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Abstract. In this paper, we introduce a new iterative algorithm for finding a common element

of the set of solutions of a general variational inequality and the set of common fixed points of
an infinite family of nonexpansive mappings in q-uniformly smooth Banach space. We obtain some

strong convergence theorems under suitable conditions. Furthermore we give an appropriate example

such that all conditions of this result are satisfied. Our results extend the recent results announced
by many others.
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1. Introduction

Throughout this paper, we denote by X and X∗ a real Banach space and the
dual space of X, respectively. Let C be a subset of X and T be a self-mapping of
C. We use F (T ) to denote the fixed points of T . Let q > 1 be a real number.
The(generalized)duality mapping Jq : X → 2X∗

is defined by

Jq(x) =
{

x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖q
, ‖x∗‖ = ‖x‖q−1

}
, ∀x ∈ X.

In particular, J = J2 is called the normalized duality mapping and Jq(x) =
‖x‖q−2

J2(x) for x 6= 0. If X is a Hilbert space, then J = I, where I is the identity
mapping. It is well-known that if X is smooth, then Jq is single-valued, which is
denoted by jq.

Recall that a mapping T : C → C is said to be nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ C. (1.1)

A mapping T : C → C is said to be L-Lipschitzian, if there exists a constant L > 0
such that

‖Tx− Ty‖ ≤ L ‖x− y‖ , ∀x, y ∈ C. (1.2)
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A mapping A : C → X is said to be α-strongly accretive if there exists jq(x− y) ∈
Jq(x− y) and a constant α > 0 such that

〈Ax−Ay, jq(x− y)〉 ≥ α ‖x− y‖q
, ∀x, y ∈ C. (1.3)

A mapping A : C → X is said to be α-inverse-strongly accretive if there exists
jq(x− y) ∈ Jq(x− y) and a constant α > 0 such that

〈Ax−Ay, jq(x− y)〉 ≥ α ‖Ax−Ay‖q
, ∀x, y ∈ C. (1.4)

A mapping A : C → X is said to be relaxed (c, d)-cocoercive if there exists jq(x−
y) ∈ Jq(x− y) and two constants c, d ≥ 0 such that

〈Ax−Ay, jq(x− y)〉 ≥ (−c) ‖Ax−Ay‖q + d ‖x− y‖q
, ∀x, y ∈ C. (1.5)

A mapping f : C → C is said to be a contraction if there exists a constant α ∈ (0, 1)
such that

‖f(x)− f(y)‖ ≤ α ‖x− y‖ , ∀x, y ∈ C.

We use the notation ΠC to denote the collection of all contractions on C, i.e., ΠC =
{f : C → C a contraction}.

Example 1.1. Let C be a subset of Hilbert space H. Define Ax = 1
2x, ∀x ∈ C, then

A is 1
3 -strongly accretive.

Example 1.2. Let C be a subset of Hilbert space H. Define Ax = 2
3x, ∀x ∈ C, then

A is 3
4 -inverse-strongly accretive.

Example 1.3. Let C be a subset of Hilbert space H. Define Ax = 3
4x, ∀x ∈ C, then

A is relaxed ( 4
9 , 1

2 )-cocoercive.

Let D be a nonempty subset of C. A mapping Q : C → D is said to be sunny
if Q(Qx + t(x − Qx)) = Qx, whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0.
Furthermore, Q is a sunny nonexpansive retraction from C onto D if Q is a retraction
from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exists a
sunny nonexpansive retraction from C onto D. A retraction Q is said to be orthogonal
if for each x, x−Q(x) is normal to D in the sense of R.C. James [9].

It is well known (see [4]) that if X is a Banach space, a projection mapping is
a sunny nonexpansive retraction Q of X onto C. If X is uniformly smooth and
there exists a nonexpansive retraction of X onto C, then there exists a nonexpansive
projection of X onto C. If X is a real smooth Banach space, then Q is an orthogonal
projection of X onto C if and only if

Q(x) ∈ C and 〈Q(x)− x, jq(Q(x)− y)〉 ≤ 0, ∀ y ∈ C. (1.6)

Example 1.4 ([10]). If X is strictly convex and uniformly smooth and T : C → C is
a nonexpansive mapping having a nonempty fixed point set F (T ), then the set F (T )
is a sunny nonexpansive retraction of C.
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let C be a nonempty closed convex subset of a real Hilbert space H. Recall that
the classical variational inequality, denoted by V I(A,C), is to find an x∗ ∈ C such
that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C.

Several numerical methods have been developed for solving variational inequalities
and related optimization problems, see [3-12] and the references therein.

Let A,B : C → H be two mappings. Recently, Ceng et al. [6] considered the
following general variational inequality problem of finding (x∗, y∗) ∈ C ×C such that{

〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

(1.7)

where λ > 0 and µ > 0 are two constants. In particular, if A = B and x∗ = y∗, then
problem (1.7) reduces to the classical variational inequality V I(A,C).

Let C be a nonempty closed convex subset of a real Banach space X. Very recently,
Yao et al. [20] considered the following problem of finding (x∗, y∗) ∈ C ×C such that{

〈Ay∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈Bx∗ + y∗ − x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C,

(1.8)

which is called the system of general variational inequalities in a real Banach spaces,
where A,B : C → X are two operators.

In order to find a solution of problem (1.8), Yao et al. [20] proved the following
strong convergence theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous
duality mapping. Let QC be the sunny nonexpansive retraction from X onto C. Let
the mappings A,B : C → X be α-inverse-strongly accretive with α ≥ K2 and β-
inverse-strongly accretive with β ≥ K2, respectively, where K is defined by Lemma
2.3. Suppose the set of fixed points Ω of the mapping G : C → C defined by G(x) =
QC [QC(x− Bx)− AQC(x− Bx)],∀x ∈ C is nonempty. For a given x0 ∈ C, let the
sequence {xn} be generated iteratively by{

yn = QC(xn −Bxn)
xn+1 = αnu + βnxn + γnQC(yn −Ayn), n ≥ 0.

(1.9)

Suppose {αn}, {βn} and {γn} are sequences in (0, 1) satisfying the following condi-
tions:
(i) αn + βn + γn = 1, ∀n ≥ 0;

(ii) lim
n→∞

αn = 0 and
∞∑

n=0
αn = ∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then {xn} converges strongly to Q′u, where Q′u is the sunny nonexpansive retraction
of C onto F (G).

Some questions arise naturally:
(1) Could we extend a system of variational inequality problem (1.8) to more

general variational inequality problem which includes (1.8) as a special case?
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(2) Could we extend Theorem 1.1 from 2-uniformly smooth Banach space to q-
uniformly smooth Banach space,where 1 < q ≤ 2? At the same time, could we
remove the space condition that X is uniformly convex Banach Space which admits
a uniformly sequentially continuous duality mapping?

(3) Could we modify the iterative algorithm (1.9) such that we can find the common
element of the set of solutions of the general variational inequality problem (1.10) and
the set of common fixed points of an infinite family of nonexpansive mappings?

(4) Could we replace u with f(xn), where f ∈ ΠC?
(5) Could we extend Theorem 1.1 from inverse-strongly accretive mappings to

Lipchitzian and relaxed cocoercive mappings?
(6) Could we weaken the condition lim

n→∞
αn = 0 such that Theorem 1.1 also holds

when lim
n→∞

αn 6= 0?
The purpose of this paper is to give affirmative answers to the questions raised

above. Let C be a nonempty closed convex subset of a real Banach space X. For
given two operators A,B : C → X, we consider the problem of finding (x∗, y∗) ∈ C×C
such that {

〈λAy∗ + x∗ − y∗, jq(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, jq(x− y∗)〉 ≥ 0, ∀x ∈ C,

(1.10)

where λ > 0 and µ > 0 are two constants. If λ = µ = 1 and q = 2, the problem (1.10)
reduces to problem (1.8). If X is a Hilbert space, then (1.10) becomes the problem
(1.7). Consequently, our variational inequality problem (1.10) contains (1.7) or (1.8)
as a special case.

In this paper, we introduce a new iterative algorithm for finding a common element
of the set of solutions of a general variational inequality (1.10) and the set of common
fixed points of an infinite family of nonexpansive mappings in q-uniformly smooth
Banach space. Furthermore we prove some strong convergence theorems under suit-
able conditions. Then we give an appropriate example such that all conditions of
this result are satisfied and the condition αn → 0[Theorem 1.1] is not satisfied. The
results presented in this paper extend and improve the results of Yao et al. [20], Ceng
et al. [6] and many others.

2. Preliminaries

Let S(X) = {x ∈ X : ‖x‖ = 1}.Then the norm of X is said to be Gâteaux differ-
entiable if

lim
t→0

‖x + ty‖ − ‖x‖
t

(∆)

exists for each x, y ∈ S(X). In this case, X is said to be smooth. The norm of X is said
to be uniformly Gâteaux differentiable if for each y ∈ S(X), the limit(∆)is attained
uniformly for x ∈ S(X). The norm of the X is said to be Frêchet differentiable, if
for each x ∈ S(X), the limit(∆)is attained uniformly for y ∈ S(X). The norm of
X is called uniformly Fréchet differentiable, if the limit(∆)is attained uniformly for
x, y ∈ S(X). It is well-known that(uniform)Fréchet differentiability of the norm X
implies(uniform)Gâteaux differentiability of norm X.
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Let ρX : [0,∞) −→ [0,∞) be the modulus of smoothness of X defined by

ρX(t) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : x ∈ S(X), ‖y‖ ≤ t

}
.

A Banach space X is said to be uniformly smooth if
ρX(t)

t
→ 0 as t → 0. A

Banach space X is said to be q-uniformly smooth, if there exists a fixed constant
c > 0 such that ρX(t) ≤ ctq. It is well-known that X is uniformly smooth if and
only if the norm of X is uniformly Fréchet differentiable. If X is q-uniformly smooth,
then q ≤ 2 and X is uniformly smooth, and hence the norm of X is uniformly Fréchet
differentiable, in particular, the norm of X is Fréchet differentiable. Typical examples
of both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1.
More precisely, Lp is min {p, 2}-uniformly smooth for every p > 1.

In order to obtain our main results, we collect the following Lemmas.

Lemma 2.1 ([19]). Assume {an} is a sequence of nonnegative real numbers such
that an+1 ≤ (1 − αn)an + δn, n ≥ 0, where {αn} is a sequence in (0, 1) and {δn} is
a sequence in R such that
(i)

∑∞
n=0 αn = ∞;

(ii) lim supn→∞
δn

αn
≤ 0 or

∑∞
n=0 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.2 ([17]). Let {xn} and {zn} be bounded sequences in a Banach space
X and let {βn} be a sequence in [0, 1] which satisfies the following condition: 0 <
lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = βnxn + (1− βn)zn, n ≥ 0 and
lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.3 ([18]). Let X be a real q-uniformly smooth Banach space, then there
exists a constant Cq > 0 such that

‖x + y‖q ≤ ‖x‖q + q 〈y, jqx〉+ Cq ‖y‖q
,

for all x, y ∈ X. In particular, if X is real 2-uniformly smooth Banach space, then
there exists a best smooth constant K > 0 such that

‖x + y‖2 ≤ ‖x‖2 + 2 〈y, jx〉+ 2 ‖Ky‖2
,

for all x, y ∈ X.

Lemma 2.4 ([12], p. 63). Let q > 1. Then the following inequality holds:

ab ≤ 1
q
aq +

q − 1
q

b
q

q−1

for arbitrary positive real numbers a, b.

Lemma 2.5. Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let PC be the sunny nonexpansive retraction from X onto C. Let
A,B : C → X be two nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution
of problem (1.10) if and only if x∗ = PC(y∗ − λAy∗) where y∗ = PC(x∗ − µBx∗).
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Proof. We can rewrite (1.10) as{
〈(y∗ − λAy∗)− x∗, jq(x− x∗)〉 ≤ 0, ∀x ∈ C,
〈(x∗ − µBx∗)− y∗, jq(x− y∗)〉 ≤ 0, ∀x ∈ C.

(2.1)

From (1.6), we can deduce that (2.1) is equivalent to{
x∗ = PC(y∗ − λAy∗),
y∗ = PC(x∗ − µBx∗).

This completes the proof. �

Lemma 2.6. Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let the mapping A : C → X be relaxed (c, d)-cocoercive and LA-
Lipschitzian. Then, we have

‖(I − λA)x− (I − λA)y‖q ≤ ‖x− y‖q + (qλcLq
A − qλd + Cqλ

qLq
A) ‖x− y‖q

,

where λ > 0. In particular, if λ ≤ ( qd−qcLq
A

CqLq
A

)
1

q−1 , then I − λA is nonexpansive.

Proof. From Lemma 2.3, we have for all x, y ∈ C

‖(I − λA)x− (I − λA)y‖q

= ‖x− y − λ(Ax−Ay)‖q

≤ ‖x− y‖q − qλ 〈Ax−Ay, jq(x− y)〉+ Cqλ
q ‖Ax−Ay‖q

≤ ‖x− y‖q − qλ(−c ‖Ax−Ay‖q + d ‖x− y‖q) + Cqλ
qLq

A ‖x− y‖q

≤ ‖x− y‖q + (qλcLq
A − qλd + Cqλ

qLq
A) ‖x− y‖q

.

It is easy to see that I −λA is nonexpansive if λ ≤ ( qd−qcLq
A

CqLq
A

)
1

q−1 . This completes the
proof. �

Lemma 2.7. Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let PC be the sunny nonexpansive retraction from X onto C. Let
the mapping A : C → X be (c, d)-cocoercive and LA-Lipschitzian and let B : C → X
be (c′, d′)-cocoercive and LB-Lipschitzian. Let G : C → C be a mapping defined by

G(x) = PC [PC(x− µBx)− λAPC(x− µBx)] , ∀x ∈ C.

If 0 < λ ≤ ( qd−qcLq
A

CqLq
A

)
1

q−1 and 0 < µ ≤ ( qd′−qc′Lq
B

CqLq
B

)
1

q−1 , then G : C → C is nonexpan-
sive.

Proof. For all x, y ∈ C, by Lemma 2.6, we have

‖G(x)−G(y)‖
= ||PC [PC(x− µBx)− λAPC(y − µBy)]

− PC [PC(y − µBy)− λAPC(y − µBy)] ||
≤ ‖(I − λA)PC(I − µB)x− (I − λA)PC(I − µB)y‖
≤ ‖PC(I − µB)x− PC(I − µB)y‖
≤ ‖(I − µB)x− (I − µB)y‖
≤ ‖x− y‖ ,
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which implies that G is nonexpansive. This completes the proof. �

Motivated and inspired by Theorem 4.1 of Xu [19], we obtain the following Lemma.

Lemma 2.8. Let X be a q-uniformly smooth Banach space, C be a closed convex
subset of X, T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and f ∈ ΠC with
contractive constant α ∈ (0, 1). Then {xt} defined by xt = tf(xt) + (1 − t)Txt for
t ∈ (0, 1) converges strongly to a point in F (T ). If we define Q : ΠC → F (T ) by

Q(f) := lim
t→0

xt, f ∈ ΠC ,

then Q(f) solves the variational inequality

〈(I − f)Q(f), jq(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T ).

Proof. First we show that {xt} is bounded. Indeed take a p ∈ F (T ), we have

‖xt − p‖ = ‖(1− t)(T (xt)− p) + t(f(xt)− f(p)) + t(f(p)− p)‖
≤ (1− t) ‖T (xt)− p‖+ t ‖f(xt)− f(p)‖+ t ‖f(p)− p‖
≤ (1− t) ‖xt − p‖+ tα ‖xt − p‖+ t ‖f(p)− p‖ ,

which implies that

‖xt − p‖ ≤ 1
1− α

‖f(p)− p‖ ,

and hence {xt} is bounded. Assume tn → 0. Set xn := xtn
and define µ : C → R by

µ(x) = LIM ‖xn − x‖q
, x ∈ C,

where LIM is a Banach limit on l∞. Let

K =
{

x ∈ C : µ(x) = min
x∈C

LIM ‖xn − x‖q

}
.

We see easily that K is a nonempty closed convex bounded subset of X. Since

‖xn − Txn‖ = tn ‖f(xn)− Txn‖ → 0 as n →∞,

and hence

µ(Tx) = LIM ‖xn − Tx‖q

≤ LIM(‖xn − Txn‖+ ‖Txn − Tx‖)q

≤ LIM ‖Txn − Tx‖q

≤ LIM ‖xn − x‖q

= µ(x).

It follows that T (K) ⊂ K; that is, K is invariant under T . Since a uniformly smooth
Banach space has the fixed point property for nonexpansive mappings, T has a fixed
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point, say z in K. Since z is also a minimizer of µ over C, it follows that, for t ∈ (0, 1)
and x ∈ C,

0 ≤ µ(z + t(x− z))− µ(z)
t

= LIM
‖(xn − z) + t(z − x)‖q − ‖xn − z‖q

t

= LIM
〈(xn − z) + t(z − x), jq((xn − z) + t(z − x))〉 − ‖xn − z‖q

t
.

The uniform smoothness of X implies that the duality map jq is norm-to-norm uni-
formly continuous on bounded sets of X. Letting t → 0, we find that two limits above
can be interchanged and obtain

0 ≤ LIM 〈z − x, jq(xn − z)〉 ,

which implies

LIM 〈x− z, jq(xn − z)〉 ≤ 0, x ∈ C. (2.2)

Since xt − z = t(f(xt)− z) + (1− t)(Txt − z),

‖xt − z‖q = t 〈f(xt)− z, jq(xt − z)〉+ (1− t) 〈Txt − z, jq(xt − z)〉
≤ t 〈f(xt)− z, jq(xt − z)〉+ (1− t) ‖xt − z‖q

.

Hence

‖xt − z‖q ≤ 〈f(xt)− z, jq(xt − z)〉
≤ 〈f(xt)− x, jq(xt − z)〉+ 〈x− z, jq(xt − z)〉 . (2.3)

Therefore by (2.2), we have for x ∈ C

LIM ‖xn − z‖q ≤ LIM 〈f(xn)− x, jq(xn − z)〉+ LIM 〈x− z, jq(xn − z)〉
≤ LIM 〈f(xn)− x, jq(xn − z)〉

≤ LIM ‖f(xn)− x‖ ‖xn − z‖q−1
.

In particular,

LIM ‖xn − z‖q ≤ LIM ‖f(xn)− f(z)‖ ‖xn − z‖q−1

≤ αLIM ‖xn − z‖q
.

Hence LIM ‖xn − z‖q = 0 and there exists a subsequence which is still denoted {xn}
such that xn → z.

Now assume there exists another subsequence {xm} of {xt} such that xm → z′ ∈
F (T ). It follows from (2.3) that

‖z′ − z‖q ≤ 〈f(z′)− z, jq(z′ − z)〉 . (2.4)

Interchange z′ and z to obtain

‖z − z′‖q ≤ 〈f(z)− z′, jq(z − z′)〉 . (2.5)
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Adding up (2.4) and (2.5) yields

2 ‖z′ − z‖q ≤ 〈f(z′)− f(z) + z′ − z, jq(z′ − z)〉
≤ (1 + α) ‖z′ − z‖q

.

Since α ∈ (0, 1), this implies z′ = z. Hence xt → z as t → 0.
Define Q : ΠC → F (T ) by Q(f) := lim

t→0
xt. Since xt = tf(xt) + (1− t)Txt, we have

(I − f)xt = −1− t

t
(I − T )xt.

Hence for p ∈ F (T ),

〈(I − f)xt, jq(xt − p)〉 = −1− t

t
〈(I − T )xt − (I − T )p, jq(xt − p)〉

≤ 0.

Letting t → 0 yields
〈(I − f)Q(f), jq(Q(f)− p)〉 ≤ 0.

This completes the proof. �

Lemma 2.9. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X, and T : C → C be a nonexpansive mapping with F (T ) 6= ∅. Assume {xn} is a
bounded sequence such that xn−Txn → 0 as n →∞. Let xt = tf(xt)+(1−t)Txt, ∀ t ∈
(0, 1),where f ∈ ΠC with contractive constant α ∈ (0, 1). Assume that Q(f) := lim

t→0
xt

exists. Then
lim sup

n→∞
〈(f − I)Q(f), jq(xn −Q(f))〉 ≤ 0.

Proof. Set M = sup
{
‖xn − xt‖q−1 : t ∈ (0, 1), n ≥ 0

}
. Then we have

‖xt − xn‖q

= t ‖f(xt)− xn, jq(xt − xn)‖+ (1− t) 〈Txt − xn, jq(xt − xn)〉
= t 〈f(xt)− xt, jq(xt − xn)〉+ t ‖xt − xn‖q

+ (1− t) 〈Txt − Txn, jq(xt − xn)〉+ (1− t) 〈Txn − xn, jq(xt − xn)〉
≤ t 〈f(xt)− xt, jq(xt − xn)〉+ t ‖xt − xn‖q + (1− t) ‖xt − xn‖q

+ M ‖xn − Txn‖
= t 〈f(xt)− xt, jq(xt − xn)〉+ ‖xt − xn‖q

+ M ‖xn − Txn‖ ,

which implies

〈f(xt)− xt, jq(xn − xt)〉 ≤
M

t
‖xn − Txn‖ .

Fixing t and letting n →∞ yields

lim sup
n→∞

〈f(xt)− xt, jq(xn − xt)〉 ≤ 0.
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Since X is uniformly smooth, jq : X → X∗ is uniformly continuous on any bounded
set of X, which ensures that the limits lim sup

n→∞
and lim sup

t→0
are interchangeable, we

have
lim sup

n→∞
〈(f − I)Q(f), jq(xn −Q(f))〉 ≤ 0.

This completes the proof. �

Lemma 2.10 ([1]). Let C be a nonempty closed convex subset of a Banach space
X. Let T1, T2, · · · be a sequence of mappings of C into itself. Suppose that∑∞

n=1 sup {‖Tn+1x− Tnx‖ : x ∈ C} < ∞. Then for each y ∈ C, {Tny} converges
strongly to some point of C. Moreover, let T be a mapping of C into itself defined by
Ty = limn→∞ Tny for all y ∈ C. Then limn→∞ sup {‖Tx− Tnx‖ : x ∈ C} = 0.

Lemma 2.11 ([3]). Let C be a closed convex subset of a strictly convex Banach space
X. Let T1 and T2 be two nonexpansive mappings from C into itself with F (T1) ∩
F (T2) 6= ∅. Define a mapping S by

Sx = λT1x + (1− λ)T2x, ∀x ∈ C,

where λ is a constant in (0, 1). Then S is nonexpansive and F (S) = F (T1) ∩ F (T2).

3. Main results

Theorem 3.1. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X (q > 1) which is also a sunny nonexpansive retraction of X. Let the mapping
A : C → X be (c, d)-cocoercive and LA-Lipschitzian and let B : C → X be (c′, d′)-
cocoercive and LB-Lipschitzian. f ∈ ΠC with the coefficient 0 < α < 1. Let G be the
mapping defined by Lemma 2.7. Let {Tn}∞n=1 be a sequence of nonexpansive mappings
of C into itself with F := F (G) ∩ ∩∞n=1F (Ti) 6= ∅. For a given x1 ∈ C, let {xn} be a
sequence generated by

yn = QC(xn − µBxn),
zn = QC(yn − λAyn),
kn = δnTnxn + (1− δn)zn

xn+1 = αnf(xn) + βnxn + γnkn, n ≥ 1,

(3.1)

where QC is a sunny nonexpansive retraction of X onto C, 0 < λ ≤ ( qd−qcLq
A

CqLq
A

)
1

q−1

and 0 < µ ≤ ( qd′−qc′Lq
B

CqLq
B

)
1

q−1 . Suppose that {αn}, {βn},{γn} and {δn} are sequences
in (0, 1) satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∞∑

n=1
αn = ∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim sup
n→∞

∣∣∣ αn+1
1−βn+1

− αn

1−βn

∣∣∣ = 0;

(v) lim inf
n→∞

γn > 0;

(vi) lim
n→∞

δn = δ ∈ (0, 1).
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Assume that
∞∑

n=1
sup
x∈D

‖Tn+1x− Tnx‖ < ∞ for any bounded subset D of C and let

T be a mapping of C into itself defined by Tx = lim
n→∞

Tnx for all x ∈ C and suppose

that F (T ) = ∩∞n=1F (Tn).Then xn → Q(f) ⇔ αn(f(xn) − xn) → 0, where Q(f) ∈ F
solves the variational inequality

〈(I − f)Q(f), jq(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. Take x∗ ∈ F . From Lemma 2.5, we have x∗ = QC [QC(x∗−µBx∗)−λAQC(x∗−
µBx∗)]. Put y∗ = QC(x∗−µBx∗), then x∗ = QC(y∗−λAy∗). It follows from Lemma
2.7 that

‖zn − x∗‖ = ‖QC(yn − λAyn)−QC(y∗ − λAy∗)‖
≤ ‖(I − λA)yn − (I − λA)y∗‖
≤ ‖yn − y∗‖
= ‖QC(xn − µBxn)−QC(x∗ − µBx∗)‖
≤ ‖(I − µB)xn − (I − µB)x∗‖
≤ ‖xn − x∗‖ .

It follows that

‖kn − x∗‖ = ‖δn(Tnxn − x∗) + (1− δn)(zn − x∗)‖
≤ δn ‖Tnxn − x∗‖+ (1− δn) ‖zn − x∗‖
≤ δn ‖xn − x∗‖+ (1− δn) ‖xn − x∗‖
= ‖xn − x∗‖ . (3.2)

By (3.2), we have

‖xn+1 − x∗‖ = ‖αn(f(xn)− x∗) + βn(xn − x∗) + γn(kn − x∗)‖
≤ αn ‖f(xn)− x∗‖+ βn ‖xn − x∗‖+ γn ‖kn − x∗‖
≤ αn ‖f(xn)− f(x∗)‖+ αn ‖f(x∗)− x∗‖+ βn ‖xn − x∗‖

+ γn ‖xn − x∗‖
≤ αnα ‖xn − x∗‖+ (1− αn) ‖xn − x∗‖+ αn ‖f(x∗)− x∗‖

= [1− αn(1− α)] ‖xn − x∗‖+ αn(1− α)
‖f(x∗)− x∗‖

1− α

≤ max
{
‖x1 − x∗‖ ,

‖f(x∗)− x∗‖
1− α

}
,∀n ≥ 1.

Therefore {xn} is bounded. Hence {yn} , {kn} , {zn} , {Ayn} and {Bxn} are also
bounded.
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Suppose that αn(f(xn)− xn) → 0 as n →∞. We observe that

‖zn+1 − zn‖ = ‖QC(yn+1 − λAyn+1)−QC(yn − λAyn)‖
≤ ‖(I − λA)yn+1 − (I − λA)yn‖
≤ ‖yn+1 − yn‖
= ‖QC(xn+1 − µBxn+1)−QC(xn − µBxn)‖
≤ ‖(I − µB)xn+1 − (I − µB)xn‖
≤ ‖xn+1 − xn‖ .

It follows that

‖kn+1 − kn‖
= ‖δn+1Tn+1xn+1 + (1− δn+1)zn+1 − δnTnxn − (1− δn)zn‖
= ||(δn+1 − δn)(Tn+1xn+1 − zn+1) + δn(Tn+1xn+1 − Tnxn)

+ (1− δn)(zn+1 − zn)||
≤ |δn+1 − δn| ‖Tn+1xn+1 − zn+1‖+ δn ‖Tn+1xn+1 − Tnxn‖

+ (1− δn) ‖zn+1 − zn‖
≤ |δn+1 − δn| ‖Tn+1xn+1 − zn+1‖+ δn ‖Tn+1xn+1 − Tnxn+1‖

+ δn ‖Tnxn+1 − Tnxn‖+ (1− δn) ‖zn+1 − zn‖
≤ |δn+1 − δn| ‖Tn+1xn+1 − zn+1‖+ δn ‖Tn+1xn+1 − Tnxn+1‖

+ δn ‖xn+1 − xn‖+ (1− δn) ‖xn+1 − xn‖
= |δn+1 − δn| ‖Tn+1xn+1 − zn+1‖+ δn ‖Tn+1xn+1 − Tnxn+1‖+ ‖xn+1 − xn‖ .

(3.3)

Put xn+1 = βnxn + (1− βn)ln for all n ≥ 1. Then, we have

ln+1 − ln =
αn+1f(xn+1) + γn+1kn+1

1− βn+1
− αnf(xn) + γnkn

1− βn

=
αn+1

1− βn+1
f(xn+1)−

αn

1− βn
f(xn) +

γn+1

1− βn+1
kn+1 −

γn

1− βn
kn

= (
αn+1

1− βn+1
− αn

1− βn
)f(xn+1) +

αn

1− βn
(f(xn+1)− f(xn))

+ (
γn+1

1− βn+1
− γn

1− βn
)kn+1 +

γn

1− βn
(kn+1 − kn)

= (
αn+1

1− βn+1
− αn

1− βn
)(f(xn+1)− kn+1) +

αn

1− βn
(f(xn+1)− f(xn))

+
γn

1− βn
(kn+1 − kn). (3.4)
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Combining (3.3) and (3.4), we have

‖ln+1 − ln‖

≤
∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣ (‖f(xn+1)‖+ ‖kn+1‖) +
αnα

1− βn
‖xn+1 − xn‖

+
γn

1− βn
‖xn+1 − xn‖+

γn |δn+1 − δn|
1− βn

‖Tn+1xn+1 − zn+1‖

+
γnδn

1− βn
‖Tn+1xn+1 − Tnxn+1‖

=
∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣ (‖f(xn+1)‖+ ‖kn+1‖)

+
1− βn − αn(1− α)

1− βn
‖xn+1 − xn‖+

γn |δn+1 − δn|
1− βn

‖Tn+1xn+1 − zn+1‖

+
γnδn

1− βn
‖Tn+1xn+1 − Tnxn+1‖

≤
∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣ (‖f(xn+1)‖+ ‖kn+1‖) + ‖xn+1 − xn‖

+ |δn+1 − δn| ‖Tn+1xn+1 − zn+1‖+ ‖Tn+1xn+1 − Tnxn+1‖ ,

which implies that

‖ln+1 − ln‖ − ‖xn+1 − xn‖

≤
∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣ (‖f(xn+1)‖+ ‖kn+1‖)

+ |δn+1 − δn| ‖Tn+1xn+1 − zn+1‖+ ‖Tn+1xn+1 − Tnxn+1‖ .

By conditions (iv),(vi) and the assumption on Tn,we obtain

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

It follows from Lemma 2.2 that lim
n→∞

‖ln − xn‖ = 0. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn) ‖ln − xn‖ = 0. (3.5)

From (3.1), we have

‖xn+1 − xn‖ = ‖αn(f(xn)− xn) + γn(kn − xn)‖
≥ γn ‖kn − xn‖ − ‖αn(f(xn)− xn)‖ ,

which implies

‖kn − xn‖ ≤
1
γn

(‖αn(f(xn)− xn)‖+ ‖xn+1 − xn‖).

Noticing that condition (v), (3.5) and lim
n→∞

αn(f(xn)− xn) → 0, we have

lim
n→∞

‖kn − xn‖ = 0. (3.6)
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Define a mapping U : C → C as Ux = δTx + (1− δ)Gx. From Lemma 2.11, we know
that U is nonexpansive and

F (U) = F (T ) ∩ F (G) = ∩∞n=1F (Ti) ∩ F (G) = F.

Since condition (vi) and the assumption on Tn, we have

‖kn − Uxn‖ = ‖δnTnxn + (1− δn)zn − δTxn − (1− δ)Gxn‖
= ‖δnTnxn + (1− δn)zn − δTxn − (1− δ)zn‖
= ‖(δn − δ)(Tnxn − zn) + δ(Tnxn − Txn)‖
≤ |δn − δ| ‖Tnxn − zn‖+ δ ‖Tnxn − Txn‖
→ 0 as n →∞. (3.7)

Combining (3.6) and (3.7), we have

‖xn − Uxn‖ ≤ ‖xn − kn‖+ ‖kn − Uxn‖ → 0 as n →∞. (3.8)

Next we show that

lim sup
n→∞

〈f(z)− z, jq(xn − z)〉 ≤ 0, (3.9)

where

z = Q(f), Q(f) = lim
t→0

xt

and xt is the unique fixed point of the contraction mapping Tt given by

Ttx = tf(x) + (1− t)Ux, t ∈ (0, 1).

By Lemma 2.8, we have Q(f) ∈ F (U) = F solves the variational inequality

〈(I − f)Q(f), jq(Q(f)− p)〉 ≤ 0, ∀ p ∈ F.

By (3.8) and Lemma 2.9, we see that

lim sup
n→∞

〈f(z)− z, jq(xn − z)〉 ≤ 0.

Therefore (3.9) holds.

Finally we prove that xn → z as n →∞. Putting

σn = max {〈f(z)− z, jq(xn+1 − z)〉 , 0} ,

we have σn → 0 as n →∞.
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By virtue of Lemma 2.4 and (3.2), we have

‖xn+1 − z‖q

= 〈αn(f(xn)− z), jq(xn+1 − z)〉+ 〈βn(xn − z), jq(xn+1 − z)〉
+ 〈γn(kn − z), jq(xn+1 − z)〉

= αn 〈f(xn)− f(z), jq(xn+1 − z)〉+ αn 〈f(z)− z, jq(xn+1 − z)〉
+ βn 〈xn − z, jq(xn+1 − z)〉+ γn 〈kn − z, jq(xn+1 − z)〉

≤ αnα ‖xn − z‖ ‖xn+1 − z‖q−1 + βn ‖xn − z‖ ‖xn+1 − z‖q−1

+ γn ‖kn − z‖ ‖xn+1 − z‖q−1 + αnσn

≤ αnα ‖xn − z‖ ‖xn+1 − z‖q−1 + βn ‖xn − z‖ ‖xn+1 − z‖q−1

+ γn ‖xn − z‖ ‖xn+1 − z‖q−1 + αnσn

= [1− αn(1− α)] ‖xn − z‖ ‖xn+1 − z‖q−1 + αnσn

≤ [1− αn(1− α)](
1
q
‖xn − z‖q +

q − 1
q

‖xn+1 − z‖q) + αnσn

≤ 1− αn(1− α)
q

‖xn − z‖q +
q − 1

q
‖xn+1 − z‖q + αnσn,

which implies that

‖xn+1 − z‖q ≤ [1− αn(1− α)] ‖xn − z‖q + αn(1− α)
qσn

1− α
.

By Lemma 2.1, we have xn → z as n →∞.
Conversely, if xn → Q(f) as n →∞. Then from (3.1) and (3.2) we obtain that

‖αn(f(xn)− xn)‖
= ‖xn+1 − xn − γn(kn − xn)‖
≤ ‖xn+1 −Q(f)‖+ ‖xn −Q(f)‖+ γn ‖kn −Q(f)‖+ γn ‖xn −Q(f)‖
≤ ‖xn+1 −Q(f)‖+ (1 + 2γn) ‖xn −Q(f)‖
→ 0 as n →∞.

This completes the proof. �

Corollary 3.2. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X (q > 1) which is also a sunny nonexpansive retraction of X. Let the mapping
A : C → X be (c, d)-cocoercive and LA-Lipschitzian and let B : C → X be (c′, d′)-
cocoercive and LB-Lipschitzian. f ∈ ΠC with the coefficient 0 < α < 1. Let G be the
mapping defined by Lemma 2.7. Let {Tn}∞n=1 be a sequence of nonexpansive mappings
of C into itself with F := F (G) ∩ ∩∞n=1F (Ti) 6= ∅. For a given x1 ∈ C, let {xn} be a
sequence generated by

yn = QC(xn − µBxn),
zn = QC(yn − λAyn),
kn = δnTnxn + (1− δn)zn

xn+1 = αnf(xn) + βnxn + γnkn, n ≥ 1,

(3.10)
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where QC is a sunny nonexpansive retraction of X onto C, 0 < λ ≤ ( qd−qcLq
A

CqLq
A

)
1

q−1

and 0 < µ ≤ ( qd′−qc′Lq
B

CqLq
B

)
1

q−1 . Suppose that {αn}, {βn} and {γn} are sequences in
(0, 1) satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∞∑

n=1
αn = ∞, lim

n→∞
αn = 0;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim
n→∞

δn = δ ∈ (0, 1).

Assume that
∞∑

n=1
sup
x∈D

‖Tn+1x− Tnx‖ < ∞ for any bounded subset D of C and let

T be a mapping of C into X defined by Tx = lim
n→∞

Tnx for all x ∈ C and suppose that

F (T ) = ∩∞n=1F (Tn). Then {xn} converges strongly to Q(f), where Q(f) ∈ F solves
the variational inequality

〈(I − f)Q(f), jq(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. By condition (ii), we see that there hold the following
(1) αn(f(xn)− xn) → 0 as n →∞;
(2) lim sup

n→∞

∣∣∣ αn+1
1−βn+1

− αn

1−βn

∣∣∣ = 0;

(3) lim inf
n→∞

γn = lim inf
n→∞

(1− βn) > 0.
Therefore, all conditions of Theorem 3.1 are satisfied. So we obtain the desired

result by Theorem 3.1. This completes the proof. �

Corollary 3.3. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X (q > 1) which is also a sunny nonexpansive retraction of X. Let the mapping
A : C → X be (c, d)-cocoercive and LA-Lipschitzian and let B : C → X be (c′, d′)-
cocoercive and LB-Lipschitzian. f ∈ ΠC with the coefficient 0 < α < 1. Let G be the
mapping defined by Lemma 2.7. Let {Tn}∞n=1 be a sequence of nonexpansive mappings
of C into itself with F := F (G) ∩ ∩∞n=1F (Ti) 6= ∅. For a given x1 ∈ C, let {xn} be a
sequence generated by

yn = QC(xn − µBxn),
zn = QC(yn − λAyn),
kn = δnTnxn + (1− δn)zn

xn+1 = αnf(xn) + βnxn + γnkn, n ≥ 1,

(3.11)

where QC is a sunny nonexpansive retraction of X onto C, 0 < λ ≤ ( qd−qcLq
A

CqLq
A

)
1

q−1

and 0 < µ ≤ ( qd′−qc′Lq
B

CqLq
B

)
1

q−1 . Suppose that {αn}, {βn} and {γn} are sequences in
(0, 1) satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∞∑

n=0
αn = ∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;
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(iv) lim sup
n→∞

|αn+1 − αn| = 0, lim sup
n→∞

|βn+1 − βn| = 0;

(v) lim inf
n→∞

γn > 0;

(vi) lim
n→∞

δn = δ ∈ (0, 1).

Assume that
∞∑

n=1
sup
x∈D

‖Tn+1x− Tnx‖ < ∞ for any bounded subset D of C and let

T be a mapping of C into X defined by Tx = lim
n→∞

Tnx for all x ∈ C and suppose

that F (T ) = ∩∞n=1F (Tn). Then xn → Q(f) ⇔ αn(f(xn)− xn) → 0, where Q(f) ∈ F
solves the variational inequality

〈(I − f)Q(f), jq(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. We observe that

αn+1

1− βn+1
− αn

1− βn
=

αn+1(1− βn)− αn(1− βn+1)
(1− βn+1)(1− βn)

=
αn+1 − αn − αn+1βn + αnβn − αnβn + αnβn+1

(1− βn+1)(1− βn)

=
(αn+1 − αn)(1− βn) + αn(βn+1 − βn)

(1− βn+1)(1− βn)
. (3.12)

By virtue of condition (iv), we deduce from (3.12) that lim sup
n→∞

( αn+1
1−βn+1

− αn

1−βn
) = 0.

Consequently, all conditions of Theorem 3.1 are satisfied. So, utilizing Theorem 3.1
we obtain the desired result. �

The following example shows that all conditions of Theorem 3.1 are satisfied. But
the condition αn → 0 in [9,Theorem 3.1] is not satisfied.

Example 3.1. Let X = L2 and C be a closed convex subset of L2. We know that
L2 is Hilbert space and 2-uniformly smooth Banach space. Then jq = I. Define
mappings A,B : C → C and a contraction f : C → C with contractive constant 1

4 as
follows:

Ax = Bx =
1
2
x, Tnx = x and f(x) =

1
4
x, ∀n ≥ 1, x ∈ C.

Take δn = 3
7 , αn = βn = γn = 1

3 , c = c′ = 1, d = d′ = 1
2 , LA = LB = 1

2 . Since

〈Ax−Ay, jq(x− y)〉 =
1
2
〈x− y, x− y〉 =

1
2
‖x− y‖2

and

−c ‖Ax−Ay‖2 + d ‖x− y‖2 = −1
4
‖x− y‖2 +

1
2
‖x− y‖2 =

1
4
‖x− y‖2

.

We know that 1
2 ‖x− y‖2

> 1
4 ‖x− y‖2. Therefore A,B are (1, 1

2 )-cocoercive and
1
2 -Lipschitzian.

We observe
‖x− y‖2 = ‖x‖2 + 2 〈y, x〉+ ‖y‖2

.
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From Lemma 2.3, we obtain Cq = 1. So

(
qd− qcLq

A

CqL
q
A

)
1

q−1 =
2× 1

2 − 2× 1× 1
4

1
4

= 2.

We can take λ = µ = 1
2 . Define a mapping G : C → C as

Gx = PC(I − 1
2
A)PC(I − 1

2
B)x =

9
16

x.

Then G is nonexpansive and F (G) = {θ}, and hence F = {θ}. For any x1 ∈ C, let
{xn} be defined as follows:

yn = QC(xn − µBxn),
zn = QC(yn − λAyn),
kn = δnTnxn + (1− δn)zn

xn+1 = αnf(xn) + βnxn + γnkn, n ≥ 1.

That is

xn+1 =
1
3
(f(xn) + xn +

3
4
xn)

=
1
3
(
1
4
xn + xn +

3
4
xn)

=
2
3
xn.

Hence by induction we get ‖xn+1 − θ‖ = ‖xn+1‖ ≤ ( 2
3 )n ‖x1‖ for all n ≥ 1. This

implies that {xn} converges strongly to the fixed point θ ∈ F . Thus

‖αn(f(xn)− xn)‖ ≤ αn(‖f(xn)‖+ ‖xn‖)

=
1
3
(
1
4
‖xn‖+ ‖xn‖)

=
5
12

‖xn‖ → 0 as n →∞.

Furthermore, it can be seen easily that all conditions of Theorem 3.1 are satisfied.
Since αn = 1

3 9 0, the condition αn → 0 in [9,Theorem 3.1] is not satisfied.
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