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Abstract. We investigate the boundary value problem for second order functional differential inclu-

sions of the form D
dt

ṁ(t) ∈ F (t, mt(θ), ṁt(θ)) on a complete Riemannian manifold for a C1-smooth

curve ϕ : [−h, 0]→M as initial value, and a point m1 that is non-conjugate with ϕ(0) along at least

one geodesic of Levi-Civita connection. Here D
dt

is the covariant derivative of Levi-Civita connec-

tion and F (t, m(θ), X(θ)) is a set-valued vector field with closed convex values that satisfies upper
Caratheodory condition and is given on couples: a continuous curve m(θ) in M , θ ∈ [−h, 0], and a

vector field X(θ) along m(θ) that is continuous from the left and has limits from the right, under

the assumption that F has uniformly quadratic or less than quadratic growth in velocity. Some con-
ditions on certain geometric characteristics and on the distance between ϕ(0) and m1, under which

the problem is solvable, are found. The solution is constructed from a fixed point of an integral-type
operator.
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1. Introduction

Let M be a finite-dimensional complete Riemannian manifold and TM be its tan-
gent bundle with natural projection π : TM → M . For I = [−h, 0] denote by
D(I, TM) the space of couples (m(θ), X(θ)) where m(θ) is a continuous curve in M
and X(θ) is a vector field along m(θ) being continuous from the left and having the
limit from the right. Consider a set-valued mapping F : R ×D(I, TM) ( TM such
that for any (m(θ), X(θ)) the relation πF (t, m(θ), X(m(θ)) = m(0) holds. We call
such F a set-valued force field.

Specify l > 0. We investigate the differential inclusion of the form
D

dt
ṁ(t) ∈ F (t, mt(θ), ṁt(θ)), (1.1)

where as usual for a curve m(·) : [−h, l] → M and t ∈ [0, l], we set mt(θ) = m(t + θ)
where θ ∈ I. We suppose that F has either uniformly less than quadratic or quadratic
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growth in velocity on the sets from D(I, TM) (see Definitions 3.1 and 3.2). Also we
assume that F satisfies the so called upper Carathéodory condition (see Definition
3.3) and has convex closed values.

The main aim of the paper is to find conditions that guarantee the solvability
for some t1 ∈ (0, l) of the boundary value problem for (1.1) with right-hand sides as
mentioned above, i.e., to find a C1-curve m(t), t ∈ [−h, t1], with absolutely continuous
derivative, satisfying (1.1) and such that m(t) = ϕ(t) for t ∈ [−h, 0] and m(t1) = m1

where ϕ(t) is a given C1-curve with t ∈ I and m1 is a given point. Note that for such
a solution the couple (mt(θ), ṁt(θ)) belongs to D(I, TM) for every t ∈ [0, t1].

It should be pointed out that even the two-point boundary value problem for
ordinary second order differential equations may not be solvable at all for smooth
uniformly bounded single-valued F (see, e.g., [1]) if the boundary points are conjugate
along all geodesics of Levi-Civita connection joining them. That is why we suppose
that the points ϕ(0) and m1 are not conjugate along at least one geodesic. We find
some conditions on certain geometric characteristics of M , on t1, and on the distance
between ϕ(0) and m1, under which the problem is solvable. Note that there are
examples of second order equations with non-bounded continuous right-hand sides
where for a given couple of points the problem is solvable on a sufficiently small time
interval but is not solvable on larger intervals. Besides, the problem can be solvable
for points rather close to each other and not solvable at all for points with greater
distance between them (see examples in [1]).

We construct the solutions of problem under consideration from fixed points of
special integral type operators, that act in the space of continuous curves in the
tangent space Tϕ(0)M .

A boundary value problem similar to that we consider here, was investigated by
another method in [2] under assumption that the initial curve ϕ(t) was constant for
t ∈ [−h, 0] (i.e., it was a single point) and the right-hand side satisfied the condition
‖F (t, m(θ), X(θ))‖ ≤ c(1 + ‖X(θ)‖α) with α ∈ [0, 2). Existence of solutions was
proven for sufficiently small time intervals. Obviously that problem was a particular
case of the one considered here.

Note that a single-valued continuous field f is a particular case of above-mentioned
set-valued fields F . Thus the conditions found here for inclusion (1.1) are also valid
for second order functional differential equation D

dtṁ(t) = f(t, mt, ṁt) with continuous
right-hand side. We do not formulate the results for equations separately.

The authors are indebted to Yu.E. Gliklikh for setting up the problem and very
much useful discussions.

2. Technical statements

In this section we modify some constructions from [3] for the problem under con-
sideration.

Take m0 ∈ M , and let v : [0, 1] → Tm0M be a continuous curve. It is shown in
[3] that there exists a unique C1–curve m : [0, 1] → M such that m(0) = m0 and the
vector ṁ(t) is parallel along m(·) to the vector v(t) ∈ Tm0M at any t ∈ [0, 1].
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Denote the curve m(t) constructed above from the curve v(t), by the symbol
Sv(t). Thus we have defined a continuous operator S that sends the Banach space
C0([0, 1], Tm0M) of continuous maps (curves) from [0, 1] to Tm0M into the Banach
manifold C1([0, 1],M) of C1– maps from [0, 1] to M .

Let a point m1 ∈ M be non-conjugate to the point m0 ∈ M along a geo-
desic g(·) of the Levi-Civita connection. Everywhere below denote by UR a ball
in C0([0, t1], Tϕ(0)M) with center at the origin.

Lemma 2.1. There exists a ball Uε ⊂ C0([0, 1], Tm0M) of a radius ε > 0 centered at
the origin such that for any curve û(t) ∈ Uε ⊂ C0([0, 1], Tm0M) there exists a unique
vector Cû, belonging to a certain bounded neighborhood V of the vector ġ(0) in Tm0M ,
that is continuous in û and such that S(û + Cû)(1) = m1

We introduce the notation supC∈V ‖C‖ = C, where V is from Lemma 2.1.

Remark 2.1. One can easily show that ε < C. Note that C characterizes the distance
between m0 and m1 while ε characterizes some properties of the Riemannian geometry
on M .

Lemma 2.2. Under conditions and notation of Lemma 2.1, let R > 0 and t1 > 0 be
such that t−1

1 ε > R. Then for any curve u(t) ∈ UR ⊂ C0([0, t1], Tm0M) there exists a
unique vector Cu in a neighborhood t−1

1 V of the vector t−1
1 ġ(0) in Tm0M , continuously

depending on u and such that S(u + Cu)(t1) = m1

Lemmas 2.1 and 2.2 are modifications of Theorem 3.3 from [3].

For the given curve ϕ(·) we introduce the operator Sϕ : C0([0, t1], Tϕ(0)M)
→ C0([−h, t1],M), defined as follows: Sϕ(v(·))(t) = ϕ(t) for t ∈ [−h, 0] and
Sϕ(v(·))(t) = S(v(·))(t) for t ∈ [0, t1].

Lemma 2.3. For specified t1 > 0, R > 0 as above and ϕ(·) ∈ C1(I,M) all curves
S(v+Cv)t(θ) with v(·) ∈ UR ⊂ C0([0, t1], Tϕ(0)M) take values in a compact set Ξ ⊂ M
that depends on the curve ϕ, ε and C, introduced above, and does not depend on t1.

Proof. Obviously the length of Sϕ(v + Cv)(·) is a sum of lengths of ϕ(·) and of S(v +
Cv)(·). Since the parallel translation preserves the norm of a vector, for any curve
v(·) ∈ C0([0, t1], Tϕ(0)M)) the length of S(v + Cv)(·) is not greater than

∫ t1
0

(R +
‖Cv‖)dt ≤

∫ t1
0

t−1
1 (ε + C)dt =

∫ 1

0
(ε + C)dt = ε + C. Denote N = supt∈I ‖ϕ̇(t)‖.

It is easy to see that the length of ϕ(·) is not greater than Nh. Hence all curves
‖Sϕ(v + Cv)t(·)‖ lie in a bounded subset Ξ of M . Since M is complete, by Hopf-
Rinow theorem any bounded set is compact. �

Lemma 2.4. Let a real number a satisfy the inequality 0 < a < ε
(ε+C)2 . Then

there exists a sufficiently small positive number φ such that (εt−1
1 − φ) > 0 and the

inequality a((εt−1
1 − φ) + Ct−1

1 )2 < εt−2
1 − φt−1

1 holds.

Proof. From the hypothesis of lemma we get a(εt−1
1 +Ct−1

1 )2 < εt−2
1 . From continuity

of both sides of this inequality it follows that there exists a sufficiently small number
φ > 0 such that (εt−1

1 − φ) > 0 and the inequality a((εt−1
1 − φ) + Ct−1

1 )2 < (εt−1
1 −

φ)t−1
1 = εt−2

1 − φt−1
1 holds. �
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3. Main results

Everywhere below M is a complete Riemannian manifold. Denote ‖X(·)‖ =
supθ∈I‖X(θ)‖. Introduce the norm of F (t,m, X) ∈ TmM by usual formula:

‖F (t, m(·), X(·))‖ = supy∈F (t,m(·),X(·))‖y‖.

On D(I, TM) we consider Skorohod’s topology (see for example [4], where it is de-
scribed for the space of functions continuous from the right and having limits from
the left, in our case the construction is quite analogous).

Definition 3.1. We say that F has uniformly less than quadratic growth in velocity
if on every set [0, l]×Θ with Θ ⊂ D(I, TM) such that all curves {m(·)} = πΘ belong
to a compact set Ω in M , for the couples (m(·), X(·)) with every specified ‖X(·)‖ we
have that sup(t,m(·))∈[0,l]×πΘ ‖F (t, m(·), X(·))‖ is finite and the relation

lim
‖X(·)‖→∞

sup(t,m(·))∈[0,l]×πΘ ‖F (t,m(·), X(·))‖
‖X(·)‖2

= 0 (3.1)

takes place.

Obviously the uniformly bounded force field is a particular case of that with uni-
formly less than quadratic growth.

Definition 3.2. We say that F has uniformly quadratic growth in velocity, if on
every set [0, l]×Θ with Θ ⊂ D(I, TM) such that all curves {m(·)} = πΘ belong to a
compact set Ω in M , for the couples (m(·), X(·)) with every specified ‖X(·)‖ we have
that sup(t,m(·))∈[0,l]×πΘ ‖F (t,m(·), X(·))‖ is finite and there exists a positive number
δ = δ(Ω) such that

lim
‖X(·)‖→∞

sup(t,m(·))∈[0,l]×πΘ ‖F (t, m(·), X(·))‖
‖X(·)‖2

= δ. (3.2)

Definition 3.3. We say that F (t,m(θ), X(θ))) satisfies upper Carathéodory condi-
tions if:

(1) for every couple (m(·), X(·))) ∈ D(I, TM) the map F (·,m(·), X(·))) : [0, l] (
TmM is measurable,

(2) for almost all t ∈ I the map F (t, ·, ·) : D(I, TM) ( TM is upper semicontin-
uous.

Consider a curve ϕ(θ) ∈ C1(I,M) and a point m1 ∈ M .

Theorem 3.4. Let ϕ(0) and m1 be not conjugate along at least one geodesic of Levi-
Civita connection joining them and let F (t, m(·), X(·)) satisfy the upper Caratheodory
condition, have convex closed values and have uniformly less than quadratic growth
in velocity. Then for a sufficiently small t1 > 0 there exists a solution m(t) of (1.1),
for which m(t) = ϕ(t) for t ∈ I, and m(t1) = m1.

Proof. Since ϕ(0) and m1 are not conjugate along a geodesic of Levi-Civita connec-
tion, the numbers ε and C from Lemma 2.1 are well-posed. Denote by Θ the subset
in D(I, TM) such that all curves from πΘ belong to the compact Ξ from Lemma 2.3.
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Consider a continuous curve v : [0, t1] → Tϕ(0)M . Construct the C1-curve γ(t) =
Sϕv(t) for t ∈ [0, t1].

Note that the vector filed γ̇(t) along γ(t) is discontinuous at t = 0 but the couple
(γt(·), γ̇t(·)) belongs to D(I, TM) for all t ∈ [0, l]. Hence the set-valued vector field
F (t, γt(·), γ̇t(·)) is well-posed for all t ∈ [0, t1].

Denote by Γ the operator of parallel translation of vectors along γ(·) at the point
γ(0) = ϕ(0). Apply operator Γ to all sets F (t, γt(θ), γ̇t(θ)) along γ(·). As a result
for any v(·) ∈ C0(I, Tm0M) we obtain a set-valued map ΓFSϕv : [0, t1] → Tm0M
that has convex values. It follows from the results of [5] that this map satisfies upper
Carathéodory conditions. Denote by PΓFSϕv the set of all measurable selections
of ΓFSϕv (such selections do exist, see e.g., [6]). Define the set-valued operator∫
PΓFSϕ : C0([0, t1], Tm0M) ( C0([0, t1], Tm0M) by the formula∫

PΓFSϕ = {
∫ t

0

f(τ)dτ |f(·) ∈ PΓFSϕ}.

In complete analogy with [5], it can be shown that
∫
PΓFSϕ is upper semicontinuous,

has convex values and sends bounded sets from C0([0, t1], Tϕ(0)M) into compact ones.
Introduce N = supt∈I ‖ϕ̇(t)‖. Consider a < ε

(ε+C)2 . From (3.1) it is easy to
see that there exists a positive number Q such that the following inequalities hold:
N < Q and for C1-curves m(·) and n(·) from πΘ such that ‖ṁ(·)‖ > ‖ṅ(·)‖ and
‖ṁ(·)‖ > Q, we have ‖F (t, n(·), ṅ(·))‖ < a‖ṁ(·)‖2. Take sufficiently small positive
number t1 such that the following conditions are satisfied: t1 ∈ [0, l] and t−1

1 ε−φ > Q,
where φ is a number from Lemma 2.4. Consider a ball UR ⊂ C0([0, t1], Tm0M), where
R = t−1

1 ε − φ. Since εt−1
1 > R, by Lemma 2.2 for any v(·) ∈ UR the vector Cv is

well-posed. Thus we can introduce the operator Z : UR ( C0([0, t1], Tm0M) by
formula:

Z(v) =
∫
PΓFSϕ(v + Cv).

As well as
∫
PΓFSϕv, this operator is upper semi-continuous, convex-valued and

sends bounded sets from C0([0, t1], Tm0M) into compact ones (see [1]). Since t−1
1 ε−

φ > Q and parallel translation preserves the norms of vectors, from the construction
of Sϕ and from Lemma 2.4 we derive that for any v(·) ∈ UR and t ∈ [0, t1] the estimate

‖F (t, Sϕ(v + Cv)t(θ),
d

dθ
Sϕ(v + Cv)t(θ))‖ < a((εt−1

1 − φ) + Ct−1
1 )2 < (εt−2

1 − φt−1
1 )

holds. Since parallel translation preserves the norms of vectors, from the last inequal-
ity it follows that

‖Z(v + Cv)‖ = ‖
∫
PΓFSϕ(v + Cv)‖C0([0,t1],Tm0M) ≤ (t−1

1 ε− φ) = R.

Thus Z sends the ball UR into itself and from the Bohnenblust-Karlin fixed point
theorem (see, e.g., [6, 7]) it follows that it has a fixed point u(·) ∈ UR, i.e. u(·) ∈ Zu(·).
Let us show that m(t) = Sϕ(u(t) + Cu) is the desired solution. By construction we
have m(·) = ϕ(·) for t ∈ [−h, 0] and m(t1) = m1.

Note that u̇(·) is a selection of ΓF (t, Sϕ(u+Cu)t(θ), d
dθSϕ(u+Cu)t(θ)) since u is a

fixed point of Z. In other words, the inclusion u̇(t) ∈ ΓF (t, Sϕ(u + Cu)t(θ), d
dθSϕ(u +
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Cu)t(θ)) holds for all points t at which the derivative exists. Using the properties
of the covariant derivative and the definition of u, one can show that u̇(t) is paral-
lel to D

dtṁ(t) along m(·) and ΓF (t, Sϕ(u + Cu)t(θ), d
dθSϕ(u + Cu)t(θ)) is parallel to

F (t, mt(θ), ṁt(θ)). Hence, D
dtṁ(t) ∈ F (t, m(t), ṁ(t)). �

Corollary 3.5. The assertion of Theorem 3.4 remains true if F does not have uni-
formly less than quadratic growth in velocity but (3.1) is fulfilled on Θ such that all
curves from πΘ belong to the compact Ξ from Lemma 2.3 constructed for ϕ and m1

considered in Theorem 3.4.

Indeed, in the proof of Theorem 3.4 we dealt with such Θ only.

Theorem 3.6. Let F (t, m(·), X(·)) satisfy the upper Carathéodory condition, have
convex closed values and have uniformly quadratic growth in velocity. Let the estimate
δ < ε

(ε+C)2 hold. Then for a sufficiently small t1 > 0 there exists a solution m(t) of
(1.1) such that m(·) = ϕ(·) for t ∈ I and m(t1) = m1.

Proof. Consider numbers ε, C, N and set Θ defined as in the proof of Theorem
3.4. Consider the positive number a such that δ < a < ε

(ε+C)2 . From condition
(3.2) it follows that there exists a number Q > 0, such that the following conditions
holds: Q > N and for every m(·) and n(·) from Θ such that ‖ṁ(t)‖ > ‖ṅ(t)‖ and
‖ṁ(t)‖ > Q, we have ‖F (t, n(t), ṅ(t))‖ < a‖ṁ(t)‖2. For a sufficiently small positive t1
the following conditions are satisfied: t1 ∈ [0, l] and t−1

1 ε−φ > Q, where φ is a number
from Lemma 2.4. Consider a ball UR ⊂ C0([0, t1], Tm0M), where R = t−1

1 ε−φ. As in
the proof of Theorem 3.4 we can use the operator Z : UR ( C0([0, t1], Tϕ(0)M) and
one can easily show that this operator is upper semi-continuous, convex-valued and
sends bounded sets from C0([0, t1], Tϕ(0)M) into compact ones ( see [1]).

Since parallel translation preserves the norms of vectors, from the construction of
S and from the hypothesis we derive that for any v(·) ∈ UR and t ∈ [0, t1] the estimate

‖F (t, Sϕ(v + Cv)t(θ),
d

dθ
Sϕ(v + Cv)t(θ))‖ < a((εt−1

1 − φ) + Ct−1
1 )2 < (εt−2

1 − φt−1
1 )

holds. Since parallel translation preserves the norms of vectors, from the last inequal-
ity it follows that

‖Z(v + Cv)‖ = ‖
∫
PΓFSϕ(v + Cv)‖C0([0,t1],Tϕ(0)M) ≤ (t−1

1 ε− φ) = R.

Thus Z sends the ball UR into itself and from the Bohnenblust-Karlin fixed point
theorem (see, e.g., [6, 7]) it follows that it has a fixed point u(·) ∈ UR, i.e., u(·) ∈ Zu(·).
It is obvious that, as in the proof of Theorem 3.4, m(t) = Sϕ(u(t)+Cu) is the desired
solution. �

In analogy to Theorem 3.4, the following corollary to Theorem 3.6 takes place:

Corollary 3.7. The assertion of Theorem 3.6 remains true if F does not have uni-
formly quadratic growth in velocity but (3.2) is fulfilled on Θ such that all curves from
πΘ belong to the compact Ξ from Lemma 2.3 constructed for ϕ and m1 considered in
Theorem 3.6.
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