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Abstract. Recently, CQ method has been investigated extensively. However, it is mainly applied
to modify Mann, Ishikawa and Halpern iterations to get strong convergence. In this paper, we

study the properties of CQ method and proposed a framework. Based on that, we obtain a series

of strong convergence theorems. Some of them are the extensions of previous results. On the other
hand, CQ method, monotone Q method, monotone C method and monotone CQ method, used to

be given separately, have the following relations: CQ method TRUE ⇒ monotone Q method TRUE

⇒ monotone C method TRUE ⇔ monotone CQ method TRUE.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and T a
self-mapping of C. Recall that T is said to be a nonexpansive mapping if

‖Tx− Ty‖ ≤ ‖x− y‖,∀x, y ∈ C. (1.1)

T is said to be strictly pseudo-contractive if there exists a constant 0 ≤ κ < 1 such
that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2 (1.2)
for all x, y ∈ C. For such cases, T is also said to be a κ-strictly pseudo-contractive
mapping. It is also said to be pseudo-contractive if κ = 1 in (1.2). That is,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2 (1.3)

for all x, y ∈ C. Clearly, the class of strict pseudo-contractions falls into the one
between classes of nonexpansive mappings and pseudo-contractions.

It is very clear that, in a real Hilbert space H, (1.3) is equivalent to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 (1.4)
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Recall that three iteration processes are often used to approximate a fixed point
of a nonexpansive mapping. The first one is Halpern’s iteration process [1] which is
defined as follows: Take an initial guess x0 ∈ C arbitrarily and define {xn} recursively
by

xn+1 = (1− αn)x0 + αnTxn, n ≥ 0 (1.5)
where {αn} is a sequence in the interval [0, 1].

The second is known as Mann’s iteration process [2] which is defined as

xn+1 = (1− αn)xn + αnTxn, n ≥ 0 (1.6)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn} is in the
interval [0, 1].

The third is referred to as Ishikawa’s iteration process [3] which is defined recur-
sively by {

zn = (1− αn)xn + αnTxn

xn+1 = (1− βn)xn + βnTzn
, n ≥ 0 (1.7)

where the initial guess x0 is taken in C arbitrarily and {αn} and {βn} are sequences
in the interval [0, 1].

We know that (1.5) has strong convergence under certain conditions, but both (1.6)
and (1.7) have only weak convergence, in general, even for nonexpansive mappings
(see an example in [4]).

Recently, modifications of algorithm (1.5), (1.6) and (1.7) have been extensively
investigated; see [5, 6, 7, 8, 9, 10] and the references therein. For instance, one of the
most important methods was firstly introduced by Nakajo and Takahashi [6] in 2003.

Theorem 1.1 (see [6]). Let C be a nonempty closed convex subset of a Hilbert space
H and T a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose
x0 ∈ C chosen arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖z − yn‖ ≤ ‖z − xn‖}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn∩Qnx0

(1.8)

where PCn∩Qn
is the metric projection from C onto Cn∩Qn and {αn} is chosen such

that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0, where PF (T ) is the
metric projection from C onto F (T ).

Remark 1.1. It is also known as CQ method or CQ method. The purpose of the au-
thors is to modify Mann’s iteration process and obtain a strong convergent sequence.
However, we can learn more from (1.8). In fact, (1.8) is equivalent to Cn = {z ∈ C : ‖z − ((1− αn)xn + αnTxn)‖ ≤ ‖z − xn‖}

Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn∩Qn

x0

(1.9)

From (1.9) we can conclude that in each recursive step, the algorithms can be
divided into two parts: (P1) construct an appropriate set and (P2) project the given
fixed point onto the set.
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According to this point view, the crux of CQ method is how to construct an
appropriate set and (1.9) is just a special case:

(A1) construct Cn based on iteration scheme (1.6) and the properties of the map-
ping T .

(A2) construct Qn by the property of the metric projection.
Cn ∩Qn is the appropriate set. Then, together with (P2), we can yield (1.9), i.e.,

Theorem 1.1.
Actually, based on this idea we can accomplish (P1) in many ways and construct

different kinds of appropriate sets based on scheme (1.5), (1.6), (1.7) and their com-
binations. And we name this method as generalized CQ method.

Motivated by Remark 1.1, we propose a CQ algorithm framework, which is the
basic work in this paper. Then, based on this framework, we introduce a series of
strong convergence theorems. Some of them, used to be given separately, have direct
relations between each other.

In section 8, we study the relations among CQ method, monotone Q method,
monotone C method and monotone CQ method.

2. Preliminaries and lemmas

Let H be a real Hilbert space with inner product 〈·, ·〉 and let C be a closed convex
subset of H. For every point x ∈ H there exists a unique nearest point in C, denoted
by PCx such that

‖x− PCx‖ ≤ ‖x− y‖
for all y ∈ C, where PC is called the metric projection of H onto C. We know that
PC is a nonexpansive mapping.

xn → x means that {xn} converges strongly to x. xn ⇀ x means xn converges
weakly to x.

We know that a Hilbert space H satisfies Opial’s condition [11], that is, for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x. We also know that H has the Kadec-Klee
property, that is xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x. In fact, from ‖xn − x‖2 =
‖xn‖2 − 2〈xn, x〉+ ‖x‖2, we get that a Hilbert space has Kadec-Klee property.

For a given sequence {xn} ⊂ C, let ωw(xn) = {x : ∃xnj
⇀ x} denote the weak

limit set of {xn}
Now we collect some lemmas which will be used in the proof of our main theorems.

Lemma 2.1 (see [5]). Let H be a real Hilbert space. There hold the following iden-
tities:
(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H
(ii) ‖αx+(1−α)y‖2 = α‖x‖2+(1−α)‖y‖2−α(1−α)‖x−y‖2, ∀α ∈ [0, 1] and x, y ∈ H.

Lemma 2.2. Let C be a closed convex subset of real Hilbert space H. Given x ∈ H
and z ∈ C. Then z = PCx if and only if there holds the relation

〈x− z, y − z〉 ≤ 0, for all y ∈ C.
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Lemma 2.3 (see [8]). Let H be a real Hilbert space. Given a closed convex subset C
and points x, y, z ∈ H. Given also a real number a ∈ R. The set

{v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a}
is closed and convex.

Lemma 2.4 (see [8]). Let C be a closed convex subset of real Hilbert space H. Let
{xn} be a sequence in H and u ∈ H. Let q = PCu. If ωw(xn) ⊂ C and

‖xn − u‖ ≤ ‖u− q‖
for all n, then xn → q.

Lemma 2.5 (see [10]). Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → C a demi-continuous pseudo-contractive self-mapping from C
into itself. Then F (T ) is a closed convex subset of C and I−T is demiclosed at zero.

Lemma 2.6 (see [5]). Let C be a nonempty closed convex subset of H and T : C → C
a κ−strict pseudo-contraction for some 0 ≤ κ < 1. Then F (T ) is a closed convex
subset of C and I − T is demiclosed at zero.

Lemma 2.7. Let C be a nonempty closed convex subset of a real Hilbert space H
and T an L−Lipschitz mapping from C into itself. Assume F (T ) 6= ∅ is closed and
convex, L + 1 ≤ µ < ∞ and θ ≥ 0. Let

Cx = {z ∈ C : ‖x− Tx‖ ≤ µ‖x− z‖+ θ}, ∀x ∈ C.

Then, F (T ) ⊂ Cx.

Proof. Let p ∈ F (T ), we have ∀x ∈ C

‖x− Tx‖ ≤ ‖x− p‖+ ‖p− Tx‖
≤ ‖x− p‖+ L‖x− p‖
= (L + 1)‖x− p‖
≤ µ‖x− p‖+ θ.

Hence, p ∈ Cx, i.e., F (T ) ⊂ Cx.
�

3. Main result

In this section, a strong convergence theorem is obtained by generalized CQ
method.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and T an L−Lipschitz mapping from C into itself. Assume F (T ) 6= ∅ is closed and
convex, I−T is demiclosed at zero, {µn} is a sequence such that L+1 ≤ µn ≤ µ < ∞
and θn(z) is a nonnegative function on C. Let {xn} be a sequence generated by the
following manner:

x0 ∈ C chosen arbitrarily
Cn = {z ∈ C : ‖xn − Txn‖ ≤ µn‖xn − z‖+ θn(z)}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0,

(3.1)
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where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Assume limn→∞ θn(xn+1) =
0. Then {xn} converges strongly to PF (T )x0.

Proof. According to the assumption, we see that PF (T )x0 is well defined. It is
obvious that Qn is closed and convex, hence, C∗n ∩Qn is closed and convex.

Next, we show that F (T ) ⊂ C∗n ∩ Qn. From the assumption, F (T ) ⊂ C∗n, hence,
it suffices to prove F (T ) ⊂ Qn. We prove this by induction. For n = 0, we have
F (T ) ⊂ C = Q0. Assume that F (T ) ⊂ Qn. Since xn+1 is the projection of x0 onto
C∗n ∩Qn, we have

〈z − xn+1, xn+1 − x0〉 ≥ 0,∀z ∈ C∗n ∩Qn.

As F (T ) ⊂ C∗n ∩ Qn by the induction assumption, the last inequality holds, in par-
ticular, for all z ∈ F (T ). This together with the definition of Qn+1 implies that
F (T ) ⊂ Qn+1. Hence, F (T ) ⊂ Qn holds for all n ≥ 0 and {xn} is well defined.

From xn = PQn
x0, we have

〈x0 − xn, xn − y〉 ≥ 0

for all y ∈ C∗n ∩Qn. So, for p ∈ F (T ), we have

0 ≤ 〈x0 − xn, xn − p〉
= 〈x0 − xn, xn − x0 + x0 − p〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − p〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖ · ‖x0 − p‖.

Hence,
‖x0 − xn‖ ≤ ‖x0 − p‖ (3.2)

for all p ∈ F (T ). This implies that {xn} is bounded.
From xn = PQn

x0 and xn+1 = PC∗
n∩Qn

x0 ∈ C∗n ∩Qn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0.

Hence,
0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖ · ‖x0 − xn+1‖,

therefore
‖x0 − xn‖ ≤ ‖x0 − xn+1‖,

which implies that limn→∞ ‖xn − x0‖ exists.
Besides, by Lemma 2.1 we have

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

Let n →∞, we get limn→∞ ‖xn+1 − xn‖ = 0.
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Noticing xn+1 = PC∗
n∩Qnx0 ⊂ Cn, we have

‖xn − Txn‖ ≤ µn‖xn − xn+1‖+ θn(xn+1).

Combining with the assumption of {µn} and {θn(xn+1)}, we obtain

lim
n→∞

‖xn − Txn‖ = 0.

Since I − T is demiclosed, then every weak limit point of {xn} is a fixed point of T .
That is, ωw(xn) ⊂ F (T ). By Lemma 2.4, xn → PF (T )x0. �

4. Applications of the main result

First, we use Theorem 3.1 to prove Theorem 1.1.
Obviously, the following theorem can be easily verified by Theorem 3.1.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn
∗Cn = {z ∈ C : ‖xn − Txn‖ ≤ 2

αn
‖xn − z‖}

Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗∗

n ∩Qnx0

where C∗∗n is a closed convex set with F (T ) ⊂ C∗∗n ⊂ ∗Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Let C∗∗n = Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} in Theorem 4.1. Easily, we can
prove Cn is closed and convex with F (T ) ⊂ Cn ⊂ ∗Cn. So, Theorem 4.2 is valid.

Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗∗

n ∩Qn
x0

where {αn} is chosen such that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to
PF (T )x0.

Clearly, Theorem 4.2 is the same as Theorem 1.1.
Moreover, if C∗n is a closed convex set satisfies F (T ) ⊂ C∗n ⊂ Cn, then, F (T ) ⊂

C∗n ⊂ ∗Cn. Therefore, we obtain the following theorem.

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0
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where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and {αn} is chosen such that
0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Theorem 4.3 is one of the generalized CQ algorithms in this paper. Likewise, we
can yield many other similar algorithms for Mann, Ishikawa and Halpern iterations,
respectively. They will be proposed in the following three sections. Some of them are
the extensions of previous results. However, others are obtained directly based on the
framework.

5. Generalized CQ algorithms for Mann’s iteration process

In this section, we proposed some algorithms for Mann’s iteration process. To
prove the main theorems, we need the following lemmas.

Lemma 5.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a Lipschitz pseudo-contractive mapping with Lipschitz constant L ≥ 1.
∀x ∈ C, α ∈ (0, 1

L+1 ) and τ ∈ (0, 1], let

y = (1− α)x + αTx,

Cx = {z ∈ C : τα[1− (1 + L)α]‖x− Tx‖2 ≤ 〈x− z, y − Ty〉}

and
∗Cx = {z ∈ C : ‖x− Tx‖ ≤ (L + 1)α + 1

τα[1− (L + 1)α]
‖x− z‖}.

Then, there holds Cx is a closed convex set with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. Obviously, Cx is closed and convex. From [7], we have

α[1− (L + 1)α]‖x− Tx‖2 ≤ 〈x− p, y − Ty〉, ∀p ∈ F (T ). (5.1)

Since τ ∈ (0, 1], we obtain

τα[1− (L + 1)α]‖x− Tx‖2 ≤ 〈x− p, y − Ty〉. (5.2)

From (5.2), we can conclude that F (T ) ⊂ Cx. Let u ∈ Cx, we have ∀x ∈ C

τα[1− (L + 1)α]‖x− Tx‖2 ≤ 〈x− u, y − Ty〉
≤ ‖x− u‖‖y − Ty‖
≤ ‖x− u‖[‖y − x‖+ ‖x− Tx‖+ ‖Tx− Ty‖]
≤ ‖x− u‖[(L + 1)‖x− y‖+ ‖x− Tx‖]
= [(L + 1)α + 1]‖x− u‖‖x− Tx‖.

(5.3)

From the assumption of the coefficients we have

‖x− Tx‖ ≤ (L + 1)α + 1
τα[1− (L + 1)α]

‖x− u‖ (5.4)

which implies u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �
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Lemma 5.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a Lipschitz pseudo-contractive mapping with Lipschitz constant L ≥ 1
and F (T ) 6= ∅. ∀x ∈ C, α ∈ (0, 1

L+1 ) and τ ∈ (0, 1], let

y = (1− α)x + αTx, (5.5)

Cx = {z ∈ C : τ‖α(I − T )y‖2 ≤ 2α〈x− z, (I − T )y〉}.
and

∗Cx = {z ∈ C : ‖x− Tx‖ ≤ 2
τα[1− (L + 1)α]

‖x− z‖}.

Then, there holds Cx is a closed convex set with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. Obviously, Cx is closed and convex. From [9], we have

‖α(I − T )y‖2 ≤ 2α〈x− p, (I − T )y〉, ∀p ∈ F (T ).

since τ ∈ (0, 1], we obtain

τ‖α(I − T )y‖2 ≤ 2α〈x− p, (I − T )y〉.

which implies that p ∈ Cx, i.e., F (T ) ⊂ Cx. Let u ∈ Cx, then ∀x ∈ C

τ‖α(I − T )y‖2 ≤ 2α〈x− u, (I − T )y〉
≤ 2α‖x− u‖‖(I − T )y‖.

(5.6)

It follows that

‖y − Ty‖ ≤ 2
τα
‖x− u‖. (5.7)

On the other hand, we have

‖x− Tx‖ ≤ ‖x− y‖+ ‖y − Ty‖+ ‖Ty − Tx‖
≤ (L + 1)α‖x− Tx‖+ ‖y − Ty‖.

(5.8)

Substitute (5.7) into (5.8), together with the assumption of coefficients, we get

‖x− Tx‖ ≤ 2
τα[1− (L + 1)α]

‖x− u‖ (5.9)

which implies u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �

Lemma 5.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be a κ−strict pseudo-contraction of C into itself for some 0 ≤ κ < 1 with F (T ) 6= ∅.
∀x ∈ C and α ∈ (0, 1], let

y = (1− α)x + αTx,

Cx = {z ∈ C : ‖y − z‖2 ≤ ‖x− z‖2 + α(κ− (1− α))‖x− Tx‖2}
and

∗Cx = {z ∈ C : ‖x− Tx‖ ≤ 2
1− κ

‖x− z‖}.

Then, Cx is a closed convex subset of C with F (T ) ⊂ Cx ⊂ ∗Cx.
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Proof. By Lemma 2.3, Cx is closed and convex. Let p ∈ F (T ), for any x ∈ C we
have

‖y − p‖2 = ‖(1− α)(x− p) + α(Tx− p)‖2

= (1− α)‖x− p‖2 + α‖Tx− p‖2 − α(1− α)‖x− Tx‖2

≤ (1− α)‖x− p‖2 + α(‖x− p‖2 + κ‖x− Tx‖2)
− α(1− α)‖x− Tx‖2

= ‖x− p‖2 + α(κ− (1− α))‖x− Tx‖2.

(5.10)

Hence, F (T ) ⊂ Cx. Let u ∈ Cx, then ∀x ∈ C, we obtain

‖y − u‖2 ≤ ‖x− u‖2 + α(κ− (1− α))‖x− Tx‖2 (5.11)

Besides, we have

‖y − u‖2 = (1− α)‖x− u‖2 + α‖Tx− u‖2 − α(1− α)‖x− Tx‖2. (5.12)

Substitute (5.11) into (5.12) to get

α‖Tx− u‖2 ≤ α‖x− u‖2 + ακ‖x− Tx‖2. (5.13)

Since α > 0, we have

‖Tx− u‖2 ≤ ‖x− u‖2 + κ‖x− Tx‖2. (5.14)

On the other hand, we compute

‖Tx− u‖2 = ‖Tx− x‖2 + 2〈Tx− x, x− u〉+ ‖x− u‖2. (5.15)

Combining (5.14) and (5.15) yields

(1− κ)‖x− Tx‖2 ≤ 2〈x− Tx, x− u〉 ≤ 2‖x− Tx‖‖x− u‖. (5.16)

Since κ < 1, then

‖x− Tx‖ ≤ 2
1− κ

‖x− u‖ (5.17)

which implies u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �
Using Lemma 5.1, we obtain the following theorem.

Theorem 5.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and T a Lipschitz pseudo-contraction from C into itself with the Lipschitz constant
L ≥ 1 and F (T ) 6= ∅. Assume sequence {τn} ⊂ [τ, 1] with τ ∈ (0, 1] and sequence
{αn} ⊂ [a, b] with a, b ∈ (0, 1

L+1 ). Let {xn} be a sequence generated by the following
manner:

x0 ∈ C chosen arbitrarily
yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : τnαn[1− (1 + L)αn]‖xn − Txn‖2 ≤ 〈xn − z, yn − Tyn〉}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qnx0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then {xn} converges strongly
to PF (T )x0.
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Proof. Let ∗Cn = {z ∈ C : ‖xn − Txn‖ ≤ (L+1)αn+1
τnαn[1−(L+1)αn]‖xn − z‖}, then

using Lemma 5.1, we obtain F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. From the assumption,
(L+1)αn+1

τnαn[1−(L+1)αn] ≤
(L+1)b+1

τa[1−(L+1)b] < ∞. By Lemma 2.5 and Theorem 3.1, we can prove
xn → PF (T )x0. �

We can prove the following theorem based on Lemma 5.2.

Theorem 5.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a L-Lipschitz pseudo-contractive mapping such that L ≥ 1 and
F (T ) 6= ∅. Assume sequence {τn} ⊂ [τ, 1] with τ ∈ (0, 1] and sequence {αn} ⊂ [a, b]
with a, b ∈ (0, 1

L+1 ). Suppose x0 ∈ C chosen arbitrarily and {xn} is given by
yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : τn‖αn(I − T )yn‖2 ≤ 2αn〈xn − z, (I − T )yn〉}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qnx0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to PF (T )x0.

Proof. From the assumption, we have 2
τnαn[1−(L+1)αn] ≤

2
τa[1−(L+1)b] < ∞.

Let ∗Cn = {z ∈ C : ‖xn − Txn‖ ≤ 2
τnαn[1−(L+1)αn]‖xn − z‖}, using Lemma 5.2, we

can conclude F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, by Lemma 2.5 and Theorem 3.1,
xn → PF (T )x0. �

Remark 5.1. In fact, it is easily to prove Theorem 5.2 by Theorem 5.1 directly.

By Lemma 5.3, the following theorem is valid.

Theorem 5.3. Let C be a nonempty closed convex subset of a Hilbert space H and
T a κ−strict pseudo-contraction of C into itself for some 0 ≤ κ < 1 with F (T ) 6= ∅.
Suppose x0 ∈ C chosen arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn(κ− (1− αn))‖xn − Txn‖2}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and {αn} is chosen such that
0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Proof. Clearly, 2
1−κ < ∞. Let ∗Cn = {z ∈ C : ‖xn − Txn‖ ≤ 2

1−κ‖x− z‖}, then
using Lemma 5.3, F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, using Lemma 2.6 and Theorem
3.1, xn → PF (T )x0. �

Corollary 5.4. Let C be a nonempty closed convex subset of a Hilbert space H and
T a nonexpansive mapping of C into itself with F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 − αn(1− αn)‖xn − Txn‖2}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0
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where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and {αn} is chosen such that
0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Remark 5.2. Corollary 5.4 is a deduced result of Theorem 5.3. In these two theo-
rems, set C∗n = Cn, then we obtain two algorithms which were also proposed in [5].
Corollary 5.4 is also the deduced result of Theorem 4.3.

6. Generalized CQ algorithms for Ishikawa’s iteration process

In this section, we introduce some algorithms for Ishikawa’s iteration process. To
prove the main theorems, we need the following lemmas.

Lemma 6.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a Lipschitz pseudo-contractive mapping with Lipschitz constant L ≥ 1
and F (T ) 6= ∅. ∀x ∈ C and α, β ∈ (0, 1) such that 0 < β ≤ α < 1√

1+L2+1
, let

v = (1− α)x + αTx

y = (1− β)x + βTv,

Cx = {z ∈ C : ‖y − z‖2 ≤ ‖x− z‖2 − αβ(1− 2α− L2α2)‖x− Tx‖2}
and

∗Cx = {z ∈ C : ‖x− Tx‖ ≤ 2(1 + Lα)
α(1− 2α− L2α2)

‖x− z‖}.

Then, there holds Cx is a closed convex set with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. Obviously, by Lemma 2.3, we can conclude Cx is closed and convex.
From [10], we can easily obtain F (T ) ⊂ Cx. Taking u ∈ Cx, ∀x ∈ C, we get

‖y − u‖2 ≤ ‖x− u‖2 − αβ(1− 2α− L2α2)‖x− Tx‖2. (6.1)

On the other hand,

‖y − u‖2 = ‖y − x‖2 + 2〈y − x, x− u〉+ ‖x− u‖2. (6.2)

Combining (6.1) and (6.2), we have

α(1− 2α− L2α2)‖x− Tx‖2 ≤ 2〈x− Tv, x− u〉 (6.3)

It follows that,

α(1− 2α− L2α2)‖x− Tx‖2 ≤ 2〈x− Tv, x− u〉
≤ 2‖x− u‖‖x− Tv‖
≤ 2‖x− u‖(‖x− Tx‖+ ‖Tx− Tv‖)
≤ 2(1 + Lα)‖x− u‖‖x− Tx‖.

(6.4)

Noting that the function f(t) = 1 − 2t − L2t2 is strictly decreasing in t ∈ (0, 1), we
infer that

1− 2α− L2α2 > 0.

Then, from (6.4), we have

‖x− Tx‖ ≤ 2(1 + Lα)
α(1− 2α− L2α2)

‖x− u‖ (6.5)
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which implies u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �

Lemma 6.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a κ−strict pseudo-contractive mapping for some 0 ≤ κ < 1 with
F (T ) 6= ∅. ∀x ∈ C and α, β ∈ [0, 1] such that 0 < α < 2√

4κL2+(κ+1)2+(κ+1)
and

0 < β ≤ κα + (1− κ), let
v = (1− α)x + αTx

y = (1− β)x + βTv,

Cx = {z ∈ C : ‖y − z‖2 ≤ ‖x− z‖2 − αβ[1− (κ + 1)α− κL2α2]‖x− Tx‖2}
and

∗Cx = {z ∈ C : ‖x− Tx‖ ≤ 2(1 + Lα)
α[1− (κ + 1)α− κL2α2]

‖x− z‖}.

Then, there holds Cx is a closed convex set with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. Obviously, by Lemma 2.3, we can conclude Cx is closed and convex. Let
p ∈ F (T ). We have,

‖v − p‖2 = ‖(1− α)(x− p) + α(Tx− p)‖2

= (1− α)‖x− p‖2 + α‖Tx− p‖2 − α(1− α)‖x− Tx‖2

≤ (1− α)‖x− p‖2 + α(‖x− p‖2 + κ‖x− Tx‖2)
− α(1− α)‖x− Tx‖2

= ‖x− p‖2 + α[κ− (1− α)]‖x− Tx‖2

(6.6)

and
‖v − Tv‖2 = ‖(1− α)(x− Tv) + α(Tx− Tv)‖2

= (1− α)‖x− Tv‖2 + α‖Tx− Tv‖2 − α(1− α)‖x− Tx‖2

≤ (1− α)‖x− Tv‖2 + L2α‖x− v‖2 − α(1− α)‖x− Tx‖2

= (1− α)‖x− Tv‖2 + L2α3‖x− Tx‖2 − α(1− α)‖x− Tx‖2

= (1− α)‖x− Tv‖2 + α(L2α2 + α− 1)‖x− Tx‖2

(6.7)

and also,

‖y − p‖2 = ‖(1− β)(x− p) + β(Tv − p)‖2

= (1− β)‖x− p‖2 + β‖Tv − p‖2 − β(1− β)‖x− Tv‖2

≤ (1− β)‖x− p‖2 + β(‖v − p‖2 + κ‖v − Tv‖2)− β(1− β)‖x− Tv‖2
(6.8)

Substituting (6.6) and (6.7) in (6.8), we yield

‖y − p‖2 ≤ (1− β)‖x− p‖2 + β‖x− p‖2 + βα[κ− (1− α)]‖x− Tx‖2

+ βκ(1− α)‖x− Tv‖2 + βκα(L2α2 + α− 1)‖x− Tx‖2

− β(1− β)‖x− Tv‖2

= ‖x− p‖2 + β[κ(1− α)− (1− β)]‖x− Tv‖2

+ αβ[κL2α2 + (κ + 1)α− 1]‖x− Tx‖2.
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Since β ≤ κα + (1− κ), then,

‖y − p‖2 ≤ ‖x− p‖2 + αβ[κL2α2 + (κ + 1)α− 1]‖x− Tx‖2

= ‖x− p‖2 − αβ[1− (κ + 1)α− κL2α2]‖x− Tx‖2.
Therefore, p ∈ Cx, i.e., F (T ) ⊂ Cx. Taking u ∈ Cx, ∀x ∈ C, we get

‖y − u‖2 ≤ ‖x− u‖2 − αβ[1− (κ + 1)α− κL2α2]‖x− Tx‖2. (6.9)

On the other hand,

‖y − u‖2 = ‖y − x‖2 + 2〈y − x, x− u〉+ ‖x− u‖2. (6.10)

Combining (6.9) and (6.10), we have

α[1− (κ + 1)α− κL2α2]‖x− Tx‖2 ≤ 2〈x− Tv, x− u〉 (6.11)

It follows that,

α[1− (κ + 1)α− κL2α2]‖x− Tx‖2 ≤ 2〈x− Tv, x− u〉
≤ 2‖x− u‖‖x− Tv‖
≤ 2‖x− u‖(‖x− Tx‖+ ‖Tx− Tv‖)
≤ 2(1 + Lα)‖x− u‖‖x− Tx‖.

(6.12)

Noting that the function f(t) = 1− (κ+1)t−κL2t2 is strictly decreasing in t ∈ (0, 1),
we infer that

1− (κ + 1)α− κL2α2 > 0.

Then, from (6.12), we have

‖x− Tx‖ ≤ 2(1 + Lα)
α[1− (κ + 1)α− κL2α2]

‖x− u‖ (6.13)

which implies u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �

Lemma 6.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a nonexpansive mapping of C into itself with F (T ) 6= ∅. ∀x ∈ C, 0 < β ≤ 1
and 0 ≤ α ≤ 1 let

v = (1− α)x + αTx

y = (1− β)x + βTv,

Cx = {z ∈ C : ‖z − y‖2 ≤ ‖z − x‖2 + β(‖v‖2 − ‖x‖2 + 2〈x− v, z〉)}
and

∗Cx = {z ∈ C : β(1− α)‖x− Tx‖ ≤ 3‖x− z‖+ α‖Tx− z‖}.
Then, Cx is a closed convex subset with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. By Lemma 2.3, we see that Cx is closed and convex. Let p ∈ F (T ), for
any x ∈ C we have,

‖y − p‖2 = ‖(1− β)(x− p) + β(Tv − p)‖2

≤ (1− β)‖x− p‖2 + β‖v − p‖2

= ‖x− p‖2 + β(‖v − p‖2 − ‖x− p‖2)
= ‖x− p‖2 + β(‖v‖2 − ‖x‖2 + 2〈x− v, p〉)
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Hence, F (T ) ⊂ Cx. Let u ∈ Cx, then we get

‖y − u‖2 ≤ ‖x− u‖2 + β(‖v‖2 − ‖x‖2 + 2〈x− v, u〉)
= ‖x− u‖2 + β(‖v − x‖2 + 2〈x− v, u− x〉)
≤ ‖x− u‖2 + β‖v − u‖2

≤ [‖x− u‖+
√

β‖v − u‖]2.

(6.14)

It follows that,

‖y − u‖ ≤ ‖x− u‖+
√

β‖v − u‖

= ‖x− u‖+
√

β‖(1− α)(x− u) + α(Tx− u)‖

≤ ‖x− u‖+
√

β(1− α)‖x− u‖+
√

βα‖Tx− u‖
≤ 2‖x− u‖+ α‖Tx− u‖.

(6.15)

Besides,
‖x− Tx‖ ≤ ‖x− Tv‖+ ‖Tv − Tx‖

≤ 1
β
‖x− y‖+ ‖v − x‖

≤ 1
β

[‖x− u‖+ ‖y − u‖] + α‖x− Tx‖.

(6.16)

Combining (6.15) and (6.16), we obtain

β(1− α)‖x− Tx‖ ≤ ‖x− u‖+ ‖y − u‖
≤ 3‖x− u‖+ α‖Tx− u‖.

(6.17)

From (6.17), we can conclude u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �

Lemma 6.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a nonexpansive mapping of C into itself with F (T ) 6= ∅. ∀x ∈ C, 0 ≤ α < 1
and 0 ≤ α

1−α < β ≤ 1, let
v = (1− α)x + αTx

y = (1− β)x + βTv,

Cx = {z ∈ C : ‖z − y‖2 ≤ ‖z − x‖2 + β(‖v‖2 − ‖x‖2 + 2〈x− v, z〉)}
and

∗Cx = {z ∈ C : ‖x− Tx‖ ≤ 4
β(1− α)− α

‖x− z‖}.

Then, Cx is a closed convex subset with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. By Lemma 2.3, we see that Cx is closed and convex and similarly, we can
prove F (T ) ⊂ Cx. Let u ∈ Cx, then we get

‖y − u‖2 ≤ ‖x− u‖2 + β(‖v‖2 − ‖x‖2 + 2〈x− v, u〉)

≤ [‖x− u‖+
√

β‖v − u‖]2.
(6.18)
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It follows that,

‖y − u‖ ≤ ‖x− u‖+
√

β‖v − u‖

= ‖x− u‖+
√

β‖(1− α)(x− u) + α(Tx− u)‖

≤ ‖x− u‖+
√

β(1− α)‖x− u‖+
√

βα‖Tx− u‖
≤ 2‖x− u‖+ α‖Tx− u‖
≤ 2‖x− u‖+ α‖Tx− x‖+ α‖x− u‖
≤ 3‖x− u‖+ α‖x− Tx‖.

(6.19)

Besides,
‖x− Tx‖ ≤ ‖x− Tv‖+ ‖Tv − Tx‖

≤ 1
β
‖x− y‖+ ‖v − x‖

≤ 1
β

[‖x− u‖+ ‖y − u‖] + α‖x− Tx‖.

(6.20)

Combining (6.19) and (6.20), we obtain

β(1− α)‖x− Tx‖ ≤ ‖x− u‖+ ‖y − u‖
≤ 4‖x− u‖+ α‖x− Tx‖.

(6.21)

Hence,

‖x− Tx‖ ≤ 4
β(1− α)− α

‖x− u‖. (6.22)

From (6.22), we can conclude u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx �

Theorem 6.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a Lipschitz pseudo-contraction such that L ≥ 1 and F (T ) 6= ∅.
Suppose that {αn} and {βn} are two real sequences in (0, 1) satisfying the conditions:
(C1) 0 < βn ≤ αn, ∀n ≥ 0;
(C2) lim infn→∞ αn ≥ α′ > 0;
(C3) lim supn→∞ αn ≤ α < 1√

1+L2+1
,∀n ≥ 0.

Let a sequence {xn} be generated by

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 − αnβn(1− 2αn − L2α2
n)‖xn − Txn‖2}

Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to a fixed point PF (T )x0.

Proof. From the assumption, we have 2(1+Lαn)
αn(1−2αn−L2α2

n) ≤
2(1+Lα)

α′(1−2α−L2α2) < ∞.

Let ∗Cn = {z ∈ C : ‖xn − Txn‖ ≤ 2(1+Lαn)
αn(1−2αn−L2α2

n)‖xn − z‖}, then using Lemma 6.1,
F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, by Lemma 2.5 and Theorem 3.1, xn → PF (T )x0. �
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Remark 6.1. In this theorem, let C∗n = Cn, then we yield a theorem which was also
introduced in [10].

Theorem 6.2. Let C be a nonempty closed convex subset of a real Hilbert space H
and T a Lipschitz pseudo-contraction from C into itself with the Lipschitz constant
L ≥ 1. Assume sequence {τn} ⊂ [τ, 1] with τ ∈ (0, 1], sequence {αn} ⊂ [a, b] with
a, b ∈ (0, 1

L+1 ) and sequence {βn} ⊂ (0, 1) satisfies that βn ≤ αn. Let {xn} be a
sequence generated by the following manner:

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

C ′n = {z ∈ C : τnαn[1− (1 + L)αn]‖xn − Txn‖2 ≤ 〈xn − z, vn − Tvn〉}
C ′′n = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 − αnβn(1− 2αn − L2α2

n)‖xn − Txn‖2}
Cn = C ′n ∩ C ′′n
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qnx0

(6.23)
where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then {xn} converges strongly
to PF (T )x0.

Proof. Obviously, F (T ) ⊂ C∗n ⊂ Cn ⊂ C ′n. Then, by Theorem 5.1, we can obtain
xn → PF (T )x0. �

Theorem 6.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a κ−strict-pseudo-contraction for some 0 ≤ κ < 1 such that
F (T ) 6= ∅. Suppose that {αn} and {βn} are two real sequences in [0, 1] satisfying
0 < α′ ≤ αn ≤ α < 2√

4κL2+(κ+1)2+(κ+1)
and 0 < βn ≤ καn + (1 − κ). Suppose

sequence {xn} be generated by

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

Cn ={z ∈ C : ‖yn− z‖2≤ ‖xn− z‖2− αnβn(1− (κ + 1)αn− κL2α2
n)‖xn−Txn‖2}

Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to a fixed point PF (T )x0.

Proof. From the assumption, we have 2(1+Lαn)
αn[1−(κ+1)αn−κL2α2

n] ≤
2(1+Lα)

α′[1−(κ+1)α−κL2α2] < ∞. Let ∗Cn = {z ∈ C : ‖xn − Txn‖ ≤
2(1+Lαn)

αn[1−(κ+1)αn−κL2α2
n]‖xn − z‖}, then using Lemma 6.2, F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn.

Hence, by Lemma 2.6 and Theorem 3.1, xn → PF (T )x0. �

Theorem 6.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a κ−strict-pseudo-contraction for some 0 ≤ κ < 1 such that
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F (T ) 6= ∅. Suppose that {αn} and {βn} are two real sequences in [0, 1] satisfying
0 < α ≤ αn ≤ 1 and 0 ≤ βn ≤ καn + (1− κ). Let a sequence {xn} be generated by

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

C ′n = {z ∈ C : ‖vn − z‖2 ≤ ‖xn − z‖2 + αn(κ− (1− αn))‖xn−Txn‖2}
C ′′n ={z∈C : ‖yn− z‖2 ≤ ‖xn− z‖2− αnβn(1− (κ + 1)αn − κL2α2

n)‖xn−Txn‖2}
Cn = C ′n ∩ C ′′n
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and {αn} is chosen such that
0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Proof. It is clear that F (T ) ⊂ C∗n ⊂ Cn ⊂ C ′n. Hence, by Theorem 5.3,
xn → PF (T )x0. �

Using our method, we can yield at least four different CQ algorithms for Ishikawa’s
iteration process for nonexpansive mappings.

Theorem 6.5. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a nonexpansive mapping with F (T ) 6= ∅. Suppose that {αn} and
{βn} are two real sequences in [0, 1] satisfying 0 < α′ ≤ αn ≤ α < 1 and 0 < βn ≤ 1.
Let a sequence {xn} be generated by

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

Cn = {z ∈ C : ‖z − yn‖2 ≤ ‖z − xn‖2 − αnβn(1− αn)‖xn − Txn‖2}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to a fixed point PF (T )x0.

Proof. By Theorem 6.3, we can prove the conclusion. �

Theorem 6.6. Let C be a nonempty closed convex subset of a Hilbert space H and
T a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Assume that {αn}
and {βn} are sequences in [0, 1] such that 0 < β ≤ βn ≤ 1 and αn → 0. Define a
sequence {xn} in C by algorithm:

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

Cn = {z ∈ C : ‖z − yn‖2 ≤ ‖z − xn‖2 + βn(‖vn‖2 − ‖xn‖2 + 2〈xn − vn, z〉)}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qnx0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to PF (T )x0.
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Proof. First observing that αn → 0, we can conclude αn 6= 1 since n is sufficient
big. So, without losing generality, we can assume 0 ≤ αn ≤ α < 1. Combining
with the assumption of βn, we have 3

βn(1−αn) ≤
3

β(1−α) < ∞. Easily, we can prove
‖Txn − xn+1‖ is bounded. Then, limn→∞

αn

βn(1−αn)‖Txn − xn+1‖ = 0. Let ∗Cn =
{z ∈ C : βn(1−αn)‖xn−Txn‖ ≤ 3‖xn− z‖+ αn‖Txn− z‖}, then using Lemma 6.3,
F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, by Lemma 2.6 and Theorem 3.1, xn → PF (T )x0. �

Remark 6.2. In this theorem, let C∗n = Cn, then we obtain an algorithm which was
also proposed in [8].

Theorem 6.7. Let C be a nonempty closed convex subset of a Hilbert space H and
T a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Assume that {αn}
and {βn} are sequences in [0, 1] such that 0 ≤ αn ≤ α < 1 and 0 ≤ αn

1−αn
≤ α

1−α <

β ≤ βn ≤ 1. Define a sequence {xn} in C by algorithm:

x0 ∈ C chosen arbitrarily
vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

Cn = {z ∈ C : ‖z − yn‖2 ≤ ‖z − xn‖2 + βn(‖vn‖2 − ‖xn‖2 + 2〈xn − vn, z〉)}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to PF (T )x0.

Proof. From the assumption, we have 4
βn(1−αn)−αn

≤ 4
β(1−α)−α < ∞. Let

∗Cn = {z ∈ C : ‖xn − Txn‖ ≤ 4
βn(1−αn)−αn

‖xn − z‖}, then using Lemma 6.4,
F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, by Lemma 2.6 and Theorem 3.1, xn → PF (T )x0. �

Theorem 6.8. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

vn = (1− αn)xn + αnTxn

yn = (1− βn)xn + βnTvn

C ′n = {z ∈ C : ‖z − vn‖ ≤ ‖z − xn‖}
C ′′n = {z ∈ C : ‖z − yn‖2 ≤ ‖z − xn‖2 + βn(‖vn‖2 − ‖xn‖2 + 2〈xn − vn, z〉)}
Cn = C ′n ∩ C ′′n
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qnx0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and {αn} and {βn} are chosen
such that 0 < α ≤ αn ≤ 1 and 0 ≤ βn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Proof. It is obvious that F (T ) ⊂ C∗n ⊂ Cn ⊂ C ′n. Hence, by Theorem 4.3,
xn → PF (T )x0. �

7. Generalized CQ algorithms for Halpern’ iteration process

In this section, we give some algorithms for Halpern’s iteration process. To prove
the main theorems, we need the following lemmas.
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Lemma 7.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a Lipschitz pseudo-contractive mapping with Lipschitz constant L ≥ 1.
∀x, x0 ∈ C and α ∈ [0, 1], let

y = (1− α)x0 + αTx

and

Cx = {z ∈ C : ‖y − z‖2 ≤ ‖x− z‖2 + 2(1− α)〈x− x0, z〉+ θ}

where θ = (1 − α)(‖x0‖2 − ‖x‖2) + α‖x − Tx‖2 − α(1 − α)‖x0 − Tx‖2. Then, there
holds Cx is a closed convex set with F (T ) ⊂ Cx.

Proof. Obviously, by Lemma 2.3, we can conclude Cx is closed and convex. Let
p ∈ F (T ). We have,

‖y − p‖2 = ‖(1− α)(x0 − p) + α(Tx− p)‖2

= (1− α)‖x0 − p‖2 + α‖Tx− p‖2 − α(1− α)‖x0 − Tx‖2

≤ (1− α)‖x0 − p‖2 + α(‖x− p‖2 + ‖x− Tx‖2)− α(1− α)‖x0 − Tx‖2

= ‖x− p‖2 + (1− α)(‖x0 − p‖2 − ‖x− p‖2)
+ α‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

= ‖x− p‖2 + (1− α)(‖x0‖2 − ‖x‖2 + 2〈x− x0, p〉)
+ α‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

= ‖x− p‖2 + 2(1− α)〈x− x0, p〉+ (1− α)(‖x0‖2 − ‖x‖2)
+ α‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

Let θ = (1− α)(‖x0‖2 − ‖x‖2) + α‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2. Then,

‖y − p‖2 ≤ ‖x− p‖2 + 2(1− α)〈x− x0, p〉+ θ

Therefore, p ∈ Cx, i.e., F (T ) ⊂ Cx. �

Lemma 7.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a κ−strict pseudo-contractive mapping for some 0 ≤ κ < 1 with
F (T ) 6= ∅. ∀x, x0 ∈ C and α ∈ [0, 1], let

y = (1− α)x0 + αTx,

Cx = {z ∈ C : ‖y − z‖2 ≤ ‖x− z‖2 + 2(1− α)〈x− x0, z〉+ θ}

and

∗Cx = {z ∈ C : ‖x− Tx‖ ≤ 2
1−

√
ακ
‖x− z‖+

√
1− α

1−
√

ακ
(‖x0 − Tx‖+ ‖x0 − z‖)}

where θ = (1− α)(‖x0‖2 − ‖x‖2) + ακ‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2. Then, there
holds Cx is a closed convex set with F (T ) ⊂ Cx ⊂ ∗Cx.
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Proof. Obviously, by Lemma 2.3, we can conclude Cx is closed and convex. Let
p ∈ F (T ). We have,

‖y − p‖2 = ‖(1− α)(x0 − p) + α(Tx− p)‖2

= (1− α)‖x0 − p‖2 + α‖Tx− p‖2 − α(1− α)‖x0 − Tx‖2

≤ (1− α)‖x0 − p‖2 + α(‖x− p‖2 + κ‖x− Tx‖2)− α(1− α)‖x0 − Tx‖2

= ‖x− p‖2 + (1− α)(‖x0 − p‖2 − ‖x− p‖2)
+ ακ‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

= ‖x− p‖2 + (1− α)(‖x0‖2 − ‖x‖2 + 2〈x− x0, p〉)
+ ακ‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

= ‖x− p‖2 + 2(1− α)〈x− x0, p〉+ (1− α)(‖x0‖2 − ‖x‖2)
+ ακ‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

Let θ = (1− α)(‖x0‖2 − ‖x‖2) + ακ‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2. Then,

‖y − p‖2 ≤ ‖x− p‖2 + 2(1− α)〈x− x0, p〉+ θ

Therefore, p ∈ Cx, i.e., F (T ) ⊂ Cx. Let u ∈ Cx, then ∀x ∈ C

‖y − u‖2 ≤ ‖x− u‖2 + 2(1− α)〈x− x0, u〉+ (1− α)(‖x0‖2 − ‖x‖2)
+ ακ‖x− Tx‖2 − α(1− α)‖x0 − Tx‖2

= (1− α)‖x0 − u‖2 + α(‖x− u‖2 + κ‖x− Tx‖2)
− α(1− α)‖x0 − Tx‖2

≤ (1− α)‖x0 − u‖2 + α(‖x− u‖2 + κ‖x− Tx‖2)
≤ (1− α)‖x0 − u‖2 + α(‖x− u‖+

√
κ‖x− Tx‖)2

≤ [
√

1− α‖x0 − u‖+
√

α(‖x− u‖+
√

κ‖x− Tx‖)]2.

(7.1)

It follows that,

‖y − u‖ ≤
√

1− α‖x0 − u‖+
√

α‖x− u‖+
√

ακ‖x− Tx‖. (7.2)

Besides,
‖x− Tx‖ ≤ ‖x− y‖+ ‖y − Tx‖

≤ ‖x− u‖+ ‖y − u‖+ (1− α)‖x0 − Tx‖
(7.3)

Substitute (7.2) into (7.3) can yield

(1−
√

ακ)‖x− Tx‖ ≤ 2‖x− u‖+
√

1− α(‖x0 − Tx‖+ ‖x0 − u‖). (7.4)

From the assumption of the coefficients, we have

‖x− Tx‖ ≤ 2
1−

√
ακ
‖x− u‖+

√
1− α

1−
√

ακ
(‖x0 − Tx‖+ ‖x0 − u‖) (7.5)

which implies u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �



GENERALIZED CQ METHOD 375

Lemma 7.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a nonexpansive mapping of C into itself with F (T ) 6= ∅. ∀x0, x ∈ C and
0 ≤ α ≤ 1, let

y = (1− α)x0 + αTx,

Cx = {z ∈ C : ‖z − y‖2 ≤ ‖z − x‖2 + (1− α)(‖x0‖2 + 2〈x− x0, z〉)}
and
∗Cx = {z ∈ C : ‖x−Tx‖ ≤ 2‖x−z‖+

√
1− α[4‖x0‖+‖x0−Tx‖+‖x−x0‖+‖x0−z‖]}

Then, Cx is a closed convex subset with F (T ) ⊂ Cx ⊂ ∗Cx.

Proof. By Lemma 2.3, we see that Cx is closed and convex. For any p ∈ F (T ),
we have

‖y − p‖2 = ‖(1− α)(x0 − p) + α(Tx− p)‖2

≤ (1− α)‖x0 − p‖2 + α‖x− p‖2

= ‖x− p‖2 + (1− α)(‖x0 − p‖2 − ‖x− p‖2)
= ‖x− p‖2 + (1− α)(‖x0‖2 + 2〈x− x0, p〉).

Hence, F (T ) ⊂ Cx. Let u ∈ Cx, then ∀x ∈ C

‖y − u‖2 ≤ ‖x− u‖2 + (1− α)(‖x0‖2 + 2〈x− x0, u〉)
≤ ‖x− u‖2 + (1− α)(‖x0‖2 + ‖x− x0 + u‖2)
≤ ‖x− u‖2 + (1− α)[‖x0‖+ ‖x− x0 + u‖]2

≤ [‖x− u‖+
√

1− α(2‖x0‖+ ‖x + u‖)]2.

(7.6)

From (7.6), we obtain

‖y − u‖ ≤ ‖x− u‖+
√

1− α[2‖x0‖+ ‖x + u‖]. (7.7)

We also have,

‖x− Tx‖ ≤ ‖x− u‖+ ‖y − u‖+ ‖y − Tx‖
= ‖x− u‖+ ‖y − u‖+ (1− α)‖x0 − Tx‖.

(7.8)

Combining (7.7) and (7.8), we get

‖x− Tx‖ ≤ ‖x− u‖+ (1− α)‖x0 − Tx‖+ ‖y − u‖
≤ ‖x− u‖+ (1− α)‖x0 − Tx‖+ ‖x− u‖

+
√

1− α[2‖x0‖+ ‖x + u‖]

≤ 2‖x− u‖+
√

1− α[4‖x0‖+ ‖x0 − Tx‖+ ‖x− x0‖+ ‖u− x0‖].

(7.9)

From (7.9), we can conclude u ∈ ∗Cx. So, F (T ) ⊂ Cx ⊂ ∗Cx. �

Theorem 7.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and T a Lipschitz pseudo-contraction from C into itself with the Lipschitz constant
L ≥ 1 and F (T ) 6= ∅. Assume sequence {τn} ⊂ [τ, 1] with τ ∈ (0, 1], sequence
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{αn} ⊂ [a, b] with a, b ∈ (0, 1
L+1 ) and sequence {βn} satisfies that βn ∈ [0, 1]. Let

{xn} be a sequence generated by the following manner:



x0 ∈ C chosen arbitrarily
yn = (1− βn)x0 + βnTxn

vn = (1− αn)xn + αnTxn

C ′n = {z ∈ C : τnαn[1− (1 + L)αn]‖xn − Txn‖2 ≤ 〈xn − z, vn − Tvn〉}
C ′′n = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + 2(1− βn)〈xn − x0, z〉+ θn}
Cn = C ′n ∩ C ′′n
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0

(7.10)

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and θn = (1 − βn)(‖x0‖2 −
‖xn‖2) + βn‖xn − Txn‖2 − βn(1− βn)‖x0 − Txn‖2. Then {xn} converges strongly to
PF (T )x0.

Proof. It is obvious that F (T ) ⊂ C∗n ⊂ Cn ⊂ C ′n. Hence, by Theorem 5.1,
xn → PF (T )x0. �

Theorem 7.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a κ−strict-pseudo-contraction for some 0 ≤ κ < 1 such that
F (T ) 6= ∅. Suppose that {αn} is a real sequence in [0, 1] satisfies that limn→∞ αn = 1.
Let a sequence {xn} be generated by


x0 ∈ C chosen arbitrarily
yn = (1− αn)x0 + αnTxn

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + 2(1− αn)〈xn − x0, z〉+ θn}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and θn = (1 − αn)(‖x0‖2 −
‖xn‖2) + αnκ‖xn − Txn‖2 − αn(1− αn)‖x0 − Txn‖2. Then, {xn} converges strongly
to PF (T )x0.

Proof. From the assumption, we have 2
1−√αnκ ≤ 2

1−
√

κ
< ∞. Easily, we can

prove ‖x0 − Txn‖ + ‖x0 − xn+1‖ is bounded. Then, limn→∞
√

1−αn

1−√αnκ (‖x0 − Txn‖ +

‖x0−xn+1‖) = 0. Let ∗Cn = {z ∈ C : ‖xn−Txn‖ ≤ 2
1−√αnκ‖xn−z‖+

√
1−αn

1−√αnκ (‖x0−
Txn‖+‖x0−z‖)}, then using Lemma 7.2, F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, by Lemma
2.6 and Theorem 3.1, xn → PF (T )x0. �

Theorem 7.3. Let C be a nonempty closed convex subset of a Hilbert space H and
T a κ−strict pseudo-contraction of C into itself for some 0 ≤ κ < 1 with F (T ) 6= ∅.
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Suppose x0 ∈ C chosen arbitrarily and {xn} is given by

vn = (1− αn)xn + αnTxn

yn = (1− βn)x0 + βnTxn

C ′n = {z ∈ C : ‖vn − z‖2 ≤ ‖xn − z‖2 + αn(κ− (1− αn))‖xn − Txn‖2}
C ′′n = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + 2(1− βn)〈xn − x0, z〉+ θn}
Cn = C ′n ∩ C ′′n
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qnx0

(7.11)

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn, {αn} is chosen such that
0 < α ≤ αn ≤ 1, {βn} is a sequence in [0, 1] and θn = (1 − βn)(‖x0‖2 − ‖xn‖2) +
βnκ‖xn−Txn‖2−βn(1−βn)‖x0−Txn‖2. Then, {xn} converges strongly to PF (T )x0.

Proof. It is obvious that F (T ) ⊂ C∗n ⊂ Cn ⊂ C ′n. Hence, by Theorem 5.3,
xn → PF (T )x0. �

The following theorem is a deduced result of Theorem 7.3.

Theorem 7.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a nonexpansive mapping with F (T ) 6= ∅. Suppose that {αn} is a
real sequence in [0, 1] satisfies that limn→∞ αn = 1. Let a sequence {xn} be generated
by 

x0 ∈ C chosen arbitrarily
yn = (1− αn)x0 + αnTxn

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + 2(1− αn)〈xn − x0, z〉+ θn}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn and θn = (1 − αn)(‖x0‖2 −
‖xn‖2)− αn(1− αn)‖x0 − Txn‖2. Then, {xn} converges strongly to PF (T )x0.

Theorem 7.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let
T be a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Assume that {αn}
is a sequences in (0, 1) such that limn→∞ αn = 1. Define a sequence {xn} in C by
algorithm:

x0 ∈ C chosen arbitrarily
yn = (1− αn)x0 + αnTxn

Cn = {z ∈ C : ‖z − yn‖2 ≤ ‖z − xn‖2 + (1− αn)(‖x0‖2 + 2〈xn − x0, z〉)}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PC∗

n∩Qn
x0

where C∗n is a closed convex set with F (T ) ⊂ C∗n ⊂ Cn. Then, {xn} converges strongly
to PF (T )x0.

Proof. Obviously, 4‖x0‖+‖x0−Txn‖+‖xn−x0‖+‖x0−xn+1‖ is bounded. Then,
limn→∞

√
1− αn[4‖x0‖+‖x0−Txn‖+‖xn−x0‖+‖x0−xn+1‖] = 0. Let ∗Cn = {z ∈

C : ‖xn−Txn‖ ≤ 2‖xn− z‖+
√

1− αn[4‖x0‖+ ‖x0−Txn‖+ ‖xn−x0‖+ ‖x0− z‖]},
then using Lemma 7.3, F (T ) ⊂ C∗n ⊂ Cn ⊂ ∗Cn. Hence, by Lemma 2.6 and Theorem
3.1, xn → PF (T )x0. �
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Remark 7.1. In this theorem, let C∗n = Cn, then we obtain an algorithm which is
also proposed in [8]. And Theorem 7.4 is also the deduced result of Theorem 7.5.

Remark 7.2. In last three sections, Cn itself is closed and convex. So, setting
C∗n = Cn, we can yield normal CQ algorithms.

8. Relations of different algorithms

In [12], Takahashi, Takeuchi and Kubota obtained another strong convergence
theorem for nonexpansive mappings, named monotone C method.

Theorem 8.1. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C0 = C
chosen arbitrarily and {xn} is given by yn = (1− αn)xn + αnTxn

Cn+1 = {z ∈ Cn : ‖z − yn‖ ≤ ‖z − xn‖}
xn+1 = PCn+1x0

(8.1)

where {αn} is chosen such that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to
PF (T )x0.

In [13], Su and Qin got a new hybrid method, named Monotone CQ iteration
processes.

Theorem 8.2. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C0 = C
chosen arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

C0 = {z ∈ C : ‖z − y0‖ ≤ ‖z − x0‖}
Q0 = C
Cn = {z ∈ Cn−1 ∩Qn−1 : ‖z − yn‖ ≤ ‖z − xn‖}
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn∩Qn

x0

(8.2)

where {αn} is chosen such that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to
PF (T )x0.

Remark 8.1. Theorem 1.1, 8.1 and 8.2 seem different from each other. However, the
steps of their proof are more or less the same. So, they may share some properties or
may have some relations.

In this section, we give the relations of the following four theorems.

Theorem 8.3. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn,3∩Qn

x0
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where Cn,3 is a closed convex set with F (T ) ⊂ Cn,3 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Theorem 8.4. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Q0 = C
Qn = {z ∈ Qn−1 : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn,4∩Qnx0

where Cn,4 is a closed convex set with F (T ) ⊂ Cn,4 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Theorem 8.5. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C0 = C
chosen arbitrarily and {xn} is given by yn = (1− αn)xn + αnTxn

Cn+1 = {z ∈ Cn,5 : ‖yn − z‖ ≤ ‖xn − z‖}
xn+1 = PCn+1,5x0

where Cn+1,5 is a closed convex set with F (T ) ⊂ Cn+1,5 ⊂ Cn+1 and {αn} is chosen
such that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Theorem 8.6. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

C0 = {z ∈ C : ‖y0 − z‖ ≤ ‖x0 − z‖}
Q0 = C
Cn = {z ∈ Cn−1,6 ∩Qn−1 : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ Cn−1,6 ∩Qn−1 : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn,6∩Qn

x0

where Cn,6 is a closed convex set with F (T ) ⊂ Cn,6 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Proposition 8.7. Theorem 8.3 TRUE ⇒ Theorem 8.4 TRUE ⇒ Theorem 8.5 TRUE
⇔ Theorem 8.6 TRUE, Where Theorem 8.3 TRUE indicates that Theorem 8.3 is
valid.

Proof. Clearly, Theorem 8.3 is valid.
(1) Theorem 8.3 TRUE⇒ Theorem 8.4 TRUE. Obviously, F (T ) ⊂ Cn∩(

⋂n−1
i=0 Qi).

So, there exists a closed convex set Cn,8 such that F (T ) ⊂ Cn,8 ⊂ Cn ∩ (
⋂n−1

i=0 Qi) ⊂
Cn. By Theorem 8.3, we obtain the following theorem.
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Theorem 8.8. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn,8∩(

⋂n
i=0 Qi)x0

where Cn,8 is a closed convex set with F (T ) ⊂ Cn,8 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Let Cn,8 = Cn,4. Then, Theorem 8.8 is equivalent to Theorem 8.4.
(2) Theorem 8.4 TRUE ⇒ Theorem 8.5 TRUE. Actually, Theorem 8.5 can be

rewritten as follows.

Theorem 8.9. Let C be a nonempty closed convex subset of a Hilbert space H and T
a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C chosen
arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

C0 = {z ∈ C : ‖y0 − z‖ ≤ ‖x0 − z‖}
Cn = {z ∈ Cn−1,9 : ‖yn − z‖ ≤ ‖xn − z‖}
xn+1 = PCn,9x0

where Cn,9 is a closed convex set with F (T ) ⊂ Cn,9 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Since xn = PCn−1,9x0, then, Cn−1,9 ⊂ Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}.
Together with Cn,9 ⊂ Cn−1,9, we claim that Cn,9 ⊂ (

⋂n
i=0 Qi), i.e., Cn,9∩(

⋂n
i=1 Qi) =

Cn,9, where Qi = {z ∈ C : 〈z − xi, xi − x0〉 ≥ 0}. Hence, Theorem 8.9 is equivalent
to the following result.

Theorem 8.10. Let C be a nonempty closed convex subset of a Hilbert space H and
T a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C
chosen arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

C0 = {z ∈ C : ‖y0 − z‖ ≤ ‖x0 − z‖}
Cn = {z ∈ Cn−1,10 : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn,10∩(

⋂n
i=0 Qi)x0

where Cn,10 is a closed convex set with F (T ) ⊂ Cn,10 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

It is easy to observe that Theorem 8.10 is equivalent to the following result.

Theorem 8.11. Let C be a nonempty closed convex subset of a Hilbert space H and
T a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose x0 ∈ C
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chosen arbitrarily and {xn} is given by

yn = (1− αn)xn + αnTxn

C0 = {z ∈ C : ‖y0 − z‖ ≤ ‖x0 − z‖}
Q0 = C
Cn = {z ∈ Cn−1,11 : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ Qn−1 : 〈z − xn, xn − x0〉 ≥ 0}
xn+1 = PCn,11∩Qnx0

where Cn,11 is a closed convex set with F (T ) ⊂ Cn,11 ⊂ Cn and {αn} is chosen such
that 0 < α ≤ αn ≤ 1. Then, {xn} converges strongly to PF (T )x0.

Clearly, Theorem 8.11 can be deduced by Theorem 8.4. So, Theorem 8.4 TRUE
⇒ Theorem 8.5 TRUE.

(3) Theorem 8.5 TRUE⇔ Theorem 8.6 TRUE. Obviously, let Cn,11 = Cn,6, Cn,11∩
Qn in Theorem 8.11 is equal to Cn,6 ∩ Qn in Theorem 8.6. Hence, Theorem 8.11 is
equivalent to Theorem 8.6.

�
Moreover, if we take Cn,5 = Cn and Cn,6 = Cn, then, we can conclude that

Theorem 8.1 is equivalent to Theorem 8.2.

Remark 8.2. From the proof of the Proposition 8.7, we observe that the proposition
is independent of mapping T . If Theorem 8.3, 8.4, 8.5 and 8.6 represent CQ method,
monotone Q method, monotone C method and monotone CQ method, respectively,
then, we have the following relations:

CQ method TRUE ⇒ monotone Q method TRUE ⇒ monotone C method TRUE
⇔ monotone CQ method TRUE.
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