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Abstract. We consider the CQ algorithm, with choice of steps introduced by Yang (J. Math. Anal.
Appl. 302 (2005), 166-179), for solving the split feasibility problem (SFP): find x ∈ C such that

Ax ∈ Q, where C and Q are nonempty closed convex subsets of Rn and Rm, respectively, and A
is an m × n matrix. We convert the SFP to an equivalent convexly constrained nonlinear system

of finding a zero in C of an inverse strongly monotone operator, which enables us to introduce new

convergent iterative algorithms. Two restrictive conditions of Yang (i.e., the boundedness of Q and
the full column rank of A) are completely removed in our new algorithms.
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