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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[50] concerning the stability of group homomorphisms. Hyers [21] gave a first affirma-
tive partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was
generalized by Aoki [2] for additive mappings and by Th.M. Rassias [40] for linear
mappings by considering an unbounded Cauchy difference. The paper of Th.M. Ras-
sias [40] has provided a lot of influence in the development of what we call generalized
Hyers-Ulam stability of functional equations. A generalization of the Th.M. Rassias
theorem was obtained by Găvruta [18] by replacing the unbounded Cauchy difference
by a general control function in the spirit of Th.M. Rassias’ approach. Important con-
tributions for generalized Hyers-Ulam stability was obtained by Forti [16]. For Jensen
functional equation stability, significant generalizations were given by Jung [24] and
successively, by Lee and Jun [28] by using direct method (Hyers-Ulam method).

A generalized Hyers-Ulam stability problem for the quadratic functional equation
was proved by Skof [49] for mappings f : X → Y , where X is a normed space and Y
is a Banach space. Cholewa [11] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group. The stability problems of several
functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [1, 3, 12, 13, 17, 20],
[25]–[27], [41]–[43]).

In the sequel, we adopt the usual terminology and notations of the theory of random
normed spaces, as in [10, 30, 31, 47, 48]. Throughout this paper ∆+ is the space of
distribution functions, i.e., the space of all mappings F : R ∪ {−∞,∞} → [0, 1] such
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that F is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1. D+ is
a subset of ∆+ consisting of all functions F ∈ ∆+ for which l−F (+∞) = 1, where
l−f(x) denotes the left limit of the function f at the point x, that is, l−f(x) =
limt→x− f(t). The space ∆+ is partially ordered by the usual point-wise ordering of
functions, i.e., F ≤ G if and only if F (t) ≤ G(t) for all t in R. The maximal element
for ∆+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1. ([47]) A mapping T : [0, 1]× [0, 1] → [0, 1] is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM (a, b) = min(a, b)
and TL(a, b) = max(a + b− 1, 0) (the Lukasiewicz t-norm).

Definition 1.2. ([48]) A random normed space (briefly, RN-space) is a triple
(X, µ, T ), where X is a vector space, T is a continuous t-norm and µ is a map-
ping from X into D+ such that the following conditions hold:
(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx( t

|α| ) for all x ∈ X, α 6= 0;
(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

Every normed space (X, ‖.‖) defines a random normed space (X, µ, TM ), where

µx(t) =
t

t + ‖x‖
for all t > 0, and TM is the minimum t-norm. This space is called the induced random
normed space.

Definition 1.3. Let (X, µ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and
λ > 0, there exists a positive integer N such that µxn−x(ε) > 1− λ whenever n ≥ N .
(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0,
there exists a positive integer N such that µxn−xm(ε) > 1− λ whenever n ≥ m ≥ N .
(3) An RN-space (X, µ, T ) is said to be complete if and only if every Cauchy sequence
in X is convergent to a point in X.

Theorem 1.4. ([47]) If (X, µ, T ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ µxn

(t) = µx(t) almost everywhere.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
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(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.

Theorem 1.5. ([4, 14, 46]) Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then for
each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [23] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. Starting with 2003, the fixed point alternative was applied to
investigate the generalized Hyers-Ulam stability for Jensen functional equation in
[4, 7, 39], as well as for the Cauchy functional equation in [5] (see also [32] for quadratic
functional equations, [6] for monomial functional equations and [45] for operatorial
equations etc). The proofs of the main theorems, i.e., Theorems 2.1, 2.3, 3.1 and
3.3, follow the techniques from the above papers. By using fixed point methods, the
stability problems of several functional equations have been extensively investigated
by a number of authors (see [4]–[8], [30, 32, 36, 37, 39]).

Gilányi [19] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x + y)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x + y) + f(x− y).

See also [44]. Fechner [15] and Gilányi [20] proved the generalized Hyers-Ulam stability
of the functional inequality (1.1). Park, Cho and Han [38] investigated the Cauchy
additive functional inequality

‖f(x) + f(y) + f(z)‖ ≤ ‖f(x + y + z)‖ (1.2)

and the Cauchy-Jensen additive functional inequality

‖f(x) + f(y) + f(2z)‖ ≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥ (1.3)

and proved the generalized Hyers-Ulam stability of the functional inequalities (1.2)
and (1.3) in Banach spaces.

Throughout this paper, let X be a real vector space and (Y, µ, T ) a complete RN-
space.

The generalized Hyers-Ulam stability of different functional equations in random
normed and fuzzy normed spaces has been recently studied in [29]–[35]. They are com-
pleted with the recent paper [9], which contains some stability results for functional
equations in probabilistic metric and random normed spaces.



432 CHOONKIL PARK

This paper is organized as follows: In Section 2, we prove the generalized Hyers-
Ulam stability of the Cauchy additive functional inequality (1.2) in complete RN-
spaces. In Section 3, we prove the generalized Hyers-Ulam stability of the Cauchy-
Jensen additive functional inequality (1.3) in complete RN-spaces.

2. Stability of the Cauchy additive functional inequality

In this section, using the fixed point method, we prove the generalized Hyers-Ulam
stability of the Cauchy additive functional inequality (1.2) in complete RN-spaces.

Theorem 2.1. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y, z) ≤ L

2
ϕ (2x, 2y, 2z)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

µf(x)+f(y)+f(z) (t) ≥ min
{

µf(x+y+z)

(
t

2

)
,

t

t + ϕ(x, y, z)

}
(2.1)

for all x, y, z ∈ X and all t > 0. Then A(x) := limn→∞ 2nf
(

x
2n

)
exists for each

x ∈ X and defines an additive mapping A : X → Y such that

µf(x)−A(x) (t) ≥ (2− 2L)t
(2− 2L)t + Lϕ(x, x,−2x)

(2.2)

for all x ∈ X and all t > 0.

Proof. Since f is odd, f(0) = 0. So µf(0)

(
t
2

)
= 1. Letting y = x and replacing z by

−2x in (2.1), we get

µf(2x)−2f(x) (t) ≥ t

t + ϕ(x, x,−2x)
(2.3)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{ν ∈ R+ : µg(x)−h(x)(νt) ≥ t

t + ϕ(x, x,−2x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete. (See the proof
of Lemma 2.1 in [31]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t + ϕ(x, x,−2x)
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for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ2g( x
2 )−2h( x

2 ) (Lεt)

= µg( x
2 )−h( x

2 )

(
L

2
εt

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 , x

2 ,−x
) ≥ Lt

2
Lt
2 + L

2 ϕ(x, x,−2x)

=
t

t + ϕ(x, x,−2x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.3) that

µf(x)−2f( x
2 )

(
L

2
t

)
≥ t

t + ϕ(x, x,−2x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
2 .

By Theorem 1.5, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A
(x

2

)
=

1
2
A(x) (2.4)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.

This implies that A is a unique mapping satisfying (2.4) such that there exists a
ν ∈ (0,∞) satisfying

µf(x)−A(x)(νt) ≥ t

t + ϕ(x, x,−2x)
for all x ∈ X;

(2) d(Jnf,A) → 0 as n →∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X;
(3) d(f,A) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ L

2− 2L
.

This implies that the inequality (2.2) holds.
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By (2.1),

µ2n(f( x
2n )+f( y

2n )+f( z
2n )) (2nt)

≥ min

{
µ2nf( x+y+z

2n )
(
2n−1t

)
,

t

t + ϕ
(

x
2n , y

2n , z
2n

)}
for all x, y, z ∈ X, all t > 0 and all n ∈ N. So

µ2n(f( x
2n )+f( y

2n )+f( z
2n )) (t) ≥ min

{
µ2nf( x+y+z

2n )

(
t

2

)
,

t
2n

t
2n + Ln

2n ϕ (x, y, z)

}

for all x, y, z ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t

2n

t
2n + Ln

2n ϕ(x,y,z)
= 1 for all

x, y, z ∈ X and all t > 0,

µA(x)+A(y)+A(z) (t) ≥ µA(x+y+z)

(
t

2

)
for all x, y, z ∈ X and all t > 0. By Definition 1.2, the mapping A : X → Y is Cauchy
additive, as desired. �

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

µf(x)+f(y)+f(z) (t) ≥ min
{

µf(x+y+z)

(
t

2

)
,

t

t + θ(‖x‖p + ‖y‖p + ‖z‖p)

}
(2.5)

for all x, y, z ∈ X and all t > 0. Then A(x) := limn→∞ 2nf
(

x
2n

)
exists for each

x ∈ X and defines an additive mapping A : X → Y such that

µf(x)−A(x) (t) ≥ (2p − 2)t
(2p − 2)t + (2 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = 21−p and we get the desired result. �

Theorem 2.3. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y, z) ≤ 2Lϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (2.1). Then
A(x) := limn→∞

1
2n f (2nx) exists for each x ∈ X and defines an additive mapping

A : X → Y such that

µf(x)−A(x) (t) ≥ (2− 2L)t
(2− 2L)t + ϕ(x, x,−2x)

(2.6)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
2
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t + ϕ(x, x,−2x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ 1
2 g(2x)− 1

2 h(2x) (Lεt)

= µg(2x)−h(2x) (2Lεt)

≥ 2Lt

2Lt + ϕ (2x, 2x,−4x)
≥ 2Lt

2Lt + 2Lϕ(x, x,−2x)

=
t

t + ϕ(x, x,−2x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (2.3) that

µf(x)− 1
2 f(2x)

(
1
2
t

)
≥ t

t + ϕ(x, x,−2x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1
2 .

By Theorem 1.5, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A (2x) = 2A(x) (2.7)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.

This implies that A is a unique mapping satisfying (2.7) such that there exists a
ν ∈ (0,∞) satisfying

µf(x)−A(x)(νt) ≥ t

t + ϕ(x, x,−2x)
for all x ∈ X;

(2) d(Jnf,A) → 0 as n →∞. This implies the equality

lim
n→∞

1
2n

f (2nx) = A(x)

for all x ∈ X;



436 CHOONKIL PARK

(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ 1
2− 2L

.

This implies that the inequality (2.6) holds.
The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a
normed vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying
(2.5). Then A(x) := limn→∞

1
2n f (2nx) exists for each x ∈ X and defines an additive

mapping A : X → Y such that

µf(x)−A(x) (t) ≥ (2− 2p)t
(2− 2p)t + (2 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = 2p−1 and we get the desired result. �

3. Stability of the Cauchy-Jensen additive functional inequality

In this section, using the fixed point method, we prove the generalized Hyers-Ulam
stability of the Cauchy-Jensen additive functional inequality (1.3) in complete RN-
spaces.

Theorem 3.1. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y, z) ≤ L

2
ϕ (2x, 2y, 2z)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

µf(x)+f(y)+f(2z) (t) ≥ min
{

µ2f( x+y
2 +z)

(
2t

3

)
,

t

t + ϕ(x, y, z)

}
(3.1)

for all x, y, z ∈ X and all t > 0. Then A(x) := limn→∞ 2nf
(

x
2n

)
exists for each

x ∈ X and defines an additive mapping A : X → Y such that

µf(x)−A(x) (t) ≥ (2− 2L)t
(2− 2L)t + Lϕ(x, x,−x)

(3.2)

for all x ∈ X and all t > 0.

Proof. Letting y = x = −z in (3.1), we get

µf(2x)−2f(x) (t) ≥ t

t + ϕ(x, x,−x)
(3.3)

for all x ∈ X.
Consider the set

S := {g : X → Y }
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and introduce the generalized metric on S:

d(g, h) = inf{ν ∈ R+ : µg(x)−h(x)(νt) ≥ t

t + ϕ(x, x,−x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete. (See the proof
of Lemma 2.1 in [31].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t + ϕ(x, x,−x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ2g( x
2 )−2h( x

2 ) (Lεt)

= µg( x
2 )−h( x

2 )

(
L

2
εt

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 , x

2 ,−x
2

) ≥ Lt
2

Lt
2 + L

2 ϕ(x, x,−x)

=
t

t + ϕ(x, x,−x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (3.3) that

µf(x)−2f( x
2 )

(
L

2
t

)
≥ t

t + ϕ(x, x,−x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
2 .

By Theorem 1.5, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A
(x

2

)
=

1
2
A(x) (3.4)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that A is a unique mapping satisfying (3.4) such that there exists a
ν ∈ (0,∞) satisfying

µf(x)−A(x)(νt) ≥ t

t + ϕ(x, x,−x)
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for all x ∈ X;
(2) d(Jnf,A) → 0 as n →∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X;
(3) d(f,A) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ L

2− 2L
.

This implies that the inequality (3.2) holds.
The rest of proof is similar to the proof of Theorem 2.1. �

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

µf(x)+f(y)+f(2z) (t) ≥ min
{

µf( x+y
2 +z)

(
2t

3

)
,

t

t + θ(‖x‖p + ‖y‖p + ‖z‖p)

}
(3.5)

for all x, y, z ∈ X and all t > 0. Then A(x) := limn→∞ 2nf
(

x
2n

)
exists for each

x ∈ X and defines an additive mapping A : X → Y such that

µf(x)−A(x) (t) ≥ (2p − 2)t
(2p − 2)t + 3θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = 21−p and we get the desired result. �

Theorem 3.3. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y, z) ≤ 2Lϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (3.1). Then
A(x) := limn→∞

1
2n f (2nx) exists for each x ∈ X and defines an additive mapping

A : X → Y such that

µf(x)−A(x) (t) ≥ (2− 2L)t
(2− 2L)t + ϕ(x, x,−x)

(3.6)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
2
g (2x)

for all x ∈ X.
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Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t + ϕ(x, x,−x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ 1
2 g(2x)− 1

2 h(2x) (Lεt)

= µg(2x)−h(2x) (2Lεt)

≥ 2Lt

2Lt + ϕ (2x, 2x,−2x)
≥ 2Lt

2Lt + 2Lϕ(x, x,−x)

=
t

t + ϕ(x, x,−x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (3.3) that

µf(x)− 1
2 f(2x)

(
1
2
t

)
≥ t

t + ϕ(x, x,−x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1
2 .

By Theorem 1.5, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A (2x) = 2A(x) (3.7)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that A is a unique mapping satisfying (3.7) such that there exists a
ν ∈ (0,∞) satisfying

µf(x)−A(x)(νt) ≥ t

t + ϕ(x, x,−x)
for all x ∈ X;

(2) d(Jnf,A) → 0 as n →∞. This implies the equality

lim
n→∞

1
2n

f (2nx) = A(x)

for all x ∈ X;
(3) d(f,A) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ 1
2− 2L

.

This implies that the inequality (3.6) holds.
The rest of the proof is similar to the proof of Theorem 2.1. �
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Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a
normed vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying
(3.5). Then A(x) := limn→∞

1
2n f (2nx) exists for each x ∈ X and defines an additive

mapping A : X → Y such that

µf(x)−A(x) (t) ≥ (2− 2p)t
(2− 2p)t + 3θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can choose L = 2p−1 and we get the desired result. �
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