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Abstract. In this paper, we give a common fixed point result for single-valued and multi-valued
mappings satisfying a weak ¢-contraction in b-metric spaces. Presented theorems extend, generalize
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1. INTRODUCTION AND PRELIMINARIES

The concept of a b-metric space appeared in some works, such as Bakhtin [1] and
Czerwik [9]. For instance, Czerwik [9] presented a generalization of the well known
Banach’s [2] fixed point theorem in b-metric spaces. We recall the following notations
and definitions from [9, 10].

Definition 1.1. (]9, 10]) Let X be a nonempty set and s > 1 a given real number. A
function d : X x X — [0,400) is called a b-metric provided that, for all x, y, z € X,
(bm-1)  d(z,y) =0 if and only if x =y,

(bm-2)  d(z,y) = d(y, z),

(bm-3)  d(z,y) < s(d(z, ) + d(z,y))-
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Throughout this paper, the letters R and N* will denote the set of all real numbers
and the set of all positive integer numbers, respectively.

For more considerations and examples of b—metric spaces see [7, 9, 4, 10, 11, 12,
20, 22].

The study of fixed points for multi-valued contractive mappings using the Hausdorff
metric was initiated by Markin [16] and Nadler [17]. Later, an interesting and rich
fixed point theory for such mappings was developed which has found applications in
control theory, convex optimization, differential inclusion and economics (see, [14] and
references cited therein).

Definition 1.2. Let X be a nonempty set. An element x in X is said to be a common
fized point of a single-valued T : X — X and a multi-valued mapping S : X — P(X)
if v = Tx € Sx, where P(X) denotes the collection of all nonempty subsets of X.

Let (X,d) be a b-metric space. Let P, ;(X) be the collection of all nonempty
closed bounded subsets of X. Again as in [4, 10], for A, B € P, (X)), we define

H(A, B) = max{p(4, B), p(B,A)}, (1.1)
where
p(A,B) =sup{D(a,B), a€ A}, 6(B,A)=sup{D(,A), be B}
with
D(a,C) =inf{d(a,x), x € C}, C € Pyp(X).

By definition H is called the Pompeiu-Hausdorff functional.
We recall the following lemmas.

Lemma 1.3. ([9, 20]) Let (X,d) be a b-metric space. For any A,B,C € Py p(X)
and any z,y € X, we have the following:
(i) D(z, B) < d(x,b) for any b € B,
(ii) p(A, B) < H(A, B),
(iii) d(z, B) < H(A, B) for all x € A,
(iv) H(A, A) =0,
(v) H(A,B) = H(B, A),
(vi) H(A,C) < s(H(A,B) + H(B, (),
(vii) D(z, A) < s(d(x,y) + D(y, A)).
Lemma 1.4. ([9, 20]) Let (X,d) be a b-metric space. Let A and B be in Py p(X).
Then for each o > 0 and for all b € B there exists a € A such that

d(a,b) < H(A, B) + a.

Lemma 1.5. ([9, 20]) Let (X,d) be a b-metric space. For A € Pyy(X) and z € X,
we have B
D(z,A)=0<=zc A=A

Let ® be the set of functions ¢ : [0, +00) — [0, +00) that satisfy
(1) ¢(0) =0 and ¢(t) > (1 — %)t for each ¢ > 0,
(2) ¢ is lower semi-continuous.
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Note that if ¢ € ®, we have ¢(¢t) > 0 for all ¢ > 0.
In this paper, we establish a common fixed result for single-valued and multi-valued
mappings involving a weak ¢-contraction on complete b-metric spaces.

2. MAIN RESULTS

Several papers deal with fixed point theory for single-valued and multi-valued op-
erators in b-metric spaces (see [3, 4, 7, 10, 11, 20]).
Our main result is the following.

Theorem 2.1. Let (X,d) be a complete b—metric space and ¢ € ®. Suppose that
T:X — X and S: X — Pyy(X) are such that for all z,y € X

H({Tx},Sy) < M(z,y) — ¢(M(z,y)) (2.1)

where
M(z,y) = max{d(z,y), D(z, Tz), D(y, Sy), %[D(xa Sy)+D(y,Tz)]},  (22)

then T and S have a unique common fixed point in X .

Proof. Tt is clear that M (x,y) = 0 if and only if x = y is a common fixed point of T’
and S. Thus we may assume that M(z,y) > 0 for all z,y € X.

Let zg € X and 7 € Sxg. Set xo9 = Tx;. By choosing o =
Lemma 1.4, there exists x3 € Sxo such that

¢(JV1(3§27$1)) > 0 in

P(M(22,21))

d(xs,x9) < H{Tx1}, Sxa) + 5

We let z4 = T'xz3. In analogous way, one can find x5 € Sxy such that

A(M (24, 13)) .

d(zs5,24) < H({T3}, Sz4) + 5

Inductively, we let z9,, = T'x2,_1, and by Lemma 1.4, there exists xop4+1 € Sza, such
that

O(M (x2n, Tan—1))

d(xont1,on) < H({Txon-1}, Sxapn) + 5

for all n e N*.  (2.3)

From (2.1) and (2.3), we get that

A(M(z2,, T2n—1))
2

d(Tant1, Tan) < M(zap, Ton—1) — for all n € N*. (2.4)
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Step 1: We claim that lim d(z,,2z,+1) =0.

n—-+o0o
For any n € N*, we have

d(T2n—1,%2n) < M(22n, Tan—1) = M(22n—1,T2n)

=max {d(x2n17 Zon), D(Ton—1,TT2n-1), D(x2n,ST2n),

(D(wam 1, Szam) + Dl ngn_o]}

gl

IA
g

1
ax {d(xQn—la mZn)a d(l‘Qn—l, ~172n)7 d(z2n7 1'2n+1)a %d(xQn—ly x2n+1)}

IN

1
max { d(Zan—1,%2n), d(Ton, Tont1), %[S(d(@n—l, Top) + d($2n,$2n+1))]}

= max

d(zan—1,%2n), d(x2n7w2n+1)}'

—— —

If for some n > 1, d(zan—1,T2n) < d(Zan, T2nt1), then
d(Tan—1,%an) < M(22n—1,%2n) < d(T2n, Tont1)-
Thus, by (2.4) we have

M L2n—1;L2n
d(xont1, Ton) < M (o, opn—1) — P(M( 22 1, %2n))

M (w2,
< d($2n7$2n+1) — ¢( (anQ 1,.752.,1))7

S0 w = 0, that is, M(x2,—1,z2,) = 0, which is a contradiction. Thus,
for each n > 1, we get that

d(IQTL—la I2n) > d(Iva JC271-"-1)' (25)

Therefore,
M (x2p-1,%2n) = d(xan—1,22,) for each n > 1. (2.6)

Also using (2.1), we have

d(Ton+1, Tant2) = D(zont1, {Tx2n41}) < H(Sxon, {TT2041})
=H({Txon+1}, ST2n) < M(Ton+1,Ton) — @(M(z2n41, T2n))

<M (z2p41,T2n) = max {d(l’QnH,Izn), D(zoni1, Txont1), D(T2n, STon),

1
%[D(Z'Qn-l-ly Sxon) + D(xap, T$2n+1)]}

1
< max {d($2n+1, T2n), A(T2p41, T2n2), %[S<d($2n7 Topt1) + d(T2nt1, $2n+2))]}

=max {d($2n+17 Top), d(T2n41, Tant2) }
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This inequality shows that

M (zan+1, Tant2) = d(Tant1, Tant2) for each n >0, (2.7)
and
d(Zont1, Tan+2) > d(T2n12, Tants) for each n > 0. (2.8)
We deduce from (2.5) and (2.8)
d(Tpt1, Tnt2) > d(Tn, xpy1) for each n >0, (2.9)

We have that {d(z,,~,+1)} is a non-increasing sequence and bounded below, so

lim M(zpy1,2,) = lim d(xpi1,2,) =L > 0. (2.10)
n—-+oo n—-+00

Assume that L > 0, so by a property of ¢ we have ¢(L) > 0. Taking the upper limit
as n — oo in (2.4) and using the fact that ¢ is lower semi-continuous, we obtain that

L
L<L- % <L
a contradiction. Hence L = 0, that is,
lim d(zp,Zn+1) = 0. (2.11)

n—-+oo

Step 2: The sequence {z,} is bounded.

If {x,} were unbounded, then by step 1, {z2,} and {x9,_1} are unbounded. We
choose the sequence {n(k)}$2, such that n(1) = 1, n(2) > n(1) is even and minimal
in the sense that d(z, 2y, Zn(1)) > 1, and similarly n(3) > n(2) is odd and minimal
in the sense that d(z,(3), Tn(2)) > 1, ...,n(2k) > n(2k — 1) is even and minimal in the
sense that d(z,(2r), Tn(2k—1)) > 1, and n(2k 4 1) > n(2k) is odd and minimal in the
sense that d(zy(2k+1), Tn(2k)) > 1.

Obviously n(k) > k for every k € N. By Step 1 there exists Ny € N such that for all
k > Ny we have d(zx11,7,) < 45 So for every k > Ny we have n(k + 1) — n(k) > 2
and

1 <d(Zp(kt1)> Tnk))
<sld(Tn (k1) Tnrr 1) —2) + ATnr1)—2: Tn(k))]
<s[sd(@n(kt1) Trir41)=1) + 3A(Tn(k+1)=1> Tn(k+1)—2) + ATrkt1)—25 Tn(k))]
<s[sd(Zn(kt1) Tr(ht1)—1) + 5A(Zn(k1)=1> Tn(et1)—2) + 1]. (2.12)

Hence 1 < lim sup[d(xn(k+1),xn(k))] = a < s < +00. Also, by the triangular inequal-
k— o0
ity (bm-3), we can write

(L (kt1)s Trk)) < S[A(Tnr1)s Trhr1)+1) F ATrktr1)415 Tnk))]

ST (kg 1)s Tr(hr1)+1) T SUTnks1)+1> Tr(k)+1) + 5 Tr )15 Tngry)]- (2.13)
Take lim sup[d(y, (k+1)+1; Tn(k)+1)] = B. Letting k — oo in (2.13) and using Step 1,
k—oo
we have

a< 825.



342 H. AYDI, M.F. BOTA, E. KARAPINAR AND S. MORADI

If n(k 4+ 1) is odd, so n(k) is even. By (2.1), for all k > Ny, we have

ATy 115 Tnkr1)+1) < H{TTngr1) } STor))
<M (Zn(ks1)s Tnk)) — AM (Tpri1), Tnr))), (2.14)
where
AT (k41)s Tr(k)) < M(Tn(et1), Tnir))
< max{d(Tn(k11)s Tn(k))s ATnk41)> Tnkt1)+1), ATn(k), Tr(r)+1);

1
5[2d($n(k+1)7 Tok)) T A Zn(k)s Tnk)+1) + ATpgi1), Trrr1)+1)] 1
(2.15)

Letting k — oo in (2.15), we get that
i M (2 1), Tnry) = @

Since ¢ is lower semi-continuous, so letting k — oo in (2.14), we have 8 < a — ¢(«).
Having in mind that a < s23, we conclude that

ba) < (1= ),

which is a contradiction because of & > 1 > 0 and a property of ¢.

Step 3: {z,} is a Cauchy sequence.

Now, we show that {x,} is a Cauchy sequence in the b-metric space (X, d). For this
purpose, define

tn = sup{d(z;, x;), i,j > n}.
If lim ¢, =0, then {z,} is a Cauchy sequence.
From d(z;,z;) < sld(x;,xiy1) + d(zi41,2;)] and Step 1, it is enough to show that
lim a, = 0, where

n—oo

an = sup{d(xa;, x2j41), i,jJ > n}.
From Step 2, we have (a,) is bounded, so a, < +oo for all n € N. Also, it is clear
that the sequence {a,} is decreasing, so it converges. Then, there exists a real a > 0
such that

lim a, = a.
n—0oo

We argue by contradiction by assuming that a > 0. For every k € N, there exist
n(k), m(k) € N such that m(k) > n(k) > k and

1
ap — A < d(:r:m(k),xn(k)) < ag. (2.16)
By (2.16), we get that

By the triangular inequality (bm-3), we have

(T (k)s Tr(k)) SS[A(Tm(k)s Tre)+1) T ATn)+15 Trk))]
<s[s(A(Tm(k)s Tm(k)+1) T ATmk)+1> Ty +1)) T ATnk) 115 Tn(r))]-
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Taking the upper limit as & — +o0o0 and having in mind (2.11), (2.17), we obtain that

. a
lim sup d(@p (k)+15 Tr(k)+1) = 2 (2.18)

k—-+o00

Using definition of a,, we may assume that for every k € N, m(k) is odd and n(k) is
even. By (2.1), we have

AT (k) 415 Tn(e)+1) =D(TTm()s Ty +1) = D(@ni)+1, {TZme) )
SH(S2py, {TTm)}) = ({Tiﬂm(k)} STpy) (2.19)
SM(xm(k)axn(k ) ( ( "(k)))’

where
AT k), Trk)) < M(Zin(k)s Tn(k))

:max{d(xm(k)axn(k))a D(@mk)s TTmk))s D(@Tni), STok)),

1
% [D(T (), STr(r)) + D(@nirys TTimry )] }

< max {d(mm(k)amn(k))a AT (k) Tmk)+1)s A Tn(k)s Tn(k)+1)s
1
§[d($m(k), Tp(ky) + A @nk)s Trk)+1) + A Znk)s Tmk)) + AT, xm(k)+1)]}~

By (2.11) and (2.17), we deduce that

li M . 2.2
GJm (Tm(k), Tn(r)) = a (2.20)
Taking the upper limit in (2.19) and combining (2.18) and (2.20), we find that

a

2 <a-— ¢(a)7

S

which contradicts a property of ¢ since a > 0. Thus, a = 0, so the sequence {z,} is
Cauchy. Since the b-metric space (X, d) is complete there exists u € X such that

hm d(xp,u) = 0. (2.21)

We claim that v = T'u € Su. From (2.1), we have
D($2n+2, Su) = D(T.I2n+1, Su) SH({Tx2n+1}7 SU)

<M (zan+1,u) — d(M(z2n41,u)) (2.22)

where

D(u, Su) < M(zop41,u)

1
~ max {d<x2n+17 ), (s 2ans2). Dl Su), - [Dleser, 5u) + d(u, $2n+2)]}
(2.23)
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The condition (bm-3) yields d(x2n+1,u) < s(d(T2n+1, Tan) +d(z2n, u)), so from (2.11)
and (2.21)

lim d($2n+1,u) =0. (224)
——+00

n
Again, by Lemma 1.3, D(zap41,Su) < s(d(x2nt1,u) + D(u, Su), then letting n —
+00, we get

lim sup D(z2,+1,Su) < s D(u, Su), (2.25)
n—-4o0o
Using (2.11), (2.21), (2.24), (2.25) and letting n — +o0 in (2.23), we get
lirf M (zan41,u) = D(u, Su). (2.26)

On the other hand,
D(u, Su) < s[d(u, zant+1) + D(x2n41, Su)],

D(u,S
so limsup D(zap41,Su)) > M Combining this and (2.26) in (2.22), we get
n—-+o0 S
that
D(u, Su)

. < D(u, Su) — ¢(D(u, Su)).
Assume that D(u,Su) > 0, so ¢(D(u,Su)) < (1 — 1)D(u,Su) < (1 — %)D(u, Su),

which is a contradiction with a property of ¢, hence D(u,Su) = 0, so u € Su since
Su is a closed subset in X. Moreover, from (2.1)
where

M (u,u) = max{d(u,u), D(u, Tu), D(u, Su), %[D(u, Su) + D(u, Tu)]} = D(u, Tu).

Thus, D(u,Tu) < D(u,Tu) — ¢(D(u, Tu)), which is possible only if D(u,Tu) = 0, so
u = Tu. We deduce that

u="Tu € Su.
So u is a common fixed point.
Uniqueness of the common fixed point follows from (2.1) and this completes the
proof. O

We illustrate Theorem 2.1 with the following examples.

Example 2.2. Let X = [0,1] be equipped with the b-metric d(z,y) = |x — y|* for all
r,yeX, (s=2)andletT: X — X and S : X — CB(X) defined by

Tr=0 and S:v:[O,%].

Let ¢(t) = %t for allt >0 Then u =0 is the unique common fized of T and S.

Example 2.3. Let X = [0,00) be equipped with the b-metric d(z,y) = |z — y|* and
letT: X — X and S : X — CB(X) defined by

Tx = and SZC:{g}.

wl s

Take ¢(t) = %t for allt > 0. Then u =0 is the unique common fixed of T and S.
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We state next some remarks which follow from our main result.

Remark 2.4. Taking S as a singlevalued operator in Theorem 2.1 we obtain that T
and S have a unique common fized point in X.

Remark 2.5. Toking S = T in Theorem 2.1 we obtain that T has a unique fized
point in X.

Remark 2.6. If we take in Theorem 2.1 (t) = (1 — k)t with k < % we obtain that
T and S have a unique common fixed point in X.
If we take S =T then we get that T has a unique fixed point in X.

Remark 2.7. Our results generalize some results given by Zhang and Song [15],
Rhoades [18], Ciri¢ [8], Rouhani and Moradi [19] and Daffer and Kaneko [13].
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PN-II-ID-PCE-2011-3-0094.
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