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Department of Statistics, Forecast and Mathematics

Faculty of Economics and Bussiness Administration, Babeş-Bolyai University
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Abstract. Inspired by the considerations in [Kirk, W.A., Srinivasan, P.S., Veeramany, P., Fixed

points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), No. 1,
79-89], which were further discussed in [Rus, I.A., Cyclic representations and fixed points, Ann. T.

Popoviciu Seminar Funct. Eq. Approx. Convexity, 3 (2005), 171-178], we establish the existence and

uniqueness of the fixed point for cyclic strict Berinde operators. Following [Rus, I.A., The theory of
a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9 (2008),

No. 2, 541-559], we build a so-called theory of the main result, referring concepts and phenomena
like Picard operators, data dependence, limit shadowing, well-posedness of the fixed point problem.

A Maia type result for cyclic strict Berinde operators is also given.
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1. Introduction

The aim of this paper is to prove a fixed point result for cyclic strict Berinde
operators (i.e., cyclic strict almost contractions) and to build a theory of this theorem,
by stating and proving several results which refer concepts like good Picard operator,
special Picard operator, data dependence, sequences of operators and fixed points,
well-posedness of a fixed point problem, limit shadowing property and others. A
Maia type result for cyclic strict Berinde operators is also given.

2. Preliminaries

In [12] a class of continuous generalized contractions defined on cyclic structures is
studied. The present paper contains a similar approach of another class of operators
satisfying a general contraction type condition which does not imply the continuity,
namely the strict almost contractions.

This work was partially supported by CNCSIS–UEFISCSU, project number PNII-IDEI
2366/2008.
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The class of almost contractions was introduced in [2] (see also [3], [4], [5], [6], [7],
[8], [9], [23]) as follows.

Definition 2.1. Let (X, d) be a metric space. An operator f : X → X is called
almost contraction if there exist two constants δ ∈ [0, 1) and L ≥ 0 such that:

d(f(x), f(y)) ≤ δd(x, y) + Ld(y, f(x)), (2.1)

for any x, y ∈ X.

In Theorem 1 [2] it is shown that the almost contractions are weakly Picard op-
erators. In the same paper, Theorem 2 adds the following condition on the almost
contractions, thus obtaining the uniqueness of the fixed point:

d(f(x), f(y)) ≤ δud(x, y) + Lud(x, f(x)), (2.2)

for any x, y ∈ X, where δu ∈ [0, 1) and Lu ≥ 0 are constants.
Inspired by this result, in [13] we considered:

Definition 2.2. Let (X, d) be a metric space. An operator f : X → X is called
strict almost contraction if it satisfies both condition (2.1) and (2.2), with some
real constants δ ∈ [0, 1), L ≥ 0 and δu ∈ [0, 1), Lu ≥ 0, respectively.

Terminological remark. Ioan A. Rus suggested that we should call an almost
contraction a Berinde operator and a strict almost contraction a strict Berinde oper-
ator. Therefore, from now on we shall follow this suggestion.

The class of strict Berinde operators contains several known classes of contraction
type operators, such as Banach, Kannan, Chatterjea, Cirić-Reich-Rus, Zamfirescu
and others, see for example [2], [13].

Suggested by the considerations in [11], the following notion was introduced in [17]:

Definition 2.3. Let X be a nonempty set and f : X → X an operator. By definition,

X =
m⋃

i=1

Xi is a cyclic representation of X with respect to f if

ι) Xi, i = 1,m are nonempty sets;
ιι) f(X1) ⊂ X2,. . . ,f(Xm−1) ⊂ Xm,f(Xm) ⊂ X1.

Remark 2.1. Under the conditions of Definition 2.3, we consider the Picard iteration
associated to f , {xn}n≥0, defined by

xn = f(xn−1) = fn(x0), n ≥ 1, (2.3)

for some x0 ∈ X. As X =
m⋃

i=1

Xi, there is i0 ∈ {1, . . . ,m} such that x0 ∈ Xi0 .

Considering the way {xn}n≥0 was constructed and in view of ιι) in Definition 2.3, it
is easy to remark that for each n ∈ N, there is in ∈ {1, . . . ,m} such that

xn ∈ Xin , xn+1 ∈ Xin+1.

This simple remark shall be useful while proving the main result.

In the following we consider Pcl(X) the collection of all nonempty closed subsets
of a set X. Inspired by the results in [11], [17] and [12], we introduce:
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Definition 2.4. Let (X, d) be a metric space, m a positive integer, A1, . . . , Am ∈
Pcl(X), Y :=

m⋃
i=1

Ai and f : Y → Y an operator. If

ι)
m⋃

i=1

Ai is a cyclic representation of Y w.r.t. f ;

ιι) there exist δ ∈ [0, 1) and L ≥ 0 such that

d(f(x), f(y)) ≤ δd(x, y) + Ld(y, f(x)), (2.4)

for any x ∈ Ai, y ∈ Ai+1, where Am+1 = A1,
then f is a cyclic Berinde operator.

Having in view Definition 2.2, we can also introduce:

Definition 2.5. Let (X, d) be a metric space, m a positive integer, A1, . . . , Am ∈
Pcl(X), Y :=

m⋃
i=1

Ai and f : Y → Y an operator. If

ι)
m⋃

i=1

Ai is a cyclic representation of Y w.r.t. f ;

ιι) f is a cyclic Berinde operator with constants δ ∈ [0, 1) and L ≥ 0;
ιιι) there exist δu ∈ [0, 1) and Lu ≥ 0 such that

d(f(x), f(y)) ≤ δud(x, y) + Lud(x, f(x)), (2.5)

for any x ∈ Ai, y ∈ Ai+1, where Am+1 = A1,
then f is a cyclic strict Berinde operator.

In order to prove the main result we shall also need the following lemma, proved
in [1]:

Lemma 2.1. Let {an}n≥0, {bn}n≥0 be two sequences of positive real numbers and
q ∈ (0, 1) such that:

ι) an+1 ≤ qan + bn, n ≥ 0;
ιι) bn → 0 as n →∞.

Then lim
n→∞

an = 0.

3. The main result

Having in view the definitions above, we state in the following the main result of
this paper.

Theorem 3.1. Let (X, d) be a complete metric space, m a positive integer,

A1, . . . , Am ∈ Pcl(X), Y :=
m⋃

i=1

Ai and f : Y → Y an operator. Assume that:

ι)
m⋃

i=1

Ai is a cyclic representation of Y w.r.t. f ;

ιι) f is a cyclic strict Berinde operator with constants δ ∈ [0, 1), L ≥ 0 and
δu ∈ [0, 1), Lu ≥ 0, respectively.

Then:
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1)
m⋂

i=1

Ai 6= ∅, f has a unique fixed point x∗ ∈
m⋂

i=1

Ai and the Picard iteration

{xn}n≥0 given by (2.3) converges to x∗ for any starting point x0 ∈ Y ;
2) the following estimates hold:

d(xn, x∗) ≤ δn

1− δ
d(x0, x1), n ≥ 1; (3.1)

d(xn, x∗) ≤ δu

1− δu
d(xn, xn−1), n ≥ 1; (3.2)

3) for any x ∈ Y :

d(x, x∗) ≤ 1
1− δu

d(x, f(x)). (3.3)

Proof. 1) Let x0 ∈ Y =
m
∪

i=1
Ai, so there is some i0 ∈ {1, . . . ,m} such that x0 ∈ Ai0 .

Let {xn}n≥0 be the Picard iteration of f starting from x0. For n ≥ 1 we have that:

d(xn, xn+1) = d(f(xn−1), f(xn)). (3.4)

In view of Remark 2.1, any xn−1 and xn satisfy (2.4), thus (3.4) implies:

d(xn, xn+1) ≤ δd(xn−1, xn) + Ld(xn, f(xn−1)),

which actually means that

d(xn, xn+1) ≤ δd(xn−1, xn), n ≥ 1. (3.5)

By induction we obtain that

d(xn, xn+1) ≤ δnd(x0, x1), n ≥ 0. (3.6)

Thus, using the triangle inequality, for p ≥ 1 we are led to:

d(xn, xn+p) ≤ δn 1− δp

1− δ
d(x0, x1), n ≥ 0, (3.7)

which, by letting n → ∞, shows that {xn}n≥0 is a Cauchy sequence in Y =
m
∪

i=1
Ai.

As Ai ∈ Pcl(X), Y is also closed, so the completeness of X implies that of Y . Thus
{xn}n≥0 converges to some p ∈ Y .

On the other hand, due to condition ι), the Picard iteration {xn}n≥0 has an infinite
number of terms in each Ai, i = 1,m. Thus, Y being complete, from each Ai, i = 1,m
we can extract a subsequence which converges to p. As Ai, i = 1,m are closed sets,
it follows that p ∈

m
∩

i=1
Ai.

As
m
∩

i=1
Ai 6= ∅, we may consider the restriction

f | m
∩

i=1
Ai

:
m
∩

i=1
Ai →

m
∩

i=1
Ai,

which obviously satisfies the conditions of Theorem 2 in [2], being a strict Berinde
operator on the complete subspace

m
∩

i=1
Ai. Then by Theorem 2 in [2] it has a unique
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fixed point, say x∗ ∈
m
∩

i=1
Ai, that can be obtained by means of the Picard iteration

{xn}n≥0, starting from any x0 ∈
m
∩

i=1
Ai.

There is still to be proved that {xn}n≥0 converges to x∗ for any starting point in
Y . So let x ∈ Y . There exists j0 ∈ {1, . . . ,m} such that x ∈ Aj0 . On the other hand,

x∗ ∈
m
∩

i=1
Ai, so x∗ ∈ Ai, i = 1,m. Thus by (2.5) we have:

d(f(x∗), f(x)) ≤ δud(x, x∗) + Lud(x∗, f(x∗)) = δud(x, x∗).

By induction we obtain that

d(x∗, fn(x)) ≤ δn
ud(x∗, x),

so for x ∈ Y arbitrary we have that

fn(x) → 0 as n →∞.

Thus the Picard iteration converges to the unique fixed point, starting from any
point x ∈ Y .

2) Letting p →∞ in (3.7) we obtain the a priori estimate (3.1).
We also have, using (2.5), that:

d(xn, x∗) = d(f(xn−1), f(x∗)) ≤
≤ δud(x∗, xn−1) + Lud(x∗, f(x∗)) = δd(x∗, xn−1) ≤
≤ δu[d(xn−1, xn) + d(xn, x∗)],

which leads to the a posteriori estimate (3.2).
3) For any x ∈ Y we have:

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f(x∗)) = d(x, f(x)) + d(f(x∗), f(x)).

By (2.5), this yields

d(x, x∗) ≤ d(x, f(x)) + δud(x, x∗) + Lud(x∗, f(x∗)) = d(x, f(x)) + δud(x, x∗),

which immediately implies (3.3). �

4. A theory of the main result

In the paper [21] (see also [16], [19], [22]) a model of a so-called theory of a fixed point
theorem is described. The set of criteria used to analyze the fixed point results refers
to concepts like good Picard operator, special Picard operator, data dependence,
sequences of operators and fixed points, well-posedness of a fixed point problem,
limit shadowing property and others (for details see [14], [15], [21] and the references
therein).

Having in view this model, in the following we shall build a theory of Theorem 3.1.

Theorem 4.1. Let f : Y → Y be as in Theorem 3.1.

Then
∞∑

n=0
d(fn(x), fn+1(x)) < ∞, for any x ∈ Y , i.e., f is a good Picard operator.
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Proof. Let x0 ∈ Y . By (3.6) in the proof of Theorem 3.1, we know that

d(fn(x0), fn+1(x0)) = δnd(x0, x1), n ≥ 0.

Then
∞∑

n=0

d(fn(x0), fn+1(x0)) ≤
∞∑

n=0

δnd(x0, x1) =

= lim
n→∞

n∑
k=0

δkd(x0, x1) = lim
n→∞

1− δn+1

1− δ
d(x0, x1) =

=
1

1− δ
d(x0, x1) < ∞,

so f is a good Picard operator. �

Theorem 4.2. Let f : Y → Y be as in Theorem 3.1.

Then
∞∑

n=0
d(fn(x), x∗) < ∞, for any x ∈ Y , i.e., f is a special Picard operator.

Proof. From the above estimation (3.1) we know that

d(xn, x∗) ≤ δn

1− δ
d(x0, x1), n ≥ 0.

For x = x0 ∈ X we have:∑
n≥0

d(fn(x), x∗) = lim
n→∞

n∑
k=0

d(xk, x∗) =

= lim
n→∞

n∑
k=0

δk

1− δ
d(x0, x1) =

d(x0, x1)
1− δ

lim
n→∞

n∑
k=0

δk =

=
1

(1− δ)2
d(x0, x1) < ∞,

so f is a special Picard operator. �
Regarding the data dependence of the fixed point in the case of cyclic strict Berinde

operators, we have:

Theorem 4.3. Let f : Y → Y be as in the previous Theorem 3.1, with Ff = {x∗f}.
Let g : X → X such that

ι) g has at least a fixed point, say x∗g ∈ Fg;
ιι) there exists η > 0 such that

d(f(x), g(x)) ≤ η,

for any x ∈ Y .

Then
d(x∗f , x∗g) ≤

η

1− δu
.
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Proof. By conclusion 4) in Theorem 3.1 we have that:

d(x∗f , x∗g) ≤
1

1− δu
d(x∗g, f(x∗g)) =

1
1− δu

d(g(x∗g), f(x∗g)),

which by ιι) yields

d(x∗f , x∗g) ≤
η

1− δu
.

�
A Nadler type result regarding cyclic strict Berinde operators can also be proved:

Theorem 4.4. Let f : Y → Y be as in Theorem 3.1 and fn : Y → Y , n ∈ N such
that:

ι) for each n ∈ N there exists x∗n ∈ Ffn
;

ιι) fn
u−→ f as n →∞.

Then
x∗n → x∗, n →∞,

where Ff = {x∗}.

Proof. As {fn}n≥0 converges uniformly to f , there exist ηn ∈ R+, n ∈ N such
that ηn → 0, n →∞ and

d(fn(x), f(x)) ≤ ηn,

for any x ∈ Y . Now applying Theorem 4.3 for each pair f and fn, n ∈ N, it follows
that

d(x∗n, x∗) ≤ ηn

1− δu
, n ∈ N.

Since ηn → 0, n →∞, the conclusion follows immediately. �

Theorem 4.5. Let f : Y → Y be as in Theorem 3.1.
Then the fixed point problem for f is well posed, that is, assuming there exist

zn ∈ Y, n ∈ N such that
d(zn, f(zn)) → 0 as n →∞,

this implies that
zn → x∗ as n →∞,

where Ff = {x∗}.

Proof. By Theorem 3.1, Ff = {x∗}. Let zn ∈ Y , n ∈ N such that

d(zn, f(zn)) → 0, as n →∞. (4.1)

We have that:

d(zn, x∗) ≤ d(zn, f(zn)) + d(f(zn), x∗) = d(zn, f(zn)) + d(f(x∗), f(zn)).

As zn ∈ Y =
m
∪

i=1
Ai, n ≥ 0, there is j0 ∈ {1, . . . ,m} such that zn ∈ Aj0 . We also know

that x∗ ∈
m
∩

i=1
Ai, therefore we can apply (2.5) in the previous relation, thus obtaining:

d(zn, x∗) ≤ d(zn, f(zn)) + δud(x∗, zn) + Lud(x∗, f(x∗)).
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Then
d(zn, x∗) ≤ 1

1− δu
d(zn, f(zn)),

which by (4.1) obviously implies that

d(zn, x∗) → 0, as n →∞.

So the fixed point problem for f is well posed. �

Theorem 4.6. Let f : Y → Y be as in Theorem 3.1.
Then f has the limit shadowing property, that is, assuming there exist zn ∈ Y, n ∈ N

such that
d(zn+1, f(zn)) → 0 as n →∞,

then there exists x ∈ Y such that

d(zn, fn(x)) → 0 as n →∞.

Proof. Let zn ∈ Y , n ∈ N such that

d(zn+1, f(zn)) → 0, as n →∞.

By Theorem 3.1 we know that Ff = {x∗}. We shall prove that {zn}n≥0 converges
exactly to x∗. We have that:

d(zn, x∗) ≤ d(zn, f(zn−1)) + d(f(zn−1), x∗)
= d(zn, f(zn−1)) + d(f(x∗), f(zn−1)). (4.2)

As zn−1 ∈ Y =
m
∪

i=1
Ai and x∗ ∈

m
∩

i=1
Ai, after a similar reasoning to the one in the proof

of Theorem 4.5 we apply (2.5) in the above relation (4.2) and obtain that

d(zn, x∗) ≤ d(zn, f(zn−1)) + δud(x∗, zn−1) + Lud(x∗, f(x∗)),

which implies

d(zn, x∗) ≤ d(zn, f(zn−1)) + δud(zn−1, x
∗), n ≥ 1. (4.3)

As d(zn, f(zn−1)) → 0, n →∞ and δu ∈ [0, 1), by Lemma 2.1 it follows that

d(zn, x∗) → 0, n →∞. (4.4)

We also know, from Theorem 3.1, that for any x0 ∈ Y :

fn(x0) → 0, n →∞. (4.5)

But for any x0 ∈ Y we can write:

d(zn, fn(x0)) ≤ d(zn, x∗) + d(x∗, fn(x0)). (4.6)

Now using (4.4) and (4.5) in (4.6) we obtain that, for any x0 ∈ Y ,

d(zn, fn(x0)) → 0, as n →∞.

Thus f has the limit shadowing property. �
A Maia type result for cyclic strict Berinde operators on metric spaces can also be

proved:

Theorem 4.7. Let X be a nonempty set, d and ρ two metrics on X and f : X → X
an operator. We assume that:
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ι) d(x, y) ≤ ρ(x, y), for any x, y ∈ X;
ιι) (X, d) is a complete metric space;

ιιι) f is continuous with respect to d;
ιv) f : (X, ρ) → (X, ρ) is a cyclic strict Berinde operator with constants δ ∈ [0, 1),

L ≥ 0 and δu ∈ [0, 1), Lu ≥ 0, respectively.
Then:

1) Ff = {x∗};
2) the Picard iteration {xn}n≥0 converges to x∗ in (X, d), for any x0 ∈ X.

Proof. Let x0 ∈ X.
Using condition ιv) we deduce that {fn(x0)}n∈N is a Cauchy sequence in (X, ρ)

(see the proof of Theorem 3.1).
By ι) it follows that it is Cauchy in (X, d), as well.
Finally by ιι) and ιιι) it is easy to prove that it actually converges in (X, d) to the

unique fixed point of f . �

Remark 4.1. In [13] we have extended the results from [2] regarding strict Berinde
operators on metric spaces to a b-metric space setting, also building a theory of the
new result.

In the same manner one can extend the main result of this section, namely Theorem
3.1, which is formulated in a metric space setting, to a result for cyclic strict Berinde
operators defined on a b-metric space. All the corresponding theory can be build
similarly, without major difficulties.
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