A COMMON FIXED POINT FOR WEAK ϕ-CONTRACTIONS ON b-METRIC SPACES

HASSEN AYDI*, MONICA-FELICIA BOTA**, ERDAL KARAPINAR*** AND SIROUS MORADI****
*Université de Sousse,
Institut Supérieur d'Informatique et des Technologies de Communication de Hammam Sousse
Route GP1-4011 H. Sousse, Tunisie
E-mail: hassen.aydi@isima.rnu.tn
**Department of Mathematics, Babeş-Bolyai University, Kogălniceanu Street No.1, 400084, Cluj-Napoca, Romania E-mail: bmonica@math.ubbcluj.ro
*** Department of Mathematics, Atilim University 06836, İncek, Ankara, Turkey
E-mail: erdalkarapinar@yahoo.com, ekarapinar@atilim.edu.tr
*** Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
E-mail: s-moradi@araku.ac.ir, sirousmoradi@gmail.com

Abstract

In this paper, we give a common fixed point result for single-valued and multi-valued mappings satisfying a weak ϕ-contraction in b-metric spaces. Presented theorems extend, generalize and improve some existing results in the literature. Some examples are also given. Key Words and Phrases: Fixed point, complete b-metric space, multi-valued mapping, weak ϕ-contraction. 2010 Mathematics Subject Classification: 47H10, 54H25, 46J10, 46J15.

1. Introduction and Preliminaries

The concept of a b-metric space appeared in some works, such as Bakhtin [1] and Czerwik [9]. For instance, Czerwik [9] presented a generalization of the well known Banach's [2] fixed point theorem in b-metric spaces. We recall the following notations and definitions from [9, 10].

Definition 1.1. ([9, 10]) Let X be a nonempty set and $s \geq 1$ a given real number. A function $d: X \times X \rightarrow[0,+\infty)$ is called a b-metric provided that, for all $x, y, z \in X$, (bm-1) $\quad d(x, y)=0$ if and only if $x=y$,
$(\mathrm{bm}-2) \quad d(x, y)=d(y, x)$,
(bm-3) $\quad d(x, y) \leq s(d(x, z)+d(z, y))$.

Throughout this paper, the letters \mathbb{R} and \mathbb{N}^{*} will denote the set of all real numbers and the set of all positive integer numbers, respectively.

For more considerations and examples of b-metric spaces see $[7,9,4,10,11,12$, 20, 22].

The study of fixed points for multi-valued contractive mappings using the Hausdorff metric was initiated by Markin [16] and Nadler [17]. Later, an interesting and rich fixed point theory for such mappings was developed which has found applications in control theory, convex optimization, differential inclusion and economics (see, [14] and references cited therein).

Definition 1.2. Let X be a nonempty set. An element x in X is said to be a common fixed point of a single-valued $T: X \rightarrow X$ and a multi-valued mapping $S: X \rightarrow P(X)$ if $x=T x \in S x$, where $P(X)$ denotes the collection of all nonempty subsets of X.

Let (X, d) be a b-metric space. Let $P_{c l, b}(X)$ be the collection of all nonempty closed bounded subsets of X. Again as in [4, 10], for $A, B \in P_{c l, b}(X)$, we define

$$
\begin{equation*}
H(A, B)=\max \{\rho(A, B), \rho(B, A)\} \tag{1.1}
\end{equation*}
$$

where

$$
\rho(A, B)=\sup \{D(a, B), \quad a \in A\}, \quad \delta(B, A)=\sup \{D(b, A), \quad b \in B\}
$$

with

$$
D(a, C)=\inf \{d(a, x), x \in C\}, \quad C \in P_{c l, b}(X) .
$$

By definition H is called the Pompeiu-Hausdorff functional.
We recall the following lemmas.
Lemma 1.3. ([9, 20]) Let (X, d) be a b-metric space. For any $A, B, C \in P_{c l, b}(X)$ and any $x, y \in X$, we have the following:
(i) $D(x, B) \leq d(x, b)$ for any $b \in B$,
(ii) $\rho(A, B) \leq H(A, B)$,
(iii) $d(x, B) \leq H(A, B)$ for all $x \in A$,
(iv) $H(A, A)=0$,
(v) $H(A, B)=H(B, A)$,
(vi) $H(A, C) \leq s(H(A, B)+H(B, C))$,
(vii) $D(x, A) \leq s(d(x, y)+D(y, A))$.

Lemma 1.4. ($[9,20])$ Let (X, d) be a b-metric space. Let A and B be in $P_{c l, b}(X)$. Then for each $\alpha>0$ and for all $b \in B$ there exists $a \in A$ such that

$$
d(a, b) \leq H(A, B)+\alpha
$$

Lemma 1.5. $([9,20])$ Let (X, d) be a b-metric space. For $A \in P_{c l, b}(X)$ and $x \in X$, we have

$$
D(x, A)=0 \Longleftrightarrow x \in \bar{A}=A
$$

Let Φ be the set of functions $\phi:[0,+\infty) \rightarrow[0,+\infty)$ that satisfy
(1) $\phi(0)=0$ and $\phi(t)>\left(1-\frac{1}{s^{2}}\right) t$ for each $t>0$,
(2) ϕ is lower semi-continuous.

Note that if $\phi \in \Phi$, we have $\phi(t)>0$ for all $t>0$.
In this paper, we establish a common fixed result for single-valued and multi-valued mappings involving a weak ϕ-contraction on complete b-metric spaces.

2. MAIN RESULTS

Several papers deal with fixed point theory for single-valued and multi-valued operators in b-metric spaces (see $[3,4,7,10,11,20]$).

Our main result is the following.
Theorem 2.1. Let (X, d) be a complete b-metric space and $\phi \in \Phi$. Suppose that $T: X \rightarrow X$ and $S: X \rightarrow P_{c l, b}(X)$ are such that for all $x, y \in X$

$$
\begin{equation*}
H(\{T x\}, S y) \leq M(x, y)-\phi(M(x, y)) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), D(x, T x), D(y, S y), \frac{1}{2 s}[D(x, S y)+D(y, T x)]\right\} \tag{2.2}
\end{equation*}
$$

then T and S have a unique common fixed point in X.
Proof. It is clear that $M(x, y)=0$ if and only if $x=y$ is a common fixed point of T and S. Thus we may assume that $M(x, y)>0$ for all $x, y \in X$.

Let $x_{0} \in X$ and $x_{1} \in S x_{0}$. Set $x_{2}=T x_{1}$. By choosing $\alpha=\frac{\phi\left(M\left(x_{2}, x_{1}\right)\right)}{2}>0$ in Lemma 1.4, there exists $x_{3} \in S x_{2}$ such that

$$
d\left(x_{3}, x_{2}\right) \leq H\left(\left\{T x_{1}\right\}, S x_{2}\right)+\frac{\phi\left(M\left(x_{2}, x_{1}\right)\right)}{2} .
$$

We let $x_{4}=T x_{3}$. In analogous way, one can find $x_{5} \in S x_{4}$ such that

$$
d\left(x_{5}, x_{4}\right) \leq H\left(\left\{T x_{3}\right\}, S x_{4}\right)+\frac{\phi\left(M\left(x_{4}, x_{3}\right)\right)}{2} .
$$

Inductively, we let $x_{2 n}=T x_{2 n-1}$, and by Lemma 1.4, there exists $x_{2 n+1} \in S x_{2 n}$ such that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n}\right) \leq H\left(\left\{T x_{2 n-1}\right\}, S x_{2 n}\right)+\frac{\phi\left(M\left(x_{2 n}, x_{2 n-1}\right)\right)}{2} \text { for all } n \in \mathbb{N}^{*} \tag{2.3}
\end{equation*}
$$

From (2.1) and (2.3), we get that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n}\right) \leq M\left(x_{2 n}, x_{2 n-1}\right)-\frac{\phi\left(M\left(x_{2 n}, x_{2 n-1}\right)\right)}{2} \text { for all } n \in \mathbb{N}^{*} \tag{2.4}
\end{equation*}
$$

Step 1: We claim that $\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)=0$.
For any $n \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
& d\left(x_{2 n-1}, x_{2 n}\right) \leq M\left(x_{2 n}, x_{2 n-1}\right)=M\left(x_{2 n-1}, x_{2 n}\right) \\
= & \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), D\left(x_{2 n-1}, T x_{2 n-1}\right), D\left(x_{2 n}, S x_{2 n}\right),\right. \\
& \left.\frac{1}{2 s}\left[D\left(x_{2 n-1}, S x_{2 n}\right)+D\left(x_{2 n}, T x_{2 n-1}\right)\right]\right\} \\
\leq & \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right), \frac{1}{2 s} d\left(x_{2 n-1}, x_{2 n+1}\right)\right\} \\
\leq & \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right), \frac{1}{2 s}\left[s\left(d\left(x_{2 n-1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n+1}\right)\right)\right]\right\} \\
= & \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right)\right\} .
\end{aligned}
$$

If for some $n \geq 1, d\left(x_{2 n-1}, x_{2 n}\right)<d\left(x_{2 n}, x_{2 n+1}\right)$, then

$$
d\left(x_{2 n-1}, x_{2 n}\right) \leq M\left(x_{2 n-1}, x_{2 n}\right) \leq d\left(x_{2 n}, x_{2 n+1}\right)
$$

Thus, by (2.4) we have

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n}\right) & \leq M\left(x_{2 n}, x_{2 n-1}\right)-\frac{\phi\left(M\left(x_{2 n-1}, x_{2 n}\right)\right)}{2} \\
& \leq d\left(x_{2 n}, x_{2 n+1}\right)-\frac{\phi\left(M\left(x_{2 n-1}, x_{2 n}\right)\right)}{2}
\end{aligned}
$$

so $\frac{\phi\left(M\left(x_{2 n-1}, x_{2 n}\right)\right)}{2}=0$, that is, $M\left(x_{2 n-1}, x_{2 n}\right)=0$, which is a contradiction. Thus, for each $n \geq 1$, we get that

$$
\begin{equation*}
d\left(x_{2 n-1}, x_{2 n}\right) \geq d\left(x_{2 n}, x_{2 n+1}\right) \tag{2.5}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
M\left(x_{2 n-1}, x_{2 n}\right)=d\left(x_{2 n-1}, x_{2 n}\right) \quad \text { for each } n \geq 1 \tag{2.6}
\end{equation*}
$$

Also using (2.1), we have

$$
\begin{aligned}
& d\left(x_{2 n+1}, x_{2 n+2}\right)=D\left(x_{2 n+1},\left\{T x_{2 n+1}\right\}\right) \leq H\left(S x_{2 n},\left\{T x_{2 n+1}\right\}\right) \\
= & H\left(\left\{T x_{2 n+1}\right\}, S x_{2 n}\right) \leq M\left(x_{2 n+1}, x_{2 n}\right)-\phi\left(M\left(x_{2 n+1}, x_{2 n}\right)\right) \\
< & M\left(x_{2 n+1}, x_{2 n}\right)=\max \left\{d\left(x_{2 n+1}, x_{2 n}\right), D\left(x_{2 n+1}, T x_{2 n+1}\right), D\left(x_{2 n}, S x_{2 n}\right)\right. \\
& \left.\frac{1}{2 s}\left[D\left(x_{2 n+1}, S x_{2 n}\right)+D\left(x_{2 n}, T x_{2 n+1}\right)\right]\right\} \\
\leq & \max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n+2}\right), \frac{1}{2 s}\left[s\left(d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right)\right)\right]\right\} \\
= & \max \left\{d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n+2}\right)\right\} .
\end{aligned}
$$

This inequality shows that

$$
\begin{equation*}
M\left(x_{2 n+1}, x_{2 n+2}\right)=d\left(x_{2 n+1}, x_{2 n+2}\right) \quad \text { for each } n \geq 0 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \geq d\left(x_{2 n+2}, x_{2 n+3}\right) \quad \text { for each } n \geq 0 . \tag{2.8}
\end{equation*}
$$

We deduce from (2.5) and (2.8)

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right) \geq d\left(x_{n}, x_{n+1}\right) \quad \text { for each } n \geq 0 \tag{2.9}
\end{equation*}
$$

We have that $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a non-increasing sequence and bounded below, so

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} M\left(x_{n+1}, x_{n}\right)=\lim _{n \rightarrow+\infty} d\left(x_{n+1}, x_{n}\right)=L \geq 0 \tag{2.10}
\end{equation*}
$$

Assume that $L>0$, so by a property of ϕ we have $\phi(L)>0$. Taking the upper limit as $n \rightarrow \infty$ in (2.4) and using the fact that ϕ is lower semi-continuous, we obtain that

$$
L \leq L-\frac{\phi(L)}{2}<L
$$

a contradiction. Hence $L=0$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{2.11}
\end{equation*}
$$

Step 2: The sequence $\left\{x_{n}\right\}$ is bounded.
If $\left\{x_{n}\right\}$ were unbounded, then by step $1,\left\{x_{2 n}\right\}$ and $\left\{x_{2 n-1}\right\}$ are unbounded. We choose the sequence $\{n(k)\}_{k=1}^{\infty}$ such that $n(1)=1, n(2)>n(1)$ is even and minimal in the sense that $d\left(x_{n(2)}, x_{n(1)}\right)>1$, and similarly $n(3)>n(2)$ is odd and minimal in the sense that $d\left(x_{n(3)}, x_{n(2)}\right)>1, \ldots, n(2 k)>n(2 k-1)$ is even and minimal in the sense that $d\left(x_{n(2 k)}, x_{n(2 k-1)}\right)>1$, and $n(2 k+1)>n(2 k)$ is odd and minimal in the sense that $d\left(x_{n(2 k+1)}, x_{n(2 k)}\right)>1$.
Obviously $n(k) \geq k$ for every $k \in \mathbb{N}$. By Step 1 there exists $N_{0} \in \mathbb{N}$ such that for all $k \geq N_{0}$ we have $d\left(x_{k+1}, x_{k}\right)<\frac{1}{4 s}$. So for every $k \geq N_{0}$ we have $n(k+1)-n(k) \geq 2$ and

$$
\begin{align*}
1 & <d\left(x_{n(k+1)}, x_{n(k)}\right) \\
& \leq s\left[d\left(x_{n(k+1)}, x_{n(k+1)-2}\right)+d\left(x_{n(k+1)-2}, x_{n(k)}\right)\right] \\
& \leq s\left[s d\left(x_{n(k+1)}, x_{n(k+1)-1}\right)+s d\left(x_{n(k+1)-1}, x_{n(k+1)-2}\right)+d\left(x_{n(k+1)-2}, x_{n(k)}\right)\right] \\
& \leq s\left[s d\left(x_{n(k+1)}, x_{n(k+1)-1}\right)+s d\left(x_{n(k+1)-1}, x_{n(k+1)-2}\right)+1\right] . \tag{2.12}
\end{align*}
$$

Hence $1 \leq \limsup _{k \rightarrow \infty}\left[d\left(x_{n(k+1)}, x_{n(k)}\right)\right]=\alpha \leq s<+\infty$. Also, by the triangular inequality (bm-3), we can write

$$
\begin{gather*}
d\left(x_{n(k+1)}, x_{n(k)}\right) \leq s\left[d\left(x_{n(k+1)}, x_{n(k+1)+1}\right)+d\left(x_{n(k+1)+1}, x_{n(k)}\right)\right] \\
\leq s\left[d\left(x_{n(k+1)}, x_{n(k+1)+1}\right)+s d\left(x_{n(k+1)+1}, x_{n(k)+1}\right)+s d\left(x_{n(k)+1}, x_{n(k)}\right)\right] . \tag{2.13}
\end{gather*}
$$

Take $\limsup _{k \rightarrow \infty}\left[d\left(x_{n(k+1)+1}, x_{n(k)+1}\right)\right]=\beta$. Letting $k \rightarrow \infty$ in (2.13) and using Step 1, we have

$$
\alpha \leq s^{2} \beta
$$

If $n(k+1)$ is odd, so $n(k)$ is even. By (2.1), for all $k \geq N_{0}$, we have

$$
\begin{align*}
d\left(x_{n(k)+1}, x_{n(k+1)+1}\right) & \leq H\left(\left\{T x_{n(k+1)}\right\}, S x_{n(k)}\right) \\
& \leq M\left(x_{n(k+1)}, x_{n(k)}\right)-\phi\left(M\left(x_{n(k+1)}, x_{n(k)}\right)\right) \tag{2.14}
\end{align*}
$$

where

$$
\begin{align*}
d\left(x_{n(k+1)}, x_{n(k)}\right) & \leq M\left(x_{n(k+1)}, x_{n(k)}\right) \\
& \leq \max \left\{d\left(x_{n(k+1)}, x_{n(k)}\right), d\left(x_{n(k+1)}, x_{n(k+1)+1}\right), d\left(x_{n(k)}, x_{n(k)+1}\right)\right. \\
& \left.\frac{1}{2}\left[2 d\left(x_{n(k+1)}, x_{n(k)}\right)+d\left(x_{n(k)}, x_{n(k)+1}\right)+d\left(x_{n(k+1)}, x_{n(k+1)+1}\right)\right]\right\} \tag{2.15}
\end{align*}
$$

Letting $k \rightarrow \infty$ in (2.15), we get that

$$
\lim _{k \rightarrow \infty} M\left(x_{n(k+1)}, x_{n(k)}\right)=\alpha .
$$

Since ϕ is lower semi-continuous, so letting $k \rightarrow \infty$ in (2.14), we have $\beta \leq \alpha-\phi(\alpha)$. Having in mind that $\alpha \leq s^{2} \beta$, we conclude that

$$
\phi(\alpha) \leq\left(1-\frac{1}{s^{2}}\right) \alpha,
$$

which is a contradiction because of $\alpha \geq 1>0$ and a property of ϕ.
Step 3: $\left\{x_{n}\right\}$ is a Cauchy sequence.
Now, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in the b-metric space (X, d). For this purpose, define

$$
t_{n}=\sup \left\{d\left(x_{i}, x_{j}\right), i, j \geq n\right\}
$$

If $\lim _{n \rightarrow \infty} t_{n}=0$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.
From $d\left(x_{i}, x_{j}\right) \leq s\left[d\left(x_{i}, x_{i+1}\right)+d\left(x_{i+1}, x_{j}\right)\right]$ and Step 1, it is enough to show that $\lim _{n \rightarrow \infty} a_{n}=0$, where

$$
a_{n}=\sup \left\{d\left(x_{2 i}, x_{2 j+1}\right), i, j \geq n\right\} .
$$

From Step 2, we have $\left(a_{n}\right)$ is bounded, so $a_{n}<+\infty$ for all $n \in \mathbb{N}$. Also, it is clear that the sequence $\left\{a_{n}\right\}$ is decreasing, so it converges. Then, there exists a real $a \geq 0$ such that

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

We argue by contradiction by assuming that $a>0$. For every $k \in \mathbb{N}$, there exist $n(k), m(k) \in \mathbb{N}$ such that $m(k)>n(k)>k$ and

$$
\begin{equation*}
a_{k}-\frac{1}{k} \leq d\left(x_{m(k)}, x_{n(k)}\right) \leq a_{k} \tag{2.16}
\end{equation*}
$$

By (2.16), we get that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} d\left(x_{m(k)}, x_{n(k)}\right)=a \tag{2.17}
\end{equation*}
$$

By the triangular inequality (bm-3), we have

$$
\begin{aligned}
d\left(x_{m(k)}, x_{n(k)}\right) & \leq s\left[d\left(x_{m(k)}, x_{n(k)+1}\right)+d\left(x_{n(k)+1}, x_{n(k)}\right)\right] \\
& \leq s\left[s\left(d\left(x_{m(k)}, x_{m(k)+1}\right)+d\left(x_{m(k)+1}, x_{n(k)+1}\right)\right)+d\left(x_{n(k)+1}, x_{n(k)}\right)\right] .
\end{aligned}
$$

Taking the upper limit as $k \rightarrow+\infty$ and having in mind (2.11), (2.17), we obtain that

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} d\left(x_{m(k)+1}, x_{n(k)+1}\right) \geq \frac{a}{s^{2}} . \tag{2.18}
\end{equation*}
$$

Using definition of a_{n}, we may assume that for every $k \in \mathbb{N}, m(k)$ is odd and $n(k)$ is even. By (2.1), we have

$$
\begin{align*}
d\left(x_{m(k)+1}, x_{n(k)+1}\right) & =D\left(T x_{m(k)}, x_{n(k)+1}\right)=D\left(x_{n(k)+1},\left\{T x_{m(k)}\right\}\right) \\
& \leq H\left(S x_{n(k)},\left\{T x_{m(k)}\right\}\right)=H\left(\left\{T x_{m(k)}\right\}, S x_{n(k)}\right) \tag{2.19}\\
& \leq M\left(x_{m(k)}, x_{n(k)}\right)-\phi\left(M\left(x_{m(k)}, x_{n(k)}\right)\right),
\end{align*}
$$

where

$$
\begin{aligned}
& d\left(x_{m(k)}, x_{n(k)}\right) \leq M\left(x_{m(k)}, x_{n(k)}\right) \\
= & \max \left\{d\left(x_{m(k)}, x_{n(k)}\right), D\left(x_{m(k)}, T x_{m(k)}\right), D\left(x_{n(k)}, S x_{n(k)}\right),\right. \\
& \left.\frac{1}{2 s}\left[D\left(x_{m(k)}, S x_{n(k)}\right)+D\left(x_{n(k)}, T x_{m(k)}\right)\right]\right\} \\
\leq & \max \left\{d\left(x_{m(k)}, x_{n(k)}\right), d\left(x_{m(k)}, x_{m(k)+1}\right), d\left(x_{n(k)}, x_{n(k)+1}\right),\right. \\
& \left.\frac{1}{2}\left[d\left(x_{m(k)}, x_{n(k)}\right)+d\left(x_{n(k)}, x_{n(k)+1}\right)+d\left(x_{n(k)}, x_{m(k)}\right)+d\left(x_{m(k)}, x_{m(k)+1}\right)\right]\right\} .
\end{aligned}
$$

By (2.11) and (2.17), we deduce that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} M\left(x_{m(k)}, x_{n(k)}\right)=a . \tag{2.20}
\end{equation*}
$$

Taking the upper limit in (2.19) and combining (2.18) and (2.20), we find that

$$
\frac{a}{s^{2}} \leq a-\phi(a),
$$

which contradicts a property of ϕ since $a>0$. Thus, $a=0$, so the sequence $\left\{x_{n}\right\}$ is Cauchy. Since the b-metric space (X, d) is complete there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(x_{n}, u\right)=0 \tag{2.21}
\end{equation*}
$$

We claim that $u=T u \in S u$. From (2.1), we have

$$
\begin{align*}
D\left(x_{2 n+2}, S u\right)=D\left(T x_{2 n+1}, S u\right) & \leq H\left(\left\{T x_{2 n+1}\right\}, S u\right) \tag{2.22}\\
& \leq M\left(x_{2 n+1}, u\right)-\phi\left(M\left(x_{2 n+1}, u\right)\right)
\end{align*}
$$

where

$$
\begin{align*}
& D(u, S u) \leq M\left(x_{2 n+1}, u\right) \\
= & \max \left\{d\left(x_{2 n+1}, u\right), d\left(x_{2 n+1}, x_{2 n+2}\right), D(u, S u), \frac{1}{2 s}\left[D\left(x_{2 n+1}, S u\right)+d\left(u, x_{2 n+2}\right)\right]\right\} . \tag{2.23}
\end{align*}
$$

The condition (bm-3) yields $d\left(x_{2 n+1}, u\right) \leq s\left(d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, u\right)\right)$, so from (2.11) and (2.21)

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(x_{2 n+1}, u\right)=0 \tag{2.24}
\end{equation*}
$$

Again, by Lemma 1.3, $D\left(x_{2 n+1}, S u\right) \leq s\left(d\left(x_{2 n+1}, u\right)+D(u, S u)\right.$, then letting $n \rightarrow$ $+\infty$, we get

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} D\left(x_{2 n+1}, S u\right) \leq s D(u, S u), \tag{2.25}
\end{equation*}
$$

Using (2.11), (2.21), (2.24), (2.25) and letting $n \rightarrow+\infty$ in (2.23), we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} M\left(x_{2 n+1}, u\right)=D(u, S u) \tag{2.26}
\end{equation*}
$$

On the other hand,

$$
D(u, S u) \leq s\left[d\left(u, x_{2 n+1}\right)+D\left(x_{2 n+1}, S u\right)\right],
$$

so $\left.\limsup _{n \rightarrow+\infty} D\left(x_{2 n+1}, S u\right)\right) \geq \frac{D(u, S u)}{s}$. Combining this and (2.26) in (2.22), we get that

$$
\frac{D(u, S u)}{s} \leq D(u, S u)-\phi(D(u, S u))
$$

Assume that $D(u, S u)>0$, so $\phi(D(u, S u)) \leq\left(1-\frac{1}{s}\right) D(u, S u) \leq\left(1-\frac{1}{s^{2}}\right) D(u, S u)$, which is a contradiction with a property of ϕ, hence $D(u, S u)=0$, so $u \in S u$ since $S u$ is a closed subset in X. Moreover, from (2.1)

$$
D(T u, u) \leq H(\{T u\}, S u) \leq M(u, u)-\phi(M(u, u))
$$

where

$$
M(u, u)=\max \left\{d(u, u), D(u, T u), D(u, S u), \frac{1}{2 s}[D(u, S u)+D(u, T u)]\right\}=D(u, T u)
$$

Thus, $D(u, T u) \leq D(u, T u)-\phi(D(u, T u))$, which is possible only if $D(u, T u)=0$, so $u=T u$. We deduce that

$$
u=T u \in S u
$$

So u is a common fixed point.
Uniqueness of the common fixed point follows from (2.1) and this completes the proof.

We illustrate Theorem 2.1 with the following examples.
Example 2.2. Let $X=[0,1]$ be equipped with the b-metric $d(x, y)=|x-y|^{2}$ for all $x, y \in X,(s=2)$ and let $T: X \rightarrow X$ and $S: X \rightarrow \mathcal{C B}(X)$ defined by

$$
T x=0 \quad \text { and } \quad S x=\left[0, \frac{x}{5}\right] .
$$

Let $\phi(t)=\frac{4}{5} t$ for all $t \geq 0$ Then $u=0$ is the unique common fixed of T and S.
Example 2.3. Let $X=[0, \infty)$ be equipped with the b-metric $d(x, y)=|x-y|^{2}$ and let $T: X \rightarrow X$ and $S: X \rightarrow \mathcal{C B}(X)$ defined by

$$
T x=\frac{x}{3} \quad \text { and } \quad S x=\left\{\frac{x}{3}\right\} .
$$

Take $\phi(t)=\frac{8}{9} t$ for all $t \geq 0$. Then $u=0$ is the unique common fixed of T and S.

We state next some remarks which follow from our main result.
Remark 2.4. Taking S as a singlevalued operator in Theorem 2.1 we obtain that T and S have a unique common fixed point in X.

Remark 2.5. Taking $S=T$ in Theorem 2.1 we obtain that T has a unique fixed point in X.
Remark 2.6. If we take in Theorem 2.1 $\varphi(t)=(1-k) t$ with $k<\frac{1}{s^{2}}$ we obtain that T and S have a unique common fixed point in X.

If we take $S=T$ then we get that T has a unique fixed point in X.
Remark 2.7. Our results generalize some results given by Zhang and Song [15], Rhoades [18], Ćirić [8], Rouhani and Moradi [19] and Daffer and Kaneko [13].

Acknowledgement. The second author is partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

[1] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30(1989), 26-37.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3(1922), 133-181
[3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 3(1993) 3-9.
[4] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. Babes-Bolyai, Mathematica, 54(2009), no. 3, 3-14.
[5] M. Boriceanu, Strict fixed point theorems for multivalued opeartaions in b-metric spaces, International J. Modern Mathematics, 4(2009), no. 3, 285-301
[6] M. Boriceanu, A. Petruşel, I.A. Rus, Fixed point theorems for some multivalued generalized contractions in b-metric spaces, International J. Math. Statistics, 6(2010), 65-76
[7] M. Bota, A. Molnar, Cs. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12(2011), no. 2, 21-28.
[8] Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[10] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(1998), no. 2, 263-276.
11] S. Czerwik, K. Dlutek, S.L. Singh, Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci., 11(1997), 87-94.
[12] S. Czerwik, K. Dlutek, S.L. Singh, Round-off stability of iteration procedures for set-valued operators in b-metric spaces, J. Natur. Phys. Sci., 15(2001), 1-8.
[13] P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive Multi-valued mappings, J. Math. Anal. Appl., 192(1995), 655-666.
14] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publ., Dordrecht, 1999.
[15] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
[16] J.T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38(1973), 545-547.
[17] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
[18] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47(2001), 26832693.
[19] B. Djafari Rouhani, S. Moradi, Common fixed point of multivalued generalized (ψ, ϕ)-weak contractive mappings, Fixed Point Theory Appl., Volume 2010, Article ID 708984, 13 pages.
[20] S.L. Singh, Ch. Bhatnagar, S.N. Mishra, Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math., 38(2005), no. 4, 905-916.
[21] S.L. Singh, S. Czerwik, K. Krol, A. Singh, Coincidences and fixed points points of hybrid contractions, Tamsui Oxford Journal of Math. Sciences, 24(2008), no. 4, 401-416.
[22] S.L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55(2008), 2512-2520.

Received: November 28, 2011; Accepted: February 2, 2012.

