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Abstract. We consider the CQ algorithm, with choice of steps introduced by Yang (J. Math. Anal.

Appl. 302 (2005), 166-179), for solving the split feasibility problem (SFP): find x ∈ C such that
Ax ∈ Q, where C and Q are nonempty closed convex subsets of Rn and Rm, respectively, and A

is an m × n matrix. We convert the SFP to an equivalent convexly constrained nonlinear system

of finding a zero in C of an inverse strongly monotone operator, which enables us to introduce new
convergent iterative algorithms. Two restrictive conditions of Yang (i.e., the boundedness of Q and

the full column rank of A) are completely removed in our new algorithms.
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1. Introduction

The problem under consideration in this paper is formulated as finding a point x̂
satisfying the property:

x̂ ∈ C and Ax̂ ∈ Q, (1.1)

where C and Q are nonempty closed convex subset of Rn and Rm, respectively, and A
is an m× n matrix (i.e., a linear operator from Rn into Rm). Problem (1.1) is called
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by Censor and Elfving [5] the split feasibility problem (SFP) and has been proved
very useful in dealing with a variety of signal processing [4].

Various algorithms have been invented to solve the SFP (1.1) (see [2, 8, 9, 10, 11,
12, 13] and reference therein). In particular, Byrne introduced his CQ algorithm:

xk+1 = PC(xk − τAt(I − PQ)Axk), (1.2)

where At is the transpose of A and the stepsize τ is a fixed real number in
(0, 2/%(AtA)), with %(AtA) being the spectral radius of AtA. Compared with the
original algorithm in [5], the CQ algorithm (1.2) is more easily performed because it
dose not involve matrix inverses. However, to implement the CQ algorithm, one has
to compute or estimate the value of %(AtA), which is not always possible in practice.
To overcome this drawback, Yang [13] suggested, instead of the constant-step, the
following variable-step:

τk =
%k

‖At(I − PQ)Axk‖
, (1.3)

where (%k) is a sequence of positive real numbers such that
∞∑

k=0

%k = ∞,
∞∑

k=0

%2
k < ∞. (1.4)

With this choice of the steps, the computation of %(A∗A) is avoided and hence one
need not know a prior any information of the spectral radius of A∗A. Yang proved
the convergence of the modified algorithm to a solution of the SFP provided that (i)
Q is a bounded subset; and (ii) A is a matrix with full column rank.

However, Yang’s conditions imposed on Q and A are restrictive and they may
exclude many important cases. The purpose of this note is to relax these conditions
by requiring no boundedness on Q nor full column rank of A. Our success of doing
so is due to an equivalent formulation of the SFP (1.1) as finding a zero of a weakly
co-coercive operator, which enables us to invent new ways to select variable-steps for
the CQ algorithm (1.2), and in particular, we are able to remove Yang’s boundedness
condition on Q and the full column rank assumption on A.

The paper is structured as follows. In the next section, after the concept of pro-
jections, we introduce the class of weakly inverse strongly monotone operators and
prove that the operator f := At(I − PQ)A is inverse strongly maximal monotone.
Moreover, we state our novel idea to solve the SFP (1.1) which is, roughly speaking,
to equivalently reformulate it as a convexly constrained nonlinear system of finding
a zero of f in C. In Section 3, we introduce two new iterative algorithms and prove
their convergence to a solution of the SFP (1.1) (if any). In particular, we completely
remove Yang’s conditions (i) and (ii) described above.

2. Preliminaries

Let C be a nonempty closed convex subset of Rn. Denote by PC the projection
from Rn onto C; that is, PCx = arg min

y∈C
‖x− y‖2, x ∈ Rn. The projection operator

has the following properties (see [6]).
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Lemma 2.1. Let PC be the projection operator onto C. Then for any x, y ∈ Rn,

(i) PC is nonexpansive, i.e., ‖PCx− PCy‖ ≤ ‖x− y‖,
(ii) PC is firmly nonexpansive, i.e., ‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉,
(iii) I − PC is firmly nonexpansive.

We need definitions of some classes of nonlinear mappings.

Definition 2.2. Let f be an operator from Rn into Rn.
(i) f is said to be monotone if 〈f(x)−f(y), x−y〉 ≥ 0 for all x, y ∈ Rn. Moreover,

a monotone operator f is maximal monotone if its graph is not properly
contained in the graph of any other monotone operator.

(ii) f is said to be inverse strongly monotone (ism, for short) (also known as
co-coercive) if there exists a constant γ > 0 such that

〈f(x)− f(y), x− y〉 ≥ γ‖f(x)− f(y)‖2, x, y ∈ Rn;

and in this case, f is also referred to as γ-ism.
(iii) f is said to be weakly inverse strongly monotone (wism, for short) (or weakly

co-coercive) if there exists a continuous positive function g : Rn×Rn → (0,∞)
such that

〈f(x)− f(y), x− y〉 ≥ g(x, y)‖f(x)− f(y)‖2, x, y ∈ Rn.

It is not hard to find that the co-coerciveness implies the weak co-coerciveness,
while the latter implies the monotonicity. Moreover it is worth noting that these
implications are proper.

Let Q be a nonempty closed convex subset of Rm and let A be an m × n matrix,
and set

A−1(Q) = {x ∈ Rn : Ax ∈ Q} and f−1(0) = {x ∈ Rn : f(x) = 0}.
Our idea to solve the SFP (1.1) is to transform it equivalently to a problem of

finding a zero of a maximal monotone operator. To this end, we define a mapping f
by setting

f := At(I − PQ)A. (2.1)

Lemma 2.3. The operator f defined in (2.1) is maximal monotone on Rn and is
also 1

ρ(AtA) -ism.

Proof. For all x, y ∈ Rn, we have, as I − PQ is firmly nonexpansive, that

〈f(x)− f(y), x− y〉 = 〈(I − PQ)Ax− (I − PQ)Ay, Ax−Ay〉
≥ ‖(I − PQ)Ax− (I − PQ)Ay‖2

≥ 1
‖A‖2

‖At(I − PQ)Ax−At(I − PQ)Ay‖2 =
1

ρ(AtA)
‖f(x)− f(y)‖2.

This shows that f is 1
ρ(AtA) -ism. f is also maximal monotone since it is Lipschitz

continuous on Rn. �
The following lemma is crucial to our main argument in the next section since it

asserts that to solve the SFP (1.1) is equivalent to finding a zero of f in C, namely,

Find x ∈ C such that f(x) = 0. (2.2)
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Lemma 2.4. Let f be given as in (2.1). If A−1(Q) is nonempty, then f−1(0) =
A−1(Q).

Proof. It is straightforward that if Ax ∈ Q, then f(x) = 0. This verifies that
A−1(Q) ⊂ f−1(0). To see the converse relation f−1(0) ⊂ A−1(Q), let z ∈ A−1(Q) be
fixed and take x ∈ f−1(0). Since I − PQ is firmly nonexpansive, it follows that

‖(I − PQ)Ax‖2 = ‖(I − PQ)Ax− (I − PQ)Az‖2

≤ 〈Ax−Az, (I − PQ)Ax〉
= 〈x− z,A∗(I − PQ)Ax〉 = 〈x− z, f(x)〉 = 0.

This implies that Ax ∈ Q and the proof is complete. �

It is proved that f is co-coercive (see [3]), and hence weakly co-coercive. In other
words, the SFP is a special case of the problem for finding a zero point of a weakly
co-coercive operator onto a closed convex subset.

3. Iterative algorithms and their convergence analysis

By Lemma 2.4, we know that solving the SFP (1.1) is equivalent to solving the
system (2.2), i.e., finding a zero of f in C. We will propose two iterative algorithms
to approximate a solution of problem (2.2). However, for more generality, we consider
the convexly constrained nonlinear equation

f(x) = 0, x ∈ C, (3.1)

where f : Rn → Rn is weakly inverse strongly monotone (wism) and C is a nonempty
closed convex subset of Rn. We assume that (3.1) is consistent (i.e., solvable).

Algorithm 3.1. Choose an arbitrary initial guess x1.
Step 1. Given xk, if f(xk) = 0, stop; otherwise compute:

xk+1 = PC(xk − τkf(xk)), (3.2)

where τk is defined as

τk :=
%k

‖f(xk)‖
. (3.3)

Step 2. If xk+1 = xk, then stop; otherwise go to step 1.

Remark 3.2. Algorithm 3.1 was originally proposed by Auslender [1] for solving vari-
ational inequalities and recently reinvestigated by Yang [13].

We next present another variable-step for approximating solutions of problem (2.2).

Algorithm 3.3. Choose an arbitrary initial guess x1.
Step 1. Given xk, compute the next iteration:

xk+1 = PC(xk − %kf(xk)), (3.4)

where %k is a positive number to be selected appropriately.
Step 2. If xk+1 = xk, then stop; otherwise go to step 1.
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Remark 3.4. It is not hard to check that if the iteration above terminates within finite
steps, then the current iteration must be a solution of the problem. So without loss
of generality we assume that both algorithms generate an infinite iterative sequence.

The following elementary lemma play an important role in our convergence anal-
ysis.

Lemma 3.5. [7] Let (εk) and (sk) be positive real sequences. Assume that
∑

k εk < ∞.
If either (i) sk+1 ≤ (1 + εk)sk, or (ii) sk+1 ≤ sk + εk, then the limit of (sk) exists.

Theorem 3.6. If the condition (1.4) holds and f : Rn → Rn is weakly inverse
strongly monotone, then the sequence (xk) generated by Algorithm 3.1 converges to a
solution of Eq. (3.1), that is, a point in C ∩ f−1(0).

Proof. Abbreviate fk = f(xk) and let z ∈ C ∩ f−1(0) be fixed. Using the fact
that PC is nonexpansive and that z ∈ C, we have from (3.2)

‖xk+1 − z‖2 ≤ ‖(xk − z)− τkfk‖2. (3.5)

Expanding the right-hand side of (3.5) yields

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 2τk〈fk, xk − z〉+ %2
k. (3.6)

Let us now estimate the second term of the right-hand side of (3.6). Since f(z) = 0
and f is monotone, it follows that 〈fk, xk − z〉 ≥ 〈f(z), xk − z〉 = 0. Hence, (3.6)
implies that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + %2
k. (3.7)

We therefore can apply Lemma 3.5 to (3.7) to conclude that (‖xk − z‖) is convergent
and hence (‖xk‖) is bounded.

We next show that limk fk = 0. The boundedness of (xk) implies that there exists
a closed ball BM = {x ∈ Rn : ‖x‖ ≤ M} containing z and (xk). Since f is wism,
there exists a continuous positive function g : Rn × Rn → (0,∞) such that

〈f(x)− f(y), x− y〉 ≥ g(x, y)‖f(x)− f(y)‖2, x, y ∈ Rn. (3.8)

Since g is continuous and positive, there is δ > 0 such that g(x, y) ≥ δ, for all
x, y ∈ C ∩BM . Consequently,

〈fk, xk − z〉 = 〈fk − f(z), xk − z〉 ≥ δ‖fk‖2. (3.9)

Combining (3.9) and (3.6) yields

2δ‖fk‖ ≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + %2
k,

which immediately implies that

2δ
k∑

`=1

%`‖f`‖ ≤ ‖x1 − z‖2 +
n∑

`=1

%2
` .

Letting k →∞, we arrive at
∞∑

k=1

%k‖fk‖ < ∞. (3.10)
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Since
∑

k %k = ∞, it follows that lim infk ‖fk‖ = 0. Thus to see limk ‖fk‖ = 0, it
suffices to verify that the limit of (‖fk‖) exists. Taking into account the fact that f
is (1/δ)-Lipschitz continuous on C ∩BM , we deduce that

‖fk+1 − fk‖ ≤
1
δ
‖xk − xk+1‖ =

1
δ
‖xk − PC(xk − τkfk)‖ ≤ τk

δ
‖fk‖ =

%k

δ
,

where the last inequity uses the nonexpansiveness of the projection and the fact that
xk = PCxk. It turns out that

‖fk+1‖2 = ‖fk‖2 + ‖fk+1 − fk‖2 + 2〈fk, fk+1 − fk〉
≤ ‖fk‖2 + ‖fk+1 − fk‖2 + 2‖fk‖‖fk+1 − fk‖

≤ ‖fk‖2 +
%2

k

δ2
+

2%k

δ
‖fk‖ = ‖fk‖2 + σk,

where σk = (%k/δ)2 +(2/δ)%k‖fk‖. In view of (3.10) and (1.4), we have that
∑

k σk <
∞. Consequently, an application of Lemma 3.5 guarantees that the limk ‖fk‖ exists;
hence we must have limk fk = 0.

Finally we show that every cluster point of (xk) is in the set C ∩ f−1(0). So
suppose that a subsequence (xkj ) of (xk) converges to a point x̂. It is readily seen
that x̂ ∈ C∩BM . Since f is continuous on C∩BM , we have that f(x̂) = limk→∞ fkj

=
limk→∞ fk = 0, that is, x̂ ∈ f−1(0). Note that lim ‖xk−z‖ exists for all z ∈ C∩f−1(0).
In particular, we have that lim ‖xk− x̂‖ exists. Since, however, the subsequence (xkj

)
converges to x̂, we must have lim ‖xk − x̂‖ = 0. Therefore xk → x̂. �

Theorem 3.7. If the condition (1.4) holds and f : Rn → Rn is inverse strongly
monotone (ism), then the sequence (xn) generated by Algorithm 3.3 converges to a
solution of Eq. (3.1), namely, a point in C ∩ f−1(0).

Proof. Let again fk := f(xk). We first show that (‖xk − z‖) is convergent for any
fixed z ∈ C ∩ f−1(0). Indeed, similarly to the derivation of (3.6), we have

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 2%k〈fk, xk − z〉+ %2
k‖fk‖2. (3.11)

Since now f is ism, there exists δ > 0 such that

〈f(x)− f(y), x− y〉 ≥ δ‖f(x)− f(y)‖2, x, y ∈ Rn. (3.12)

It is clear that f is also (1/δ)-Lipschitz continuous, so that

‖fk‖ = ‖fk − f(z)‖ ≤ (1/δ)‖xk − z‖. (3.13)

Note that 〈fk, xk − z〉 ≥ 0. Substituting (3.13) into (3.11) yields

‖xk+1 − z‖2 ≤ ‖xk − z‖2 +
(%k

δ

)2

‖xk − z‖2 = (1 + σk)‖xk − z‖2,

where σk = (%k/δ)2. It is readily seen that
∑

σk < ∞ due to (1.4). By Lemma 3.5,
we conclude that the sequence (‖xk−z‖) is convergent; in particular, (xk) is bounded.

We next prove that limk ‖fk‖ = 0. Take M > 0 so that ‖xk−z‖ ≤ M for all k ∈ N.
According to (3.13), we have

‖fk‖ ≤
1
δ
‖xk − z‖ ≤ M

δ
. (3.14)
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On the other hand, we deduce from (3.12) that

〈fk, xk − z〉 = 〈fk − f(z), xk − z〉 ≥ δ‖fk‖2. (3.15)

From (3.15), (3.11) and (3.14), it follows that

2δ%k‖fk‖2 ≤ 2%k〈fk, xk − z〉 ≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + %2
k‖fk‖2

≤ ‖xk − z‖2 − ‖xk+1 − z‖2 +
(

M

δ

)2

%2
k,

which immediately implies that

2δ
k∑

j=1

%j‖fj‖2 ≤ ‖x1 − z‖2 +
(

M

δ

)2 k∑
j=1

%2
j .

Taking the limit by letting k →∞ in the last relation yields
∞∑

k=1

%k‖fk‖2 < ∞. (3.16)

This together with the assumption
∑

k %k = ∞ particularly implies that
lim infk ‖fk‖ = 0. So to prove that limk ‖fk‖ = 0, it suffices to verify the existence of
the limk ‖fk‖. Actually, we have

‖fk+1 − fk‖ ≤
1
δ
‖xk − xk+1‖ =

1
δ
‖xk − PC(xk − %kfk)‖ ≤ %k

δ
‖fk‖,

where the last inequality uses the nonexpansiveness of projections and the fact that
xk = PCxk. By using the last inequalities, we have

‖fk+1‖2 = ‖fk‖2 + ‖fk+1 − fk‖2 + 2〈fk, fk+1 − fk〉
≤ ‖fk‖2 + ‖fk+1 − fk‖2 + 2‖fk‖‖fk+1 − fk‖

≤ ‖fk‖2 + (
%k

δ
)2‖fk‖2 +

2%k

δ
‖fk‖2 ≤ ‖fk‖2 +

M2

δ4
%2

k +
2%k

δ
‖fk‖2,

where the last inequality uses (3.14). Setting σk = (M/δ2)2%2
k + (2%k‖fk‖2)/δ, we

have

‖fk+1‖2 ≤ ‖fk‖2 + σk. (3.17)

It is clear that
∑

n σn < ∞ due to (3.16) and (1.4). We can therefore apply Lemma
3.5 to (3.17) to get the existence of the limk ‖fk‖ and the proof is complete. �

The theorem below is an immediate consequence of Theorems 3.6 and 3.7 together
with Lemma 2.4. We completely remove the boundedness of Q and the full column
rank of A in Yang’s result [13], as described in the Introduction.

Theorem 3.8. Let f = A∗(I − PQ)A and let the condition (1.4) hold. Then the
sequence (xk) generated either by Algorithm 3.1 or by Algorithm 3.3 converges to a
solution of the SFP (1.1) whenever its solution set is nonempty.
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Remark 3.9. To implement our algorithms, the closed convex subsets should be so
simple that the projections onto them are easily calculated. So whether or not the
convergence still holds for the relaxed version (see [12]) of the proposed algorithms is
a subject deserving research.
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