Fixed Point Theory, 12(2011), No. 2, 475-484 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINTS OF GENERALIZED ASYMPTOTIC CONTRACTIONS

SHYAM LAL SINGH*, S.N. MISHRA** AND RAJENDRA PANT***

*Govind Nagar, Rishikesh 249201 India. E-mail: vedicmri@gmail.com

**Department of Mathematics, Walter Sisulu University Mthatha 5117, South Africa. E-mail: smishra@wsu.ac.za

***Department of Mathematics, Walter Sisulu University Mthatha 5117, South Africa. E-mail: pant.rajendra@gmail.com

Abstract. Following Suzuki's asymptotic contraction of Meir-Keeler type (ACMK), we obtain a coincidence theorem for a generalized ACMK for a pair of maps and derive some general fixed point theorems on metric spaces.

Key Words and Phrases: Coincidence point, fixed point, asymptotic contraction, asymptotic contraction of Meir-Keeler type, generalized asymptotic contraction of Meir-Keeler type. **2010 Mathematics Subject Classification**: 54H25, 47H10.

1. INTRODUCTION

In 2003, Kirk [17] introduced the notion of *asymptotic contractions* on a metric space, and proved a fixed point theorem for this new class of maps.

Definition 1.1. ([17]). Let (X, d) be a metric space. A self-map T of X is an asymptotic contraction on X if there exists a continuous function φ from $[0, \infty)$ into itself and a sequence $\{\varphi_n\}$ of functions from $[0, \infty)$ into itself such that

- **(K1):** $\varphi(0) = 0;$
- (K2): $\varphi(r) < r$ for $r \in (0, \infty)$;

(K3): $\{\varphi_n\}$ converges to φ uniformly on the range of d; and

(K4): for $x, y \in X$ and $n \in \mathbb{N}$, $d(T^n x, T^n y) \leq \varphi_n(d(x, y))$.

Theorem 1.1. ([17]). Let (X, d) be a complete metric space and T a continuous asymptotic contraction on X with $\{\varphi_n\}$ and φ as in Definition 1.1. Assume that there exists $x \in X$ such that the orbit $\{T^n x : n \in \mathbb{N}\}$ of x is bounded, and that φ_n is continuous for $n \in \mathbb{N}$. Then there exists a unique fixed point $z \in X$. Moreover $\lim_n T^n x = z$ for all $x \in X$.

475

Theorem 1.1 is an asymptotic version of Boyd and Wong [4] (see also [13], [17]). It has important outcomes in metric fixed point theory (see, for instance, [1], [2], [3], [5], [6], [7], [8], [9], [11], [12], [13], [15], [17], [19], [24], [27], [31], [32], [33], [34], [35], [36].)

Underlying the power and importance of this new class of maps, Briseid [5, 7] has observed that a continuous self-map of a compact metric space satisfying any one of the first 50 contractive conditions listed by Rhoades [25] is an asymptotic contraction. Wlodarczyk *et al.* [34] and [35] discussed some ideas for applications of the theory of asymptotic contractions in the analysis of set-valued dynamical systems.

The purpose of this paper is to present a brief review of numerous definitions and fixed point theorems which followed Kirk's asymptotic contractions. Further, we obtain coincidence and fixed point theorems for generalized asymptotic contractions of Meir-Keeler type on metric spaces.

2. Review of asymptotic contractions

Jachymski and Jòżwic [13] showed that the continuity of the map T is essential in Theorem 1.1. Further, they extended Theorem 1.1 and obtained a complete characterization of asymptotic contractions on a compact metric space.

Proof of Theorem 1.1 in [17] involves a sophisticated ultrapower technique. Arandelović's attempt [1] (see also [2]) to provide a simple constructive proof of Theorem 1.1 was perfected by Jachymski [15].

Improving upon Theorem 1.1, Chen [9] obtained the following result under weaker assumptions. In this paper, R^+ denotes the set of all nonnegative real numbers.

Theorem 2.1. Let (X, d) be a complete metric space and $T : X \to X$ a self-map satisfying the conditions (C1)-(C3):

- (C1): $d(T^n x, T^n y) \leq \varphi_n(d(x, y))$
- for all $x, y \in X$, where $\phi_n : \mathbb{R}^+ \to \mathbb{R}^+$ and $\lim_{n\to\infty} \varphi_n = \varphi$ uniformly on any bounded interval [0, b]. Suppose that φ is upper semicontinuous and $\varphi(t) < t$ for t > 0.
- (C2): There exists a positive integer n^* such that φ_{n^*} is upper semicontinuous and $\varphi_{n^*}(0) = 0$.
- (C3): There exists $x_0 \in X$ such that the orbit $O(x_0)$ is bounded.

Then T has a unique fixed point $x^* \in X$ such that $\lim_{n\to\infty} T^n x = x^*$ for all $x \in X$.

Arandelović [2] presented a fixed point theorem of Kirk type unifying and generalizing fixed point theorems of Kirk [17], Jachymski and Jòżwic [13] and Chen [9].

As Theorem 2.1 does not guarantee the uniform convergence of the iterates of the map T (see also [3]), Reich and Zaslavski [24] obtained a convergence theorem [3, Theorem 1.3] for asymptotic contations with some additional hypotheses. Further, modifying the condition (C2) a slightly, Sastry *et al.* [27] obtained effectively another version of Theorem 2.1.

Gerhardy [11] obtained a quantitative version of Theorem 1.1 by using the techniques of proof-mining (for proof-mining technique, one may refer to Kohlenbach and Oliva [20]). Indeed, he introduced the following alternative definition of asymptotic contraction and obtained a fixed point theorem for the same.

Definition 2.1. ([11]). Let (X, d) be a metric space and T a self-map on X. The map T is called a *G*-asymptotic contraction on X if for each b > 0 there exists moduli $\eta^b: (0,b] \to (0,1)$ and $\beta^b: (0,b] \times (0,\infty) \to \mathbb{N}$ and the following hold:

(G1): there exists a sequence of functions $\phi_n^b : (0,\infty) \to (0,\infty)$ such that for all $x, y \in X$, for all $\varepsilon > 0$ and for all $n \in \mathbb{N}$,

$$b > d(x,y) \ge \varepsilon \Rightarrow d(T^n x, T^n y) \le \phi_n^b(\varepsilon).d(x,y);$$

(G2): for each $0 < l \le b$ the function $\beta_l^b := \beta^b(l, .)$ is a modulus of uniform convergence for each ϕ_n^b on [l, b], i.e.,

$$\forall \varepsilon > 0 \ \forall s \in [l, b] \ \forall m, n \ge \beta_l^b(\varepsilon), \ (|\phi_m^b(s) - \phi_n^b(s)| \le \varepsilon); \text{ and}$$

(G3): defining $\phi^b := \lim_{n \to \infty} \phi^b_n$, then for each $0 < \varepsilon \leq b$, we have $\phi^b(s) + \eta^b(\varepsilon) \leq 1$ for each $s \in [\varepsilon, b]$.

Theorem 2.2. [11]. Let (X, d) be a complete metric space and $T : X \to X$ a continuous G-asymptotic contraction, where b > 0 and η, β are given. If for some $x_0 \in X$, the sequence $\{x_n\}$ is bounded by b then T has a unique fixed point z and $\{x_n\}$ converges to z.

Since the convergence to the fixed point of a continuous G-asymptotic contraction need not be monotone (see also [5, p. 367], [6, p. 18], [13]), Theorem 2.2 does not provide a full rate of convergence. Briseid [5] gives an explicit rate of convergence for the iteration sequence for modified G-asymptotic contractions, expressed in the relevant moduli and a bound on the sequence. Further, a characterization of Kirk's asymptotic contractions (cf. Definition 1.1), G-asymptotic contractions (cf. Definition 2.1) and modified G-asymptotic contractions [5, Definition 2.2] on bounded complete metric spaces has been discussed in [5] (see also [6], [7] and [8]).

Recently Kirk [18] introduced the following notion of an asymptotic pointwise contraction.

Definition 2.2. Let K be a weakly compact convex subset of a Banach space X. A map $T: K \to K$ is an asymptotic pointwise contraction if there exists a function $\alpha: K \to [0, 1)$ such that, for each integer $n \ge 1$,

$$||T^n x - T^n y|| \le \alpha_n(x) ||x - y|| \text{ for each } x, y \in K,$$

where $\alpha_n \to \alpha$ pointwise on K.

Kirk [18] also obtained a fixed point theorem for asymptotic pointwise contractions defined on a bounded closed convex subset of a super reflexive Banach space. The proof outlined there involves a sophisticated ultrapower technique, and also requires some additional assumptions.

Kirk and Xu [19] give a simple and elementary proof (in the sense that ultrapower methods are not needed) of the fact that an asymptotic pointwise contraction defined on a weakly compact convex set has a unique fixed point (with convergence of iterates). In conjunction with the concept of asymptotic pointwise contractions, Kirk and Xu [19] introduced the he notion of pointwise asymptotically nonexpansive maps and pointwise eventually nonexpansive maps.

Definition 2.3. (cf. [19]). A map $T: K \to K$ is pointwise eventually nonexpansive if for each $x \in K$, there exists $n(x) \in \mathbb{N}$ such that $n \ge n(x)$,

$$||T^n x - T^n y|| \le ||x - y||, \ x, \ y \in K.$$

Kirk and Xu [19] posed two questions regarding the existence of fixed points of eventually nonexpansive maps in reflexive Banach spaces having the fixed point property for nonexpansive maps.

Hussain and Khamsi [12] extend Definition 2.2 to a metric space as follows.

Definition 2.4. Let (X, d) be a metric space. A self-map $T : X \to X$ is an asymptotic pointwise map if there exists a map $\alpha_n : X \to [0, \infty)$ such that

 $d(T^n x, T^n y) \le \alpha_n(x) d(x, y)$ for any $y \in X$.

(i) If $\{\alpha_n\}$ converges pointwise to $\alpha: M \to [0, 1)$, then T is called asymptotic pointwise contraction.

(ii) If $\limsup_{n\to\infty} \alpha_n(x) \leq 1$, then T is called asymptotic pointwise nonexpansive. (iii) If $\limsup_{n\to\infty} \alpha_n(x) \leq k$, with 0 < k < 1, then T is called strongly asymptotic pointwise nonexpansive.

They [12] also extend the main results of Kirk [18] to metric spaces and discuss the case of multivalued maps as well.

Generalizing Banach contraction principle, Meir-Keeler [22] obtained the following theorem.

Theorem 2.3. Let (X, d) be a complete metric space and T a self-map of X. Assume that for every $\varepsilon > 0$, there exists $\delta > 0$ such that **(MK)** $\varepsilon \leq d(x, y) < \varepsilon + \delta \Rightarrow d(Tx, Ty) < \varepsilon$ for all $x, y \in X$. Then T has a unique fixed point.

Cho *et al.* [10], Jachymski [13], Lim [21], Park and Rhoades [23], Rus [26], Singh and Kumar [28], Suzuki [31, 32, 33] and many others obtained various generalizations of Theorem 2.3. For a good bibliography on the development of the condition (MK), one may refer to [26] and [28].

In [31], Suzuki combined the two ideas of Meir-Keeler contraction (MKC) and Kirk asymptotic contraction (KAC) and introduced the following notion of *asymptotic contraction of Meir-Keeler type* (see also [32], [33]).

Definition 2.5. Let (X, d) be a metric space. A self-map T of X is an *asymptotic* contraction of Meir-Keeler type (ACMK for short) if there exists a sequence φ_n of functions from $[0, \infty)$ into itself satisfying the following conditions:

(S1): $\limsup \varphi_n(\varepsilon) \leq \varepsilon$ for all $\varepsilon \geq 0$;

- **(S2):** for each $\varepsilon > 0$, there exists $\delta > 0$ and $\nu \in \mathbb{N}$ such that $\varphi_{\nu}(t) \leq \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$;
- **(S3):** $d(T^nx, T^ny) < \varphi_n(d(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with $x \neq y$.

Inspired by Jachymski and Jòżwic [13, Lemma 4], Suzuki [31] obtained the following result.

Theorem 2.4. Let (X, d) be a complete metric space and T an ACMK on X. Assume that T^l is continuous for some $l \in \mathbb{N}$. Then there exists a unique fixed point $z \in X$. Moreover, $\lim_n T^n x = z$ for all $x \in X$.

Recently Singh and Pant [30] obtained the following generalization and extension of Theorems 1.1 and 2.4. In all that follows Y denotes an arbitrary nonempty set.

Theorem 2.5. Let (X, d) be a complete metric space and T a self-map satisfying the conditions (S1), (S2) and the following:

(S4): $d(T^n x, T^n y) < \varphi_n(m(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with $x \neq y$, where $m(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty)\}.$

If T^k is continuous for some $k \in \mathbb{N}$ then T has a unique fixed point $z \in X$. Moreover, $\lim_n T^n x = z$ for all $x \in X$.

Theorem 2.6. Let (X, d) be a metric space and $T, f : Y \to X$ satisfying the conditions (S1) and the following:

(S5): $T(Y) \subseteq f(Y);$

(S6): for each $\varepsilon > 0$ there exists $\delta > 0$ and $\mu \in \mathbb{N}$ such that $\varphi_{\mu}(t) < \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$;

(S7): $d(T^n x, T^n y) < \varphi_n(d(fx, fy))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with $x \neq y$.

If T(Y) or f(Y) is a complete subspace of X then T and f have a coincidence. Further, if Y = X, then T and f have a unique common fixed point provided that T and f commute just at a coincidence point.

3. Generalized asymptotic contractions of Meir-Keeler type

First we present an extension of Suzuki's definition of ACMK (cf. Definition 2.2) for a pair of maps on an arbitrary nonempty set with values in a metric space.

Definition 3.1. Let (X, d) be a metric space and $T, f : Y \to X$. The map T will be called a generalized asymptotic contraction of Meir-Keeler type (in short, GACMK) with respect to f if the following hold:

(P1) $\limsup_{n} \varphi_n(\varepsilon) \leq \varepsilon$ for all $\varepsilon \geq 0$;

(P2) for each $\varepsilon > 0$ there exists $\delta > 0$ and $\mu \in \mathbb{N}$ such that $\varphi_{\mu}(t) < \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$;

(P3) $d(T^n x, T^n y) < \varphi_n(M(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with M(x, y) > 0, where $M(x, y) = \max\{d(fx, fy), d(fx, Tx), d(fy, Ty), \frac{1}{2}[d(fx, Ty) + d(fy, Tx)]\}.$

The following result for GACMK extends Theorems 2.4-2.6.

Theorem 3.1. Let (X, d) be a metric space and $T, f : Y \to X$ such that $TY \subseteq fY$. Let T be a GACMK with respect to f. If T(Y) or f(Y) is a complete subspace of X then T and f have a coincidence point.

Further, if Y = X, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.

Proof. Pick $x_0 \in Y$. Define a sequence $\{y_n\}$ by $y_n = Tx_n = fx_{n+1}, n = 0, 1, 2, ...$ We can do so since the range of f contains the range of T. First we show that

$$\lim_{n \to \infty} d(Tx_n, Tx_{n+1}) = \lim_{n \to \infty} d(y_n, y_{n+1}) = 0.$$
(3.1)

It initially holds if $x_0 = x_1$. In the other case of $x_0 \neq x_1$, we assume that $\alpha := \limsup_n d(Tx_n, Tx_{n+1}) > 0$. From the condition (P2), we can choose $\mu_1 \in \mathbb{N}$ satisfying $\varphi_{\mu_1}(d(Tx_0, Tx_1)) \leq d(Tx_0, Tx_1)$. By (P3) and (P1),

$$d(y_{\mu_1+1}, y_{\mu_1+2}) = d(Tx_{\mu_1+1}, Tx_{\mu_1+2}) < \varphi_{\mu_1}(M(x_1, x_2)) \le M(x_1, x_2).$$

Then proceeding as in [30],

$$\begin{aligned} \alpha : &= \lim_{n \to \infty} \sup \, d(Tx_{\mu_1+n}, Tx_{\mu_1+n+1}) \end{aligned} \tag{3.2} \\ &\leq \lim_{n \to \infty} \sup \, \varphi_n(M(Tx_{\mu_1}, Tx_{\mu_1+1})) \leq M(Tx_{\mu_1}, Tx_{\mu_1+1}) \\ &= \max\{d(fx_{\mu_1+1}, fx_{\mu_1+2}), d(fx_{\mu_1+1}, Tx_{\mu_1+1}), d(fx_{\mu_1+2}, Tx_{\mu_1+2}), \\ &\frac{1}{2}[d(fx_{\mu_1+1}, Tx_{\mu_1+2}) + d(fx_{\mu_1}, Tx_{\mu_1+1})] \\ &= \max\{d(Tx_{\mu_1}, Tx_{\mu_1+1}), d(Tx_{\mu_1}, Tx_{\mu_1+1}), d(Tx_{\mu_1+1}, Tx_{\mu_1+2}), \\ &\frac{1}{2}[d(Tx_{\mu_1}, Tx_{\mu_1+2}) + 0)\} \\ &= \max\{d(Tx_{\mu_1}, Tx_{\mu_1+1}), d(Tx_{\mu_1+1}, Tx_{\mu_1+2}), \\ &\frac{1}{2}[d(Tx_{\mu_1}, Tx_{\mu_1+1}), d(Tx_{\mu_1+1}, Tx_{\mu_1+2})] \\ &= \max\{d(Tx_{\mu_1}, Tx_{\mu_1+1}), d(Tx_{\mu_1+1}, Tx_{\mu_1+2})\}. \end{aligned}$$

If

$$\max\{d(Tx_{\mu_1},Tx_{\mu_1+1}),d(Tx_{\mu_1+1},Tx_{\mu_1+2})\}=d(Tx_{\mu_1+1},Tx_{\mu_1+2}),$$
 we have a contradiction. Therefore

$$\max\{d(Tx_{\mu_1},Tx_{\mu_1+1}),d(Tx_{\mu_1+1},Tx_{\mu_1+2})\} = d(Tx_{\mu_1},Tx_{\mu_1+1})$$
 and we conclude that $M(Tx_{\mu_1},Tx_{\mu_1+1}) = d(Tx_{\mu_1},Tx_{\mu_1+1}).$

By (3.2),

$$d(Tx_{\mu_1+1}, Tx_{\mu_1+2}) < \varphi_{\mu_1}(M(x_1, x_2)) \le M(x_1, x_2)$$

$$= \max\{d(fx_1, fx_2), d(fx_1, Tx_1), d(fx_2, Tx_2), \frac{1}{2}[d(fx_1, Tx_2) + d(fx_2, Tx_1)]\}$$

$$= \max\{d(Tx_0, Tx_1), d(Tx_0, Tx_1), d(Tx_1, Tx_2), \frac{1}{2}[d(Tx_0, Tx_2) + 0]\}$$

$$= \max\{d(Tx_0, Tx_1), d(Tx_1, Tx_2), \frac{1}{2}[d(Tx_0, Tx_1) + d(Tx_1, Tx_2)]\}$$

$$= d(Tx_0, Tx_1).$$

So $\alpha < d(Tx_0, Tx_1)$. By a similar argument, we obtain $\alpha < d(Tx_k, Tx_{k+1})$ for all $k \in \mathbb{N} \cup \{0\}$. Hence $\{d(Tx_n, Tx_{n+1})\}$ converges to α .

Since $0 < \alpha < d(Tx_0, Tx_1) < \infty$, there exists $\delta_2 > 0$ and $\mu_2 \in \mathbb{N}$ such that

$$\varphi_{\mu_2}(t) \leq \alpha \text{ for all } t \in [\alpha, \alpha + \delta_2].$$

We choose $\mu_3 \in \mathbb{N}$ with $d(Tx_{\mu_3}, Tx_{\mu_3+1}) < \alpha + \delta_2$. Then we have

$$d(Tx_{\mu_2+\mu_3}, Tx_{\mu_2+\mu_3+1}) < \varphi_{\mu_2}d(Tx_{\mu_3}, Tx_{\mu_3+1}) \le \alpha,$$

a contradiction. This proves that $\lim_{n\to\infty} d(y_n, y_{n+1}) = 0$.

Now we show that $\{y_n\}$ is Cauchy sequence. Suppose $\{y_n\}$ is not Cauchy. Then there exists $\beta > 0$ and increasing sequences $\{m_k\}$ and $\{n_k\}$ of positive integers, such that for all $n \leq m_k < n_k$,

$$d(y_{m_k}, y_{n_k}) \ge \beta \text{ and } d(y_{m_k}, y_{n_k-1}) < \beta.$$

By the triangle inequality,

$$d(y_{m_k}, y_{n_k}) \le d(y_{m_k}, y_{n_k-1}) + d(y_{n_k-1}, y_{n_k}).$$

Making $k \to \infty$, $d(y_{m_k}, y_{n_k}) < \beta$. Thus $d(y_{m_k}, y_{n_k}) \to \beta$ as $k \to \infty$. By (P2),

$$\begin{aligned} d(y_{m_k+n}, y_{n_k+n}) &= d(Tx_{m_k+n}, Tx_{n_k+n}) \\ &< \varphi_n(M(x_{m_k}, x_{n_k})) \\ &= \varphi_n(\max\{d(fx_{m_k}, fx_{n_k}), d(fx_{m_k}, Tx_{m_k}), d(fx_{n_k}, Tx_{n_k}), \\ &\frac{1}{2}[d(fx_{m_k}, Tx_{n_k}) + d(fx_{n_k}, Tx_{m_k})]\}) \\ &= \varphi_n(\max\{d(y_{m_k-1}, y_{n_k-1}), d(y_{m_k-1}, y_{m_k}), d(y_{n_k-1}, y_{n_k}), \\ &\frac{1}{2}[d(y_{m_k-1}, y_{n_k}) + d(y_{n_k-1}, y_{m_k})]\}). \end{aligned}$$

Making $k \to \infty$, $\beta \leq \varphi_n(\beta) < \beta$, a contradiction, and the sequence $\{y_n\}$ is Cauchy. Suppose f(Y) is complete. Then $\{y_n\}$ being contained in f(Y) has a limit in f(Y). Call it z. Let $u \in f^{-1}z$. Then fu = z. Using (P3),

$$\begin{aligned} d(Tu,Tx_n) &\leq & \varphi(M(u,x_n)) \\ &= & \varphi(\max\{d(fu,fx_n),d(fu,Tu),d(fx_n,Tx_n), \\ & & \frac{1}{2}[d(fu,Tx_n)+d(fx_n,Tu)]\}). \end{aligned}$$

Making $n \to \infty$, $d(Tu, z) \le \varphi(d(Tu, z)) < d(Tu, z)$. Therefore Tu = z = fu. Now if Y = X and the pair (T, f) commutes just at u then Tfu = fTu and TTu = Tfu = fTu = ffu. In view of (A2), it follows that

$$d(Tu, TTu) \leq \varphi(M(u, Tu))$$

= $\varphi(\max\{d(fu, fTu), d(fu, Tu), d(fTu, TTu), \frac{1}{2}[d(fu, TTu) + d(fTu, Tu)]\})$
< $d(Tu, TTu),$

a contradiction. Therefore TTu = Tu and fTu = TTu = Tu = z.

In case T(Y) is a complete subspace of X, the condition $TY \subseteq fY$ implies that the sequence $\{y_n\}$ converges in f(Y), and the previous argument works. The uniqueness of the common fixed point follows easily. \Box

The following result is evident as the condition (S7) implies (P3).

Corollary 3.1. Theorem 2.6.

Corollary 3.2. Let (X, d) be a complete metric space and $T: X \to X$ a map satisfying (S1), (S6) and the following: **(P4)** $d(T^nx, T^ny) < \varphi_n(M_1(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with $M_1(x, y) > 0$, where, $M_1(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{1}{2}[d(x, Ty) + d(y, Tx)]\}$. If T^k is continuous for some $k \in \mathbb{N}$, then T has a unique fixed point $z \in X$.

Proof. It comes from Theorem 3.1 when Y = X and f is the identity map. \Box

The following example illustrate the usefulness of Theorem 3.1.

Example 3.1. Let X = [0, 1] be endowed with the usual metric d. Let $T : X \to X$ be such that

$$Tx = \begin{cases} 1 & \text{if } x = 0, \\ \frac{x}{2} & \text{if } x \in (0, 1]. \end{cases}$$

Jachymski [13] has shown that T satisfies all the conditions of Theorem 1.1 except the continuity with an appropriate choice of φ_n . Since the map T is without fixed point, it does not satisfy the hypotheses of Theorem 2.4 as well. We consider a map $f: X \to X$ such that

 $fx = x^2$.

Assume that

$$\varphi_n(t) = \frac{t}{2^{n-1}}, \quad t > 0.$$

Notice that $TX \subset fX$ and fX is obviously complete. Further, this is not difficult to see that the pair of maps T and f satisfy the condition (P3) for all $x, y \in X$. Evidently $T(\frac{1}{2}) = f(\frac{1}{2}) = \frac{1}{4}$, and T and f are not commuting at the coincidence point $\frac{1}{2}$.

The following example shows the superiority of Theorem 3.1 over Theorems 2.4-2.6.

Example 3.2. Let $X = \{1, 2, 3, 4\}$ be endowed with the usual metric d. Let $f, T : X \to X$ be such that T1 = T3 = T4 = 1, T2 = 2 and $\varphi_n(t) = \frac{9t}{10}$ for all t > 0 (or any other choice of φ_n with $\varphi_n(t) < t$). Then it can be easily seen that Theorems 2.4 -2.6 are not applicable to this map T. Indeed, as $d(T^nx, T^ny) = 1$ for x = 1 and y = 2, none of the conditions (S3), (S4) and (S7) is satisfied. However, if we take f1 = 1, f2 = f3 = 4, f4 = 2 then Theorem 3.1 is applicable to these maps. Notice that $TX \subset fX$ and f1 = T1 = 1.

The following result generalizes Theorems 2.4 and 2.5.

Theorem 3.2. Let (X, d) be a complete metric space and $T : X \to X$ a self-map satisfying (S1), (S2) and (P4). If T^k is continuous for some $k \in \mathbb{N}$ then T has a unique fixed point $z \in X$.

Proof. It may be completed following the proof of [30, Theorem 2.1]. \Box

482

Acknowledgement. The authors thank the referee and Professor Marcel-Adrian Serban for their comments and suggestions to improve upon the original typescript. The second author (SNM) is supported by the Directorate of Research Development, Walter Sisulu University.

References

- [1] I.D. Arandelović, On a fixed point theorem of Kirk, J. Math. Anal. Appl. 301(2005), 384-385.
- [2] I.D. Arandelović, Note on asymptotic contractions, App. Anal. Disc. Math., 1(2007), 211-216.
 [3] M. Arav, F.E. Castillo Santos, S. Reich and A.J. Zaslavski, A note on asymptotic contractions, Fixed Point Theory Appl., 2007, Article ID 39465, 6 pp.
- [4] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969), 458-464.
- [5] E.M. Briseid, A rate of convergence for asymptotic contractions. J. Math. Anal. Appl., 330(2007), 364-376.
- [6] E.M. Briseid, Some results on Kirk's asymptotic contractions Fixed Point Theory, 8(2007), 17-27.
- [7] E. M. Briseid, Fixed points of generalized contractive mappings, J. Nonlinear Convex Anal. 9(2008), 181-204.
- [8] E.M. Briseid, A new uniformity for asymptotic contractions in the sense of Kirk, Int. J. Math. Stat., 6(2010), 2-13.
- [9] Y.-Z. Chen, Asymptotic fixed points for nonlinear contractions, Fixed Point Theory and Applications, 2(2005), 213-217.
- [10] Y.J. Cho, P.P. Murthy and G. Jungck, A theorem of Meer-Keeler type revisited, Internat J. Math. Math. Sci., 23(2000), 507-511.
- P. Gerhardy, A quantitative version of Kirks fixed point theorem for asymptotic contractions, J. Math. Anal. Appl., 316(2006), 339-345.
- [12] N. Hussain and M.A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal., 71(2009), 4423–4429.
- [13] J. Jachymski, Equivalent conditions and the Meir-keeler type theorems, J. Math. Anal. Appl., 194(1995), 293-303.
- [14] J.R. Jachymski and I. Jóźwic, On Kirk's asymptotic contractions, J. Math. Anal. Appl., 300(2004), 147-159.
- [15] J.R. Jachymski, A note on a paper of I.D. Arandelović on asymptotic contractions, J. Math. Anal. Appl., 358(2009), 491-492.
- [16] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
- [17] W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277(2003), 645-650.
- [18] W.A. Kirk, Asymptotic pointwise contractions, in: Plenary Lecture, the 8th International Conference on Fixed Point Theory and Its Applications, Chiang Mai University, Thailand, July 16-22, 2007.
- [19] W.A. Kirk, Hong-Kun Xu, Asymptotic pointwise contractions, Nonlinear Anal., 69(2008), 4706-4712.
- [20] U. Kohlenbach and P. Oliva, Proof Mining: A Systematic Way of Analyzing Proofs in Mathematics, Proc. Steklov Inst. Math., 242(2003), 136164.
- [21] T.C. Lim, On characterization of Meir-Keeler contractive maps, Nonlinear Anal., 46(2001), 113-120.
- [22] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-329.
- [23] S. Park and B.E. Rhoades, Meir-Keeler type contractive conditions, Math. Japon., 26(1981), 13-20.
- [24] S. Reich and A.J. Zaslavski, A convergence theorem for asymptotic contractions, J. Fixed Point Theory Appl., 4(2008), 27-33.

- [25] B.E. Rhoades, A comparison of various definitions of contracting mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
- [26] I.A. Rus, A. Petrusel and G. Petrusel, Fixed Point Theory: 1950-2000 Romanian Contributions, House of Book of Science, Cluj-Napoca, 2002.
- [27] K.P.R. Sastry, G.V.R. Babu, S. Ismail and M. Balaiah A fixed point theorem on asymptotic contractions, Mathematical Communications, 12(2007), 191-194.
- [28] S.L. Singh, Ashish Kumar and Y.J. Cho, Fixed points of Meir-Keeler type hybrid contractions, Panamer. Math. J., 16(2006), No. 4, 35-54.
- [29] S.L. Singh and B.D. Pant, Coincidence and fixed point theorems for a family of mappings of Menger spaces and extension to uniform spaces Math. Japon., 33(1988), No. 6, 957-973.
- [30] S.L. Singh and Rajendra Pant, Remarks on some recent fixed point theorems, C.R. Math. Rep. Acad. Sci. Canada, 30(2008), No. 2, 56-63.
- [31] T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir- Keeler type in complete metric spaces, Nonlinear Anal., 64(2006), 971-978.
- [32] T. Suzuki, A definitive result on asymptotic contractions, J. Math. Anal. Appl., 335(2007) 707-715.
- [33] T. Suzuki, Fixed point theorems for more generalized contractions in complete metric space, Demons. Math., 1(2007), 219-227.
- [34] K. Wlodarczyk, D. Klim, R. Plebaniak, Existence and uniqueness of endpoints of closedsetvalued asymptotic contractions in metric spaces, J. Math. Anal. Appl., 328(2007), 4657.
- [35] K. Włodarczyk, R. Plebaniak, C. Obczyński, Endpoints set-valued dynamical systems of asymptotic contractions of Meir-Keeler type and strict contractions in uniform spaces, Nonlinear Anal., 67(2007), No. 6, 1668-1679.
- [36] H.K. Xu, Asymptotic and weakly asymptotic contractions, Indian J. Pure Appl. Math., 36(2005), 145-150.

Received: February 16, 2010; Accepted: October 14, 2010.