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1. Introduction

In 2003, Kirk [17] introduced the notion of asymptotic contractions on a metric
space, and proved a fixed point theorem for this new class of maps.

Definition 1.1. ([17]). Let (X, d) be a metric space. A self-map T of X is an
asymptotic contraction on X if there exists a continuous function ϕ from [0,∞) into
itself and a sequence {ϕn} of functions from [0,∞) into itself such that

(K1): ϕ(0) = 0;
(K2): ϕ(r) < r for r ∈ (0,∞);
(K3): {ϕn} converges to ϕ uniformly on the range of d; and
(K4): for x, y ∈ X and n ∈ N, d(Tnx, Tny) ≤ ϕn(d(x, y)).

Theorem 1.1. ([17]). Let (X, d) be a complete metric space and T a continuous
asymptotic contraction on X with {ϕn} and ϕ as in Definition 1.1. Assume that
there exists x ∈ X such that the orbit {Tnx : n ∈ N} of x is bounded, and that ϕn

is continuous for n ∈ N. Then there exists a unique fixed point z ∈ X. Moreover
limn Tnx = z for all x ∈ X.
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Theorem 1.1 is an asymptotic version of Boyd and Wong [4] (see also [13], [17]).
It has important outcomes in metric fixed point theory (see, for instance, [1], [2], [3],
[5], [6], [7], [8], [9], [11], [12], [13], [15], [17], [19], [24], [27], [31], [32], [33], [34], [35],
[36].)

Underlying the power and importance of this new class of maps, Briseid [5, 7] has
observed that a continuous self-map of a compact metric space satisfying any one of
the first 50 contractive conditions listed by Rhoades [25] is an asymptotic contraction.
Wlodarczyk et al. [34] and [35] discussed some ideas for applications of the theory of
asymptotic contractions in the analysis of set-valued dynamical systems.

The purpose of this paper is to present a brief review of numerous definitions
and fixed point theorems which followed Kirk’s asymptotic contractions. Further, we
obtain coincidence and fixed point theorems for generalized asymptotic contractions
of Meir-Keeler type on metric spaces.

2. Review of asymptotic contractions

Jachymski and Jòz̀wic [13] showed that the continuity of the map T is essential in
Theorem 1.1. Further, they extended Theorem 1.1 and obtained a complete charac-
terization of asymptotic contractions on a compact metric space.

Proof of Theorem 1.1 in [17] involves a sophisticated ultrapower technique.
Arand̄elović’s attempt [1] (see also [2]) to provide a simple constructive proof of The-
orem 1.1 was perfected by Jachymski [15].

Improving upon Theorem 1.1, Chen [9] obtained the following result under weaker
assumptions. In this paper, R+ denotes the set of all nonnegative real numbers.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X a self-map
satisfying the conditions (C1)-(C3):

(C1): d(Tnx, Tny) ≤ ϕn(d(x, y))
for all x, y ∈ X, where φn : R+ → R+ and limn→∞ ϕn = ϕ uniformly on any
bounded interval [0, b]. Suppose that ϕ is upper semicontinuous and ϕ(t) < t
for t > 0.

(C2): There exists a positive integer n∗ such that ϕn∗ is upper semicontinuous
and ϕn∗(0) = 0.

(C3): There exists x0 ∈ X such that the orbit O(x0) is bounded.
Then T has a unique fixed point x∗ ∈ X such that limn→∞ Tnx = x∗ for

all x ∈ X.

Arand̄elović [2] presented a fixed point theorem of Kirk type unifying and gener-
alizing fixed point theorems of Kirk [17], Jachymski and Jòz̀wic [13] and Chen [9].

As Theorem 2.1 does not guarantee the uniform convergence of the iterates of the
map T (see also [3]), Reich and Zaslavski [24] obtained a convergence theorem [3,
Theorem 1.3] for asymptotic contctions with some additional hypotheses. Further,
modifying the condition (C2) a slightly, Sastry et al. [27] obtained effectively another
version of Theorem 2.1.

Gerhardy [11] obtained a quantitative version of Theorem 1.1 by using the tech-
niques of proof-mining (for proof-mining technique, one may refer to Kohlenbach and
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Oliva [20]). Indeed, he introduced the following alternative definition of asymptotic
contraction and obtained a fixed point theorem for the same.

Definition 2.1. ([11]). Let (X, d) be a metric space and T a self-map on X. The
map T is called a G-asymptotic contraction on X if for each b > 0 there exists moduli
ηb : (0, b] → (0, 1) and βb : (0, b]× (0,∞) → N and the following hold:

(G1): there exists a sequence of functions φb
n : (0,∞) → (0,∞) such that for

all x, y ∈ X, for all ε > 0 and for all n ∈ N,

b > d(x, y) ≥ ε ⇒ d(Tnx, Tny) ≤ φb
n(ε).d(x, y);

(G2): for each 0 < l ≤ b the function βb
l := βb(l, .) is a modulus of uniform

convergence for each φb
n on [l, b], i.e.,

∀ε > 0 ∀s ∈ [l, b] ∀m,n ≥ βb
l (ε), (|φb

m(s)− φb
n(s)| ≤ ε); and

(G3): defining φb := limn→∞ φb
n, then for each 0 < ε ≤ b, we have φb(s) +

ηb(ε) ≤ 1 for each s ∈ [ε, b].

Theorem 2.2. [11]. Let (X, d) be a complete metric space and T : X → X a
continuous G-asymptotic contraction, where b > 0 and η, β are given. If for some
x0 ∈ X, the sequence {xn} is bounded by b then T has a unique fixed point z and
{xn} converges to z.

Since the convergence to the fixed point of a continuous G-asymptotic contraction
need not be monotone (see also [5, p. 367], [6, p. 18], [13]), Theorem 2.2 does not
provide a full rate of convergence. Briseid [5] gives an explicit rate of convergence
for the iteration sequence for modified G-asymptotic contractions, expressed in the
relevant moduli and a bound on the sequence. Further, a characterization of Kirk’s
asymptotic contractions (cf. Definition 1.1), G-asymptotic contractions (cf. Definition
2.1) and modified G-asymptotic contractions [5, Definition 2.2] on bounded complete
metric spaces has been discussed in [5] (see also [6], [7] and [8]).

Recently Kirk [18] introduced the following notion of an asymptotic pointwise
contraction.

Definition 2.2. Let K be a weakly compact convex subset of a Banach space X.
A map T : K → K is an asymptotic pointwise contraction if there exists a function
α : K → [0, 1) such that, for each integer n ≥ 1,

||Tnx− Tny|| ≤ αn(x)||x− y|| for each x, y ∈ K,

where αn → α pointwise on K.

Kirk [18] also obtained a fixed point theorem for asymptotic pointwise contractions
defined on a bounded closed convex subset of a super reflexive Banach space. The
proof outlined there involves a sophisticated ultrapower technique, and also requires
some additional assumptions.

Kirk and Xu [19] give a simple and elementary proof (in the sense that ultrapower
methods are not needed) of the fact that an asymptotic pointwise contraction defined
on a weakly compact convex set has a unique fixed point (with convergence of iterates).
In conjunction with the concept of asymptotic pointwise contractions, Kirk and Xu
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[19] introduced the the notion of pointwise asymptotically nonexpansive maps and
pointwise eventually nonexpansive maps.

Definition 2.3. (cf. [19]). A map T : K → K is pointwise eventually nonexpansive
if for each x ∈ K, there exists n(x) ∈ N such that n ≥ n(x),

||Tnx− Tny|| ≤ ||x− y||, x, y ∈ K.

Kirk and Xu [19] posed two questions regarding the existence of fixed points of
eventually nonexpansive maps in reflexive Banach spaces having the fixed point prop-
erty for nonexpansive maps.

Hussain and Khamsi [12] extend Definition 2.2 to a metric space as follows.

Definition 2.4. Let (X, d) be a metric space. A self-map T : X → X is an asymptotic
pointwise map if there exists a map αn : X → [0,∞) such that

d(Tnx, Tny) ≤ αn(x)d(x, y) for any y ∈ X.

(i) If {αn} converges pointwise to α : M → [0, 1), then T is called asymptotic pointwise
contraction.
(ii) If lim supn→∞ αn(x) ≤ 1, then T is called asymptotic pointwise nonexpansive.
(iii) If lim supn→∞ αn(x) ≤ k, with 0 < k < 1, then T is called strongly asymptotic
pointwise nonexpansive.

They [12] also extend the main results of Kirk [18] to metric spaces and discuss
the case of multivalued maps as well.

Generalizing Banach contraction principle, Meir-Keeler [22] obtained the following
theorem.

Theorem 2.3. Let (X, d) be a complete metric space and T a self-map of X. Assume
that for every ε > 0, there exists δ > 0 such that
(MK) ε ≤ d(x, y) < ε + δ ⇒ d(Tx, Ty) < ε
for all x, y ∈ X. Then T has a unique fixed point.

Cho et al. [10], Jachymski [13], Lim [21], Park and Rhoades [23], Rus [26], Singh
and Kumar [28], Suzuki [31, 32, 33] and many others obtained various generalizations
of Theorem 2.3. For a good bibliography on the development of the condition (MK),
one may refer to [26] and [28].

In [31], Suzuki combined the two ideas of Meir-Keeler contraction (MKC) and
Kirk asymptotic contraction (KAC) and introduced the following notion of asymptotic
contraction of Meir-Keeler type (see also [32], [33]).

Definition 2.5. Let (X, d) be a metric space. A self-map T of X is an asymptotic
contraction of Meir-Keeler type (ACMK for short) if there exists a sequence ϕn of
functions from [0,∞) into itself satisfying the following conditions:

(S1): lim sup ϕn(ε) ≤ ε for all ε ≥ 0;
(S2): for each ε > 0, there exists δ > 0 and ν ∈ N such that ϕν(t) ≤ ε for all

t ∈ [ε, ε + δ];
(S3): d(Tnx, Tny) < ϕn(d(x, y)) for all n ∈ N and x, y ∈ X with x 6= y.
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Inspired by Jachymski and Jòz̀wic [13, Lemma 4], Suzuki [31] obtained the following
result.

Theorem 2.4. Let (X, d) be a complete metric space and T an ACMK on X. Assume
that T l is continuous for some l ∈ N. Then there exists a unique fixed point z ∈ X.
Moreover, limn Tnx = z for all x ∈ X.

Recently Singh and Pant [30] obtained the following generalization and extension
of Theorems 1.1 and 2.4. In all that follows Y denotes an arbitrary nonempty set.

Theorem 2.5. Let (X, d) be a complete metric space and T a self-map satisfying the
conditions (S1), (S2) and the following:

(S4): d(Tnx, Tny) < ϕn(m(x, y)) for all n ∈ N and x, y ∈ X with x 6= y,
where m(x, y) =max{d(x, y), d(x, Tx), d(y, Ty)}.

If T k is continuous for some k ∈ N then T has a unique fixed point z ∈ X.
Moreover, limn Tnx = z for all x ∈ X.

Theorem 2.6. Let (X, d) be a metric space and T, f : Y → X satisfying the condi-
tions (S1) and the following:

(S5): T (Y ) ⊆ f(Y );
(S6): for each ε > 0 there exists δ > 0 and µ ∈ N such that

ϕµ(t) < ε for all t ∈ [ε, ε + δ];
(S7): d(Tnx, Tny) < ϕn(d(fx, fy)) for all n ∈ N and x, y ∈ X with x 6= y.

If T (Y ) or f(Y ) is a complete subspace of X then T and f have a coincidence.
Further, if Y = X, then T and f have a unique common fixed point provided that T
and f commute just at a coincidence point.

3. Generalized asymptotic contractions of Meir-Keeler type

First we present an extension of Suzuki’s definition of ACMK (cf. Definition 2.2)
for a pair of maps on an arbitrary nonempty set with values in a metric space.

Definition 3.1. Let (X, d) be a metric space and T, f : Y → X. The map T will be
called a generalized asymptotic contraction of Meir-Keeler type (in short, GACMK)
with respect to f if the following hold:

(P1) lim supn ϕn(ε) ≤ ε for all ε ≥ 0;
(P2) for each ε > 0 there exists δ > 0 and µ ∈ N such that ϕµ(t) < ε for all

t ∈ [ε, ε + δ];
(P3) d(Tnx, Tny) < ϕn(M(x, y)) for all n ∈ N and x, y ∈ X with M(x, y) > 0,

where M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), 1
2 [d(fx, Ty) + d(fy, Tx)]}.

The following result for GACMK extends Theorems 2.4-2.6.

Theorem 3.1. Let (X, d) be a metric space and T, f : Y → X such that TY ⊆ fY .
Let T be a GACMK with respect to f . If T (Y ) or f(Y ) is a complete subspace of X
then T and f have a coincidence point.

Further, if Y = X, then T and f have a unique common fixed point provided that
T and f commute at a coincidence point.
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Proof. Pick x0 ∈ Y . Define a sequence {yn} by yn = Txn = fxn+1, n = 0, 1, 2, ...
We can do so since the range of f contains the range of T . First we show that

lim
n→∞

d(Txn, Txn+1) = lim
n→∞

d(yn, yn+1) = 0. (3.1)

It initially holds if x0 = x1. In the other case of x0 6= x1, we assume that
α := lim supn d(Txn, Txn+1) > 0. From the condition (P2), we can choose µ1 ∈ N
satisfying ϕµ1(d(Tx0, Tx1)) ≤ d(Tx0, Tx1). By (P3) and (P1),

d(yµ1+1, yµ1+2) = d(Txµ1+1, Txµ1+2) < ϕµ1(M(x1, x2)) ≤ M(x1, x2).

Then proceeding as in [30],

α : = lim
n→∞

sup d(Txµ1+n, Txµ1+n+1) (3.2)

≤ lim
n→∞

sup ϕn(M(Txµ1 , Txµ1+1)) ≤ M(Txµ1 , Txµ1+1)

= max{d(fxµ1+1, fxµ1+2), d(fxµ1+1, Txµ1+1), d(fxµ1+2, Txµ1+2),
1
2
[d(fxµ1+1, Txµ1+2) + d(fxµ1+2, Txµ1+1)}

= max{d(Txµ1 , Txµ1+1), d(Txµ1 , Txµ1+1), d(Txµ1+1, Txµ1+2),
1
2
[d(Txµ1 , Txµ1+2) + 0)}

= max{d(Txµ1 , Txµ1+1), d(Txµ1+1, Txµ1+2),
1
2
[d(Txµ1 , Txµ1+1) + d(Txµ1+1, Txµ1+2)}

= max{d(Txµ1 , Txµ1+1), d(Txµ1+1, Txµ1+2)}.

If
max{d(Txµ1 , Txµ1+1), d(Txµ1+1, Txµ1+2)} = d(Txµ1+1, Txµ1+2),

we have a contradiction. Therefore

max{d(Txµ1 , Txµ1+1), d(Txµ1+1, Txµ1+2)} = d(Txµ1 , Txµ1+1)

and we conclude that M(Txµ1 , Txµ1+1) = d(Txµ1 , Txµ1+1).
By (3.2),

d(Txµ1+1, Txµ1+2) < ϕµ1(M(x1, x2)) ≤ M(x1, x2)
= max{d(fx1, fx2), d(fx1, Tx1), d(fx2, Tx2),

1
2
[d(fx1, Tx2) + d(fx2, Tx1)]}

= max{d(Tx0, Tx1), d(Tx0, Tx1), d(Tx1, Tx2),
1
2
[d(Tx0, Tx2) + 0]}

= max{d(Tx0, Tx1), d(Tx1, Tx2),
1
2
[d(Tx0, Tx1)+d(Tx1, Tx2]}

= d(Tx0, Tx1).

So α < d(Tx0, Tx1). By a similar argument, we obtain α < d(Txk, Txk+1) for all
k ∈ N ∪ {0}. Hence {d(Txn, Txn+1} converges to α.



FIXED POINTS OF GENERALIZED ASYMPTOTIC CONTRACTIONS 481

Since 0 < α < d(Tx0, Tx1) < ∞, there exists δ2 > 0 and µ2 ∈ N such that

ϕµ2(t) ≤ α for all t ∈ [α, α + δ2].

We choose µ3 ∈ N with d(Txµ3 , Txµ3+1) < α + δ2. Then we have

d(Txµ2+µ3 , Txµ2+µ3+1) < ϕµ2d(Txµ3 , Txµ3+1) ≤ α,

a contradiction. This proves that limn→∞ d(yn, yn+1) = 0.
Now we show that {yn} is Cauchy sequence. Suppose {yn} is not Cauchy. Then

there exists β > 0 and increasing sequences {mk} and {nk} of positive integers, such
that for all n ≤ mk < nk,

d(ymk
, ynk

) ≥ β and d(ymk
, ynk−1) < β.

By the triangle inequality,

d(ymk
, ynk

) ≤ d(ymk
, ynk−1) + d(ynk−1, ynk

).

Making k →∞, d(ymk
, ynk

) < β. Thus d(ymk
, ynk

) → β as k →∞. By (P2),

d(ymk+n, ynk+n) = d(Txmk+n, Txnk+n)
< ϕn(M(xmk

, xnk
))

= ϕn(max{d(fxmk
, fxnk

), d(fxmk
, Txmk

), d(fxnk
, Txnk

),
1
2
[d(fxmk

, Txnk
) + d(fxnk

, Txmk
)]})

= ϕn(max{d(ymk−1, ynk−1), d(ymk−1, ymk
), d(ynk−1, ynk

),
1
2
[d(ymk−1, ynk

) + d(ynk−1, ymk
)]}).

Making k →∞, β ≤ ϕn(β) < β, a contradiction, and the sequence {yn} is Cauchy.
Suppose f(Y ) is complete. Then {yn} being contained in f(Y ) has a limit in f(Y ).

Call it z. Let u ∈ f−1z. Then fu = z. Using (P3),

d(Tu, Txn) ≤ ϕ(M(u, xn))
= ϕ(max{d(fu, fxn), d(fu, Tu), d(fxn, Txn),

1
2
[d(fu, Txn) + d(fxn, Tu)]}).

Making n → ∞, d(Tu, z) ≤ ϕ(d(Tu, z)) < d(Tu, z). Therefore Tu = z = fu. Now if
Y = X and the pair (T, f) commutes just at u then Tfu = fTu and TTu = Tfu =
fTu = ffu. In view of (A2), it follows that

d(Tu, TTu) ≤ ϕ(M(u, Tu))
= ϕ(max{d(fu, fTu), d(fu, Tu), d(fTu, TTu),

1
2
[d(fu, TTu) + d(fTu, Tu)]})

< d(Tu, TTu),

a contradiction. Therefore TTu = Tu and fTu = TTu = Tu = z.
In case T (Y ) is a complete subspace of X, the condition TY ⊆ fY implies that the

sequence {yn} converges in f(Y ), and the previous argument works. The uniqueness
of the common fixed point follows easily. �
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The following result is evident as the condition (S7) implies (P3).

Corollary 3.1. Theorem 2.6.

Corollary 3.2. Let (X, d) be a complete metric space and T : X → X a map satis-
fying (S1), (S6) and the following:
(P4) d(Tnx, Tny) < ϕn(M1(x, y))
for all n ∈ N and x, y ∈ X with M1(x, y) > 0,
where, M1(x, y) =max{d(x, y), d(x, Tx), d(y, Ty), 1

2 [d(x, Ty) + d(y, Tx)]}.
If T k is continuous for some k ∈ N, then T has a unique fixed point z ∈ X.

Proof. It comes from Theorem 3.1 when Y = X and f is the identity map. �

The following example illustrate the usefulness of Theorem 3.1.

Example 3.1. Let X = [0, 1] be endowed with the usual metric d. Let T : X → X
be such that

Tx =
{

1 if x = 0,
x
2 if x ∈ (0, 1].

Jachymski [13] has shown that T satisfies all the conditions of Theorem 1.1 except
the continuity with an appropriate choice of ϕn. Since the map T is without fixed
point, it does not satisfy the hypotheses of Theorem 2.4 as well. We consider a map
f : X → X such that

fx = x2.

Assume that

ϕn(t) =
t

2n−1
, t > 0.

Notice that TX ⊂ fX and fX is obviously complete. Further, this is not difficult to
see that the pair of maps T and f satisfy the condition (P3) for all x, y ∈ X.
Evidently T ( 1

2 ) = f( 1
2 ) = 1

4 , and T and f are not commuting at the coincidence point
1
2 .

The following example shows the superiority of Theorem 3.1 over Theorems 2.4-2.6.

Example 3.2. Let X = {1, 2, 3, 4} be endowed with the usual metric d. Let f, T :
X → X be such that T1 = T3 = T4 = 1, T2 = 2 and ϕn(t) = 9t

10 for all t > 0 (or
any other choice of ϕn with ϕn(t) < t). Then it can be easily seen that Theorems
2.4 -2.6 are not applicable to this map T . Indeed, as d(Tnx, Tny) = 1 for x = 1 and
y = 2, none of the conditions (S3), (S4) and (S7) is satisfied. However, if we take
f1 = 1, f2 = f3 = 4, f4 = 2 then Theorem 3.1 is applicable to these maps. Notice
that TX ⊂ fX and f1 = T1 = 1.

The following result generalizes Theorems 2.4 and 2.5.

Theorem 3.2. Let (X, d) be a complete metric space and T : X → X a self-map
satisfying (S1), (S2) and (P4). If T k is continuous for some k ∈ N then T has a
unique fixed point z ∈ X.

Proof. It may be completed following the proof of [30, Theorem 2.1]. �
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