . , fxn}, O(x0) = {gx0, fx0, fx1, . . . , fxn, . . .}.

The self-mappings f, g on X are said to be weakly compatible if they commute at
their coincidence point (i.e. fgx = gfx whenever fx = gx).

Theorem 2.2 Let (X, d) be a metric space and let f, g : X → X be such that
f(X) ⊂ g(X). Suppose that f and g are a ψ-quasi-contraction with ψ ∈ Ψ. If f(X)
or g(X) is a complete subspace of X and f and g are weakly compatible, then the
mappings f and g have a unique common fixed point in X. Moreover for any x0 ∈ X,
the f-g-sequence {fxn} of initial point x0 converges to the fixed point.

Proof. Let x0 ∈ X be fixed. As f(X) ⊂ g(X), one can choose a f -g-sequence {fxn}
of initial point x0. Now we prove that O(x0) is bounded. To this end, we show that
for each n ≥ 1 there exists 0 ≤ k ≤ n, such that δ(On(x0)) = d(gx0, fxk). Since f
and g are a ψ-quasi-contraction with ψ ∈ Ψ, for every 0 ≤ i, j ≤ n, we have

d(fxi, fxj) ≤ ψ(δ(On(x0))) < δ(On(x0)).

This implies that δ(On(x0)) = d(gx0, fxk), for some 0 ≤ k ≤ n.
By property (iii) of the function ψ there is a c > h = d(gx0, fx0), such that

x− ψ(x) > h, for all x > c. So we obtain that for each n ≥ 1:

δ(On(x0)) = d(gx0, fxk) ≤ h+ d(fx0, fxk) ≤ h+ ψ(δ(On(x0))).

Therefore
δ(On(x0))− ψ(δ(On(x0))) ≤ h

for n = 1, 2, . . . , and, consequently, the set O(x0) is bounded.
Define O(fxk) = {fxk, . . . , fxn, . . .} for every k ≥ 1. Obviously δ(O(fxk)) ≤

ψ(δ(O(fxk−1))). Consequently

δ(O(fxk)) ≤ ψk(δ(O(fx0))),

and, hence, the f -g-sequence {fxn} of initial point x0 is a Cauchy sequence.
Suppose that f(X) is a complete subspace of X, then there exists y ∈ f(X) ⊂ g(X)

such that fxn → y and also gxn → y. (This holds also if g(X) is complete with y ∈
g(X)). Let z ∈ X be such that gz = y. We show that fz = gz. If d = d(fz, gz) > 0,
then for n sufficiently large, we have

d(gxn, gz), d(gxn, fxn), d(gz, fxn) ≤ d.

From

d(fxn, fz) ≤ max{ψ(d(gxn, gz)),ψ(d(gxn, fxn)),

ψ(d(fz, gz)), ψ(d(gxn, fz)), ψ(d(gz, fxn))},

we deduce that

d(fxn, fz) ≤ max{ψ(d(gz, fz)), ψ(d(fxn−1, fz))}
= ψ(max{d(gz, fz), d(fxn−1, fz)}).
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As n→ +∞, max{d(gz, fz), d(fxn−1, fz)} → d+, and so

d(gz, fz) = lim
n→+∞

d(fxn, fz)

≤ lim
n→+∞

ψ(max{d(gz, fz), d(fxn−1, fz)})

< d(gz, fz),

which is a contradiction. Therefore fz = gz.
Now, we show that y is a common fixed point for f and g. Since f and g are weakly

compatible we deduce that

fy = fgz = gfz = gy.

If fy 6= y from

d(fy, fz) ≤ max{ψ(d(gy, gz)), ψ(d(gy, fy)), ψ(d(gz, fz)), ψ(d(gy, fz)), ψ(d(fy, gz))}
= ψ(d(fy, fz)) < d(fy, fz),

which is a contradiction, we deduce that fy = gy = y. The uniqueness of the common
fixed point is immediate from the definition of ψ-quasi-contraction. �

Now, we denote with Φ the set of real functions ϕ : [0,+∞[→ [0,+∞[ which have
the following properties:

(i) ϕ(0) = 0;
(ii) ϕ(r) < r for all r > 0;
(iii) lim supt→r ϕ(t) < r for all r > 0;
(iv) limx→+∞(x− ϕ(x)) = +∞.

Remark 2.3 (Lemma 1, [2]) If ϕ ∈ Φ, then the function ψ : [0,+∞[→ [0,+∞[ defined
by ψ(x) = sup

t∈[0,x]

ϕ(t) ∈ Ψ.

From Theorem 2.2 we obtain the following corollary.

Corollary 2.4 Let (X, d) be a metric space and let f, g : X → X be such that
f(X) ⊂ g(X). Suppose that f and g are a ψ-quasi-contraction with ψ ∈ Φ. If f(X)
or g(X) is a complete subspace of X and f and g are weakly compatible, then the
mappings f and g have a unique common fixed point in X. Moreover for any x0 ∈ X,
the f-g-sequence {fxn} of initial point x0 converges to the fixed point.

Remark 2.5 If in Theorem 2.2 and Corollary 2.4 we choose g = IdX , the identity
mapping on X, we obtain Theorems 1-2 of Arandelović et al. [2].

3. Nonlinear quasi-contractions in cone metric space

We recall the definition of cone metric space and the notion of convergence intro-
duced by Huang and Zhang [13]. Let E be a real Banach space and P be a subset of
E. The subset P is called an order cone if it has the following properties:

(i) P is non-empty, closed and P 6= {θ};
(ii) 0 6 a, b ∈ R and x, y ∈ P ⇒ ax+ by ∈ P ;
(iii) P ∩ (−P ) = {θ}.
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For a given cone P ⊆ E, we can define a partial ordering 6 on E with respect to
P by x 6 y if and only if y − x ∈ P . We shall write x < y if x 6 y and x 6= y, while
x� y will stands for y − x ∈ IntP , where IntP denotes the interior of P.

In the following we always suppose that E is a real Banach space and P is an order
cone in E with IntP 6= ∅ and 6 is the partial ordering with respect to P.

Definition 3.1 Let X be a non-empty set. Suppose that the mapping d : X×X → E
satisfies:

(i) θ 6 d(x, y), for all x, y ∈ X, and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) 6 d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Huang and Zhang have defined convergence in terms of interior points of P . Let
{xn} be a sequence in X, and x ∈ X. If for every c ∈ E with θ � c, there is
n0 ∈ N such that for all n ≥ n0, d(xn, x) � c, then {xn} is said to be convergent,
{xn} converges to x and x is the limit of {xn} . We denote this by limn→+∞xn = x,
or xn →c x, as n→ +∞. If for every c ∈ E with θ � c there is n0 ∈ N such that for
all n,m ≥ n0, d(xn, xm) � c, then {xn} is called a Cauchy sequence in X. If every
Cauchy sequence is convergent in X, then X is called a complete cone metric space.

Let (X, d) be a cone metric space. In [10] Du have defined on X a metric ρ with
the property that the class of convergent sequence in (X, d) is the same in (X, ρ). He
considered the nonlinear scalarization ξe : E → R, where e ∈ IntP is fixed, defined as
follows:

ξe(y) = inf{r ∈ R : y ∈ re− P}, for all y ∈ E.
In the following lemma are resumed the properties of the function ξe.

Lemma 3.2 (Lemma 1.1, [10]) For each r ∈ R and y ∈ E, the following statements
are satisfied:

(i) ξe(y) ≤ r ⇔ y ∈ re− P ;
(ii) ξe(y) > r ⇔ y /∈ re− P ;
(iii) ξe(y) ≥ r ⇔ y /∈ re− IntP ;
(iv) ξe(y) < r ⇔ y ∈ re− IntP ;
(v) ξe(·) is positively homogeneous and continuous on E;
(vi) if y2 ≤ y1, then ξe(y2) ≤ ξe(y1);
(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2).

Let (X, d) be a cone metric space and let ρ : X × X → R defined by ρ = ξe ◦ d.
The following results are consequences of Lemma 3.

Theorem 3.3 (Theorem 2.1, [10]) Let (X, d) be a cone metric space. Then ρ = ξe ◦ d
is a metric on X.

From the proof of Theorem 2.2 of [10], we deduce the following theorem.

Theorem 3.4 Let (X, d) be a cone metric space, e ∈ IntP , ρ = ξe ◦d, {xn} ⊂ X and
x ∈ X. Then
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(i) xn →c x⇔ ρ(xn, x) → 0;
(ii) xn is a Cauchy sequence in (X, d) if and only if xn is a Cauchy sequence in

(X, ρ);
(iii) (X, d) is a complete cone metric space if and only if (X, ρ) is a complete

metric space.

Now we denote with ΦP the set of all functions ϕ : P → P which have the following
properties:

(i) ϕ(θ) = θ;
(ii) ϕ(t) � t for all t ∈ IntP ;
(iii) limt→+∞[ξe(te)− ξe(ϕ(te))] = +∞ for some e ∈ IntP ;
(iv) if xn → x, xn, x ∈ IntP , then there exists λ(x) ∈ ]0, 1[ and n0 ∈ N such that

ϕ(xn) ≤ λ(x)x for all n ≥ n0.

Let (X, d) be a cone metric space and f, g : X → X be mappings, f and g are a
ϕ-quasi-contraction if there exists ϕ : P → P such that for all x, y ∈ X

d(fx, fy) ≤ u,

where

u ∈ {ϕ(d(gx, gy)), ϕ(d(fx, gx)), ϕ(d(fy, gy)), ϕ(d(gx, fy)), ϕ(d(fx, gy))}. (3.1)

Theorem 3.5 Let (X, d) be a cone metric space and f, g : X → X be such that
f(X) ⊂ g(X). Suppose that f and g are a ϕ-quasi-contraction with ϕ ∈ ΦP . If f(X)
or g(X) is a complete subspace of X and f and g are weakly compatible, then the
mappings f and g have a unique common fixed point in X. Moreover for any x0 ∈ X,
the f-g-sequence {fxn} of initial point x0 converges to the fixed point.

Proof. We choose e ∈ IntP such that limt→+∞[ξe(te)− ξe(ϕ(te))] = +∞. Define ψ :
[0,+∞[→ [0,+∞[ as ψ(t) = ξe(ϕ(te)). The function ψ has the following properties:

(i) ψ(0) = 0;
(ii) ψ(t) = ξe(ϕ(te)) < t by (iv) of Lemma 3.2;
(iii) limt→+∞[t− ψ(t)] = limt→+∞[ξe(te)− ξe(ϕ(te))] = +∞;
(iv) If tn → r, r, tn > 0, then there exists λ(r) ∈ ]0, 1[ and n0 ∈ N such that

ϕ(tne) ≤ λ(r)re for all n ≥ n0 and hence ψ(tn) = ξe(ϕ(tne)) ≤ ξe(λ(r)re) = λ(r)r.
Consequently, lim supt→r ψ(t) < r.

Then ψ ∈ Φ. Now, in the metric space (X, ρ) the mappings f and g are a ψ-quasi-
contraction. In fact, from

d(fx, fy) ≤ u,

where u satisfies (3.1), we deduce that

ρ(fx, fy) = ξe(d(fx, fy)) ≤ ξe(u),

where u satisfies (3.1). This assures that f and g are a ψ-quasi-contraction. We note
that, by Theorem 3.4, f(X) or g(X) is a complete subspace of (X, ρ). Finally, from
Corollary 2.4 it follows that f and g have a unique common fixed point.
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[6] Lj. B. Ćirić, On Ivanov open problem related to the nonlinear quasi-contraction mappings, (in
Russian), Publ. Inst. Math. (Beograd), 41(1987), 149-150.

[7] E. De Pascale, G. Marino, P. Pietramala, The use of the E-metric spaces in the search for fixed

points, Le Matematiche, 48(1993), 367-376.
[8] C. Di Bari, P. Vetro, ϕ-pairs and common fixed points in cone metric spaces, Rend. Circ. Mat.

Palermo, 57(2008), 279-285.
[9] C. Di Bari, P. Vetro, Weakly ϕ-pairs and common fixed points in cone metric spaces, Rend.

Circ. Mat. Palermo, 58(2009), 125-132.

[10] W.-S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal.,
72(2010), 2259-2261.

[11] Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory,

11(2010), 259-264.
[12] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cam-

bridge, 1990.

[13] L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings,
J. Math. Anal. Appl., 332(2007), 1468-1476.

[14] A.A. Ivanov, Fixed points of mappings on metric spaces, (in Russian), Studies in topology II -
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