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Abstract. In the paper we study the truncation method for solvability of the Fourier first bound-

ary problem for infinite countable systems of nonlinear parabolic-reaction-diffusion equations with
Volterra functionals in Banach sequences spaces. These systems arise as discrete models of processes

considered. In the truncation method a solution of the infinite countable system is defined as the

limit when N →∞ of the sequence of approximations {zN}N=1,2,..., where zN = (z1
N , z2

N , . . . , zN
N )

are defined as solutions of the finite systems of the first N equations in N unknown functions with

corresponding initial and boundary conditions. The truncation method plays an important role

among approximation methods; it is very useful and commonly used in numerical computation of
approximate solutions. The main results of the paper are an existence and uniqueness theorem for

infinite countable systems of nonlinear parabolic-reaction-diffusion equations with Volterra function-

als and a new method for the construction of truncated systems when a lower or an upper solution
of the problem considered is known. This method may be used also to research of positive solutions

of discrete models in infinite-dimensional Banach spaces.
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[19] S. Brzychczy and L. Górniewicz, Continuous and discrete models of neural systems in infinite-

dimensional abstract spaces Neurocomputing, (in press).

[20] S. Brzychczy and R. Poznanski, Neuronal models in infinite-dimensional spaces and their finite-
dimensional projections. Part II, (in preparation).

[21] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math., Vol.

596, Springer-Verlag, Berlin, 1977.
[22] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc. Englewood

Cliffs, New Jersey, 1964.
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[45] K.P. Persidskǐı, Selected Works, Vol. 2, Izdat. Nauka, Kaz. SSR, Alma-Ata, 1976 [Russian].

[46] R. Redlinger, Existence theorems for semilinear parabolic systems with functionals, Nonlinear

Anal., 6(1984), 667–682.
[47] R. Redlinger, On Volterra’s population equation with diffusion, SIAM J. Math. Anal.,

16(1)(1985), 135-142.

[48] B. Rzepecki, On infinite systems of differential equations with deviated argument, Part I, Ann.
Polon. Math., 31(1975), 159–169, Part II, ibid., 34(1977), 251–264.
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