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1. Introduction and Preliminaries

The concept of a b-metric space appeared in some works, such as Bakhtin [1] and
Czerwik [9]. For instance, Czerwik [9] presented a generalization of the well known
Banach’s [2] fixed point theorem in b-metric spaces. We recall the following notations
and definitions from [9, 10].

Definition 1.1. ([9, 10]) Let X be a nonempty set and s ≥ 1 a given real number. A
function d : X ×X → [0,+∞) is called a b-metric provided that, for all x, y, z ∈ X,
(bm-1) d(x, y) = 0 if and only if x = y,
(bm-2) d(x, y) = d(y, x),
(bm-3) d(x, y) ≤ s(d(x, z) + d(z, y)).
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Throughout this paper, the letters R and N∗ will denote the set of all real numbers
and the set of all positive integer numbers, respectively.

For more considerations and examples of b−metric spaces see [7, 9, 4, 10, 11, 12,
20, 22].

The study of fixed points for multi-valued contractive mappings using the Hausdorff
metric was initiated by Markin [16] and Nadler [17]. Later, an interesting and rich
fixed point theory for such mappings was developed which has found applications in
control theory, convex optimization, differential inclusion and economics (see, [14] and
references cited therein).

Definition 1.2. Let X be a nonempty set. An element x in X is said to be a common
fixed point of a single-valued T : X → X and a multi-valued mapping S : X → P (X)
if x = Tx ∈ Sx, where P (X) denotes the collection of all nonempty subsets of X.

Let (X, d) be a b-metric space. Let Pcl,b(X) be the collection of all nonempty
closed bounded subsets of X. Again as in [4, 10], for A,B ∈ Pcl,b(X), we define

H(A,B) = max{ρ(A,B), ρ(B,A)}, (1.1)

where

ρ(A,B) = sup{D(a,B), a ∈ A}, δ(B,A) = sup{D(b, A), b ∈ B}
with

D(a,C) = inf{d(a, x), x ∈ C}, C ∈ Pcl,b(X).
By definition H is called the Pompeiu-Hausdorff functional.

We recall the following lemmas.

Lemma 1.3. ([9, 20]) Let (X, d) be a b-metric space. For any A,B,C ∈ Pcl,b(X)
and any x, y ∈ X, we have the following:
(i) D(x,B) ≤ d(x, b) for any b ∈ B,
(ii) ρ(A,B) ≤ H(A,B),
(iii) d(x,B) ≤ H(A,B) for all x ∈ A,
(iv) H(A,A) = 0,
(v) H(A,B) = H(B,A),
(vi) H(A,C) ≤ s(H(A,B) + H(B,C)),
(vii) D(x, A) ≤ s(d(x, y) + D(y, A)).

Lemma 1.4. ([9, 20]) Let (X, d) be a b-metric space. Let A and B be in Pcl,b(X).
Then for each α > 0 and for all b ∈ B there exists a ∈ A such that

d(a, b) ≤ H(A,B) + α.

Lemma 1.5. ([9, 20]) Let (X, d) be a b-metric space. For A ∈ Pcl,b(X) and x ∈ X,
we have

D(x, A) = 0 ⇐⇒ x ∈ Ā = A.

Let Φ be the set of functions φ : [0,+∞) → [0,+∞) that satisfy
(1) φ(0) = 0 and φ(t) > (1− 1

s2 )t for each t > 0,
(2) φ is lower semi-continuous.
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Note that if φ ∈ Φ, we have φ(t) > 0 for all t > 0.
In this paper, we establish a common fixed result for single-valued and multi-valued
mappings involving a weak φ-contraction on complete b-metric spaces.

2. MAIN RESULTS

Several papers deal with fixed point theory for single-valued and multi-valued op-
erators in b-metric spaces (see [3, 4, 7, 10, 11, 20]).

Our main result is the following.

Theorem 2.1. Let (X, d) be a complete b−metric space and φ ∈ Φ. Suppose that
T : X → X and S : X → Pcl,b(X) are such that for all x, y ∈ X

H({Tx}, Sy) ≤ M(x, y)− φ(M(x, y)) (2.1)

where

M(x, y) = max{d(x, y), D(x, Tx), D(y, Sy),
1
2s

[D(x, Sy) + D(y, Tx)]}, (2.2)

then T and S have a unique common fixed point in X.

Proof. It is clear that M(x, y) = 0 if and only if x = y is a common fixed point of T
and S. Thus we may assume that M(x, y) > 0 for all x, y ∈ X.

Let x0 ∈ X and x1 ∈ Sx0. Set x2 = Tx1. By choosing α = φ(M(x2,x1))
2 > 0 in

Lemma 1.4, there exists x3 ∈ Sx2 such that

d(x3, x2) ≤ H({Tx1}, Sx2) +
φ(M(x2, x1))

2
.

We let x4 = Tx3. In analogous way, one can find x5 ∈ Sx4 such that

d(x5, x4) ≤ H({Tx3}, Sx4) +
φ(M(x4, x3))

2
.

Inductively, we let x2n = Tx2n−1, and by Lemma 1.4, there exists x2n+1 ∈ Sx2n such
that

d(x2n+1, x2n) ≤ H({Tx2n−1}, Sx2n) +
φ(M(x2n, x2n−1))

2
for all n ∈ N∗. (2.3)

From (2.1) and (2.3), we get that

d(x2n+1, x2n) ≤ M(x2n, x2n−1)−
φ(M(x2n, x2n−1))

2
for all n ∈ N∗. (2.4)
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Step 1: We claim that lim
n→+∞

d(xn, xn+1) = 0.

For any n ∈ N∗, we have

d(x2n−1, x2n) ≤ M(x2n, x2n−1) = M(x2n−1, x2n)

=max
{

d(x2n−1, x2n), D(x2n−1, Tx2n−1), D(x2n, Sx2n),

1
2s

[D(x2n−1, Sx2n) + D(x2n, Tx2n−1)]
}

≤max
{

d(x2n−1, x2n), d(x2n−1, x2n), d(x2n, x2n+1),
1
2s

d(x2n−1, x2n+1)
}

≤max
{

d(x2n−1, x2n), d(x2n, x2n+1),
1
2s

[s(d(x2n−1, x2n) + d(x2n, x2n+1))]
}

=max
{

d(x2n−1, x2n), d(x2n, x2n+1)
}

.

If for some n ≥ 1, d(x2n−1, x2n) < d(x2n, x2n+1), then

d(x2n−1, x2n) ≤ M(x2n−1, x2n) ≤ d(x2n, x2n+1).

Thus, by (2.4) we have

d(x2n+1, x2n) ≤ M(x2n, x2n−1)−
φ(M(x2n−1, x2n))

2

≤ d(x2n, x2n+1)−
φ(M(x2n−1, x2n))

2
,

so φ(M(x2n−1,x2n))
2 = 0, that is, M(x2n−1, x2n) = 0, which is a contradiction. Thus,

for each n ≥ 1, we get that

d(x2n−1, x2n) ≥ d(x2n, x2n+1). (2.5)

Therefore,
M(x2n−1, x2n) = d(x2n−1, x2n) for each n ≥ 1. (2.6)

Also using (2.1), we have

d(x2n+1, x2n+2) = D(x2n+1, {Tx2n+1}) ≤ H(Sx2n, {Tx2n+1})
=H({Tx2n+1}, Sx2n) ≤ M(x2n+1, x2n)− φ(M(x2n+1, x2n))

<M(x2n+1, x2n) = max
{

d(x2n+1, x2n), D(x2n+1, Tx2n+1), D(x2n, Sx2n),

1
2s

[D(x2n+1, Sx2n) + D(x2n, Tx2n+1)]
}

≤max
{

d(x2n+1, x2n), d(x2n+1, x2n+2),
1
2s

[s(d(x2n, x2n+1) + d(x2n+1, x2n+2))]
}

=max
{

d(x2n+1, x2n), d(x2n+1, x2n+2)
}

.
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This inequality shows that

M(x2n+1, x2n+2) = d(x2n+1, x2n+2) for each n ≥ 0, (2.7)

and
d(x2n+1, x2n+2) ≥ d(x2n+2, x2n+3) for each n ≥ 0. (2.8)

We deduce from (2.5) and (2.8)

d(xn+1, xn+2) ≥ d(xn, xn+1) for each n ≥ 0, (2.9)

We have that {d(xn, xn+1)} is a non-increasing sequence and bounded below, so

lim
n→+∞

M(xn+1, xn) = lim
n→+∞

d(xn+1, xn) = L ≥ 0. (2.10)

Assume that L > 0, so by a property of φ we have φ(L) > 0. Taking the upper limit
as n →∞ in (2.4) and using the fact that φ is lower semi-continuous, we obtain that

L ≤ L− φ(L)
2

< L

a contradiction. Hence L = 0, that is,

lim
n→+∞

d(xn, xn+1) = 0. (2.11)

Step 2: The sequence {xn} is bounded.
If {xn} were unbounded, then by step 1, {x2n} and {x2n−1} are unbounded. We
choose the sequence {n(k)}∞k=1 such that n(1) = 1, n(2) > n(1) is even and minimal
in the sense that d(xn(2), xn(1)) > 1, and similarly n(3) > n(2) is odd and minimal
in the sense that d(xn(3), xn(2)) > 1, ...,n(2k) > n(2k − 1) is even and minimal in the
sense that d(xn(2k), xn(2k−1)) > 1, and n(2k + 1) > n(2k) is odd and minimal in the
sense that d(xn(2k+1), xn(2k)) > 1.
Obviously n(k) ≥ k for every k ∈ N. By Step 1 there exists N0 ∈ N such that for all
k ≥ N0 we have d(xk+1, xk) < 1

4s . So for every k ≥ N0 we have n(k + 1)− n(k) ≥ 2
and

1 <d(xn(k+1), xn(k))

≤s[d(xn(k+1), xn(k+1)−2) + d(xn(k+1)−2, xn(k))]

≤s[sd(xn(k+1), xn(k+1)−1) + sd(xn(k+1)−1, xn(k+1)−2) + d(xn(k+1)−2, xn(k))]

≤s[sd(xn(k+1), xn(k+1)−1) + sd(xn(k+1)−1, xn(k+1)−2) + 1]. (2.12)

Hence 1 ≤ lim sup
k→∞

[d(xn(k+1), xn(k))] = α ≤ s < +∞. Also, by the triangular inequal-

ity (bm-3), we can write

d(xn(k+1), xn(k)) ≤ s[d(xn(k+1), xn(k+1)+1) + d(xn(k+1)+1, xn(k))]

≤s[d(xn(k+1), xn(k+1)+1) + sd(xn(k+1)+1, xn(k)+1) + sd(xn(k)+1, xn(k))]. (2.13)

Take lim sup
k→∞

[d(xn(k+1)+1, xn(k)+1)] = β. Letting k → ∞ in (2.13) and using Step 1,

we have
α ≤ s2β.
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If n(k + 1) is odd, so n(k) is even. By (2.1), for all k ≥ N0, we have

d(xn(k)+1, xn(k+1)+1) ≤ H({Txn(k+1)}, Sxn(k))

≤ M(xn(k+1), xn(k))− φ(M(xn(k+1), xn(k))), (2.14)

where
d(xn(k+1), xn(k)) ≤ M(xn(k+1), xn(k))

≤ max{d(xn(k+1), xn(k)), d(xn(k+1), xn(k+1)+1), d(xn(k), xn(k)+1),
1
2
[2d(xn(k+1), xn(k)) + d(xn(k), xn(k)+1) + d(xn(k+1), xn(k+1)+1)]}.

(2.15)

Letting k →∞ in (2.15), we get that

lim
k→∞

M(xn(k+1), xn(k)) = α.

Since φ is lower semi-continuous, so letting k →∞ in (2.14), we have β ≤ α− φ(α).
Having in mind that α ≤ s2β, we conclude that

φ(α) ≤ (1− 1
s2

)α,

which is a contradiction because of α ≥ 1 > 0 and a property of φ.
Step 3: {xn} is a Cauchy sequence.
Now, we show that {xn} is a Cauchy sequence in the b-metric space (X, d). For this
purpose, define

tn = sup{d(xi, xj), i, j ≥ n}.
If lim

n→∞
tn = 0, then {xn} is a Cauchy sequence.

From d(xi, xj) ≤ s[d(xi, xi+1) + d(xi+1, xj)] and Step 1, it is enough to show that
lim

n→∞
an = 0, where

an = sup{d(x2i, x2j+1), i, j ≥ n}.
From Step 2, we have (an) is bounded, so an < +∞ for all n ∈ N. Also, it is clear
that the sequence {an} is decreasing, so it converges. Then, there exists a real a ≥ 0
such that

lim
n→∞

an = a.

We argue by contradiction by assuming that a > 0. For every k ∈ N, there exist
n(k),m(k) ∈ N such that m(k) > n(k) > k and

ak −
1
k
≤ d(xm(k), xn(k)) ≤ ak. (2.16)

By (2.16), we get that
lim

k→+∞
d(xm(k), xn(k)) = a. (2.17)

By the triangular inequality (bm-3), we have

d(xm(k), xn(k)) ≤s[d(xm(k), xn(k)+1) + d(xn(k)+1, xn(k))]

≤s[s(d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k)+1)) + d(xn(k)+1, xn(k))].
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Taking the upper limit as k → +∞ and having in mind (2.11), (2.17), we obtain that

lim sup
k→+∞

d(xm(k)+1, xn(k)+1) ≥
a

s2
. (2.18)

Using definition of an, we may assume that for every k ∈ N, m(k) is odd and n(k) is
even. By (2.1), we have

d(xm(k)+1, xn(k)+1) =D(Txm(k), xn(k)+1) = D(xn(k)+1, {Txm(k)})
≤H(Sxn(k), {Txm(k)}) = H({Txm(k)}, Sxn(k))

≤M(xm(k), xn(k))− φ(M(xm(k), xn(k))),
(2.19)

where

d(xm(k), xn(k)) ≤ M(xm(k), xn(k))

=max
{

d(xm(k), xn(k)), D(xm(k), Txm(k)), D(xn(k), Sxn(k)),

1
2s

[D(xm(k), Sxn(k)) + D(xn(k), Txm(k))]
}

≤max
{

d(xm(k), xn(k)), d(xm(k), xm(k)+1), d(xn(k), xn(k)+1),

1
2
[d(xm(k), xn(k)) + d(xn(k), xn(k)+1) + d(xn(k), xm(k)) + d(xm(k), xm(k)+1)]

}
.

By (2.11) and (2.17), we deduce that

lim
k→+∞

M(xm(k), xn(k)) = a. (2.20)

Taking the upper limit in (2.19) and combining (2.18) and (2.20), we find that
a

s2
≤ a− φ(a),

which contradicts a property of φ since a > 0. Thus, a = 0, so the sequence {xn} is
Cauchy. Since the b-metric space (X, d) is complete there exists u ∈ X such that

lim
n→+∞

d(xn, u) = 0. (2.21)

We claim that u = Tu ∈ Su. From (2.1), we have

D(x2n+2, Su) = D(Tx2n+1, Su) ≤H({Tx2n+1}, Su)

≤M(x2n+1, u)− φ(M(x2n+1, u))
(2.22)

where

D(u, Su) ≤ M(x2n+1, u)

=max
{

d(x2n+1, u), d(x2n+1, x2n+2), D(u, Su),
1
2s

[D(x2n+1, Su) + d(u, x2n+2)]
}

.

(2.23)
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The condition (bm-3) yields d(x2n+1, u) ≤ s(d(x2n+1, x2n)+d(x2n, u)), so from (2.11)
and (2.21)

lim
n→+∞

d(x2n+1, u) = 0. (2.24)

Again, by Lemma 1.3, D(x2n+1, Su) ≤ s(d(x2n+1, u) + D(u, Su), then letting n →
+∞, we get

lim sup
n→+∞

D(x2n+1, Su) ≤ sD(u, Su), (2.25)

Using (2.11), (2.21), (2.24), (2.25) and letting n → +∞ in (2.23), we get

lim
n→+∞

M(x2n+1, u) = D(u, Su). (2.26)

On the other hand,

D(u, Su) ≤ s[d(u, x2n+1) + D(x2n+1, Su)],

so lim sup
n→+∞

D(x2n+1, Su)) ≥ D(u, Su)
s

. Combining this and (2.26) in (2.22), we get

that
D(u, Su)

s
≤ D(u, Su)− φ(D(u, Su)).

Assume that D(u, Su) > 0, so φ(D(u, Su)) ≤ (1 − 1
s )D(u, Su) ≤ (1 − 1

s2 )D(u, Su),
which is a contradiction with a property of φ, hence D(u, Su) = 0, so u ∈ Su since
Su is a closed subset in X. Moreover, from (2.1)

D(Tu, u) ≤ H({Tu}, Su) ≤ M(u, u)− φ(M(u, u)),

where

M(u, u) = max{d(u, u), D(u, Tu), D(u, Su),
1
2s

[D(u, Su) + D(u, Tu)]} = D(u, Tu).

Thus, D(u, Tu) ≤ D(u, Tu)− φ(D(u, Tu)), which is possible only if D(u, Tu) = 0, so
u = Tu. We deduce that

u = Tu ∈ Su.

So u is a common fixed point.
Uniqueness of the common fixed point follows from (2.1) and this completes the
proof. �

We illustrate Theorem 2.1 with the following examples.

Example 2.2. Let X = [0, 1] be equipped with the b-metric d(x, y) = |x− y|2 for all
x, y ∈ X, (s = 2) and let T : X → X and S : X → CB(X) defined by

Tx = 0 and Sx = [0,
x

5
].

Let φ(t) = 4
5 t for all t ≥ 0 Then u = 0 is the unique common fixed of T and S.

Example 2.3. Let X = [0,∞) be equipped with the b-metric d(x, y) = |x − y|2 and
let T : X → X and S : X → CB(X) defined by

Tx =
x

3
and Sx = {x

3
}.

Take φ(t) = 8
9 t for all t ≥ 0. Then u = 0 is the unique common fixed of T and S.
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We state next some remarks which follow from our main result.

Remark 2.4. Taking S as a singlevalued operator in Theorem 2.1 we obtain that T
and S have a unique common fixed point in X.

Remark 2.5. Taking S = T in Theorem 2.1 we obtain that T has a unique fixed
point in X.

Remark 2.6. If we take in Theorem 2.1 ϕ(t) = (1− k)t with k < 1
s2 we obtain that

T and S have a unique common fixed point in X.
If we take S = T then we get that T has a unique fixed point in X.

Remark 2.7. Our results generalize some results given by Zhang and Song [15],
Rhoades [18], Ćirić [8], Rouhani and Moradi [19] and Daffer and Kaneko [13].
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