ULAM STABILITIES OF A FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION

EDITH EGRI
Babeş-Bolyai University, Department of Computer Science Kogălniceanu Nr. 1, 400084 Cluj-Napoca, Romania.
E-mail: egriedit@yahoo.com

Abstract

In this paper we deal with special types of data dependence, the so-called Ulam stabilities, regarding the first order iterative functional-differential equation $$
x^{\prime}(t)=f\left(t, x^{[1]}(t), x^{[2]}(t), \ldots, x^{[m]}(t)\right), t \in[a, b], a, b \in \mathbb{R}, a<b
$$ with $x \in C^{1}([a, b],[a, b])$. Here $x^{[m]}$ denotes the $m^{t h}$ iterate of the function $x,(m \geq 0)$ i.e. $$
x^{[m]}:=\underbrace{x \circ x \circ \ldots \circ x}_{m} .
$$

Key Words and Phrases: Differential equation, integral equation, differential inequality, fixed point equation, Ulam-Hyers stability, Ulam-Hyers-Rassias stability. 2010 Mathematics Subject Classification: 34A12, 34A40, 47H10, 54H25, 45G10, 34K20.

1. INTRODUCTION

Let $a, b \in \mathbb{R}(a<b)$, and $f:[a, b]^{m+1} \rightarrow \mathbb{R}, \varphi:[a, b] \rightarrow \mathbb{R}_{+}$be two continuous functions. Our aim is to investigate the Ulam-Hyers stability and the generalized Ulam-Hyers-Rassias stability of the first order iterative functional-differential equation

$$
\begin{equation*}
x^{\prime}(t)=f\left(t, x^{[1]}(t), x^{[2]}(t), \ldots, x^{[m]}(t)\right), \quad t \in[a, b] \tag{1.1}
\end{equation*}
$$

$x \in C^{1}([a, b],[a, b])$.
For this purpose, consider first the following associated differential inequalities:

$$
\begin{gather*}
\left|y^{\prime}(t)-f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)\right| \leq \varepsilon, \quad t \in[a, b], \tag{1.2}\\
\left|y^{\prime}(t)-f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)\right| \leq \varphi(t), \quad t \in[a, b] \tag{1.3}\\
\left|y^{\prime}(t)-f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)\right| \leq \varepsilon \varphi(t), \quad t \in[a, b] . \tag{1.4}
\end{gather*}
$$

We make the following remarks.
Remark 1.1. A function $y \in C^{1}([a, b],[a, b])$ is a solution of the inequality (1.2) (also called an ε-solution of the equation (1.1)) if and only if there exists a function $g \in C([a, b], \mathbb{R})$, which depends on y, such that
(1) $|g(t)| \leq \varepsilon, \quad \forall t \in[a, b]$;
(2) $y^{\prime}(t)=f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)+g(t), \quad \forall t \in[a, b]$.

Remark 1.2. A function $y \in C^{1}([a, b],[a, b])$ is a solution of the inequality (1.3) if and only if there exists a function $h \in C([a, b], \mathbb{R})$, which depends on y, such that
(1) $|h(t)| \leq \varphi(t), \quad \forall t \in[a, b] ;$
(2) $y^{\prime}(t)=f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)+h(t), \quad \forall t \in[a, b]$.

Remark 1.3. A function $y \in C^{1}([a, b],[a, b])$ is a solution of the inequality (1.4) if and only if there exists a function $k \in C([a, b], \mathbb{R})$, which depends on y, such that
(1) $|k(t)| \leq \varepsilon \varphi(t), \quad \forall t \in[a, b]$;
(2) $y^{\prime}(t)=f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)+k(t), \quad \forall t \in[a, b]$.

Following [5] and [7] we present the following notions (see also [3], [4],[6], [8], [1]):
Definition 1.1. The equation (1.1) is Ulam-Hyers stable if there exists a real number $c_{f}>0$ such that for each $\varepsilon>0$ and for each solution $y \in C^{1}([a, b],[a, b])$ of (1.2) there exists a solution $x \in C^{1}([a, b],[a, b])$ of the equation (1.1) with

$$
\|y-x\| \leq c_{f} \varepsilon
$$

Definition 1.2. The equation (1.1) is generalized Ulam-Hyers stable if there exists a real valued function $\theta_{f} \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), \theta_{f}(0)=0$ such that for each solution $y \in$ $C^{1}([a, b],[a, b])$ of (1.2) there exists a solution $x \in C^{1}([a, b],[a, b])$ of (1.1) with

$$
\|y-x\| \leq \theta_{f}(\varepsilon)
$$

Definition 1.3. The equation (1.1) is Ulam-Hyers-Rassias stable with respect to φ if there exists a real number $c_{f, \varphi}>0$ such that for each $\varepsilon>0$ and for each solution $y \in C^{1}([a, b],[a, b])$ of (1.4) there exists a solution $x \in C^{1}([a, b],[a, b])$ of (1.1) with

$$
\|y-x\| \leq c_{f, \varphi} \varepsilon \varphi(t)
$$

Definition 1.4. The equation (1.1) is generalized Ulam-Hyers-Rassias stable with respect to φ if there exists a real number $c_{f, \varphi}>0$ such that for each solution $y \in$ $C^{1}([a, b],[a, b])$ of (1.3) there exists a solution $x \in C^{1}([a, b],[a, b])$ of (1.1) with

$$
\|y-x\| \leq c_{f, \varphi} \varphi(t)
$$

In the present paper we shall give some results in terms of Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability of the equation (1.1). For this we will need the following result:

Lemma 1.1 (data dependence, [2]). Let (X, d) be a complete metric space and A, B : $X \rightarrow X$ be to operators. We suppose that:
i) the operator A is a contraction, i.e. there exists $L_{A} \in[0,1)$ with

$$
d(A(x), A(y)) \leq L_{A} d(x, y), \quad \forall x, y, \in X
$$

ii) $F_{B} \neq \emptyset$;
iii) there exists η such that $d(A(x), B(x)) \leq \eta, \quad$ for all $x \in X$.

Then, if $F_{A}=\left\{x_{A}^{*}\right\}$ and $x_{B}^{*} \in F_{B}$, we have

$$
d\left(x_{A}^{*}, x_{B}^{*}\right) \leq \frac{\eta}{1-L_{A}} .
$$

2. Ulam-Hyers stability

Consider the equation (1.1) and let $L>0$ be a real number. Denote by $C_{L}([a, b],[a, b])$ the space of those continuous functions, defined on $[a, b]$ taking values on $[a, b]$, which have the same Lipschitz constant, $L>0$. We endow the set $C_{L}([a, b],[a, b]) \subset C([a, b], \mathbb{R})$ with the Chebyshev metric $d_{C}(x, y):=\|x-y\|_{C}=$ $\max _{t \in[a, b]}|x(t)-y(t)|$, for all $x, y \in C_{L}([a, b],[a, b])$. In what follows we will work in this metric space.

We have our first result:
Theorem 2.1. Consider the iterative functional-differential equation (1.1) with the Cauchy condition

$$
\begin{equation*}
x(a)=x_{0} . \tag{2.1}
\end{equation*}
$$

Suppose that the following conditions are satisfied:
(i) $f \in C\left([a, b]^{m+1}, \mathbb{R}\right)$;
(ii) there exists $L_{f}>0$, such that

$$
\left|f\left(t, u_{1}, u_{2}, \ldots, u_{m}\right)-f\left(t, v_{1}, v_{2}, \ldots v_{m}\right)\right| \leq L_{f} \sum_{i=1}^{m}\left|u_{i}-v_{i}\right|
$$

for all $t, u_{i}, v_{i} \in[a, b], i=\overline{1, m}$;
(iii) for $M_{f}:=\max _{\left[t_{0}-a, t_{0}+a\right]^{m+1}}\left|f\left(t, u_{1}, u_{2}, \ldots, u_{m}\right)\right|$ we have

$$
M_{f} \leq \min \left\{\frac{b-x_{0}}{b-a}, \frac{x_{0}-a}{b-a}, L\right\}
$$

(iv) $L_{f}(b-a) \sum_{i=1}^{m} i L^{m-i}<1$.

Then
(1) the Cauchy problem $(1.1)+(2.1)$ has a unique solution in $C_{L}([a, b],[a, b])$;
(2) Let $M_{f} \leq L$ and

$$
X_{1}:=\left\{y \in C_{L}([a, b],[a, b]) \left\lvert\, M_{f} \leq \min \left\{\frac{b-y(a)}{b-a}, \frac{y(a)-a}{b-a}, L\right\}\right.\right\}
$$

Then the equation (1.1) is Ulam-Hyers stable in X_{1}.

Proof.

(1) In this first part we consider the operator

$$
A: C_{L}([a, b],[a, b]) \rightarrow C_{L}([a, b],[a, b])
$$

given by

$$
\begin{equation*}
A(x)(t):=x_{0}+\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s, t \in[a, b] . \tag{2.2}
\end{equation*}
$$

This operator is well-defined, since for all $x \in C_{L}([a, b],[a, b])$ we have $A(x) \in$ $C_{L}([a, b],[a, b])$. Indeed, let $x \in C([a, b],[a, b])$ with

$$
\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in[a, b] .
$$

Then, from the definition of the operator A and due to the assumption (iii), for all $t \in[a, b]$ we get $A(x)(t) \leq x_{0}+M_{f}(b-a) \leq b$ and $A(x)(t) \geq x_{0}-M_{f}(b-a) \geq a$. Since the mapping $t \mapsto f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)$ is continuous, the latter affirmations justifies that $A(x) \in C([a, b],[a, b])$. From (iii) we have that $M_{f} \leq L$ and so we can obtain that

$$
\begin{aligned}
\left|A(x)\left(t_{1}\right)-A(x)\left(t_{2}\right)\right| & =\left|\int_{t_{1}}^{t_{2}} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s\right| \leq \\
& \leq M_{f}\left|t_{1}-t_{2}\right| \leq L\left|t_{1}-t_{2}\right|, \quad \forall t_{1}, t_{2} \in[a, b]
\end{aligned}
$$

In this manner we get that $A(x) \in C_{L}([a, b],[a, b])$.
We will prove now that the operator A is a contraction. Indeed, we have:

$$
\begin{aligned}
& |A(x)(t)-A(y)(t)|= \\
= & \left|\int_{a}^{t}\left[f\left(s, x(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right)-f\left(s, y(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right)\right] \mathrm{d} s\right| \leq \\
\leq & L_{f}|t-a| \sum_{i=1}^{m}\left|x^{[i]}(s)-y^{[i]}(s)\right| .
\end{aligned}
$$

By induction we can prove that, for all $x, y \in C_{L}([a, b],[a, b])$ the following successive estimations hold:

$$
\begin{aligned}
\left|x^{[1]}(s)-y^{[1]}(s)\right| & \leq\|x-y\|_{C} ; \\
\left|x^{[2]}(s)-y^{[2]}(s)\right| & =|x(x(s))-x(y(s))+x(y(s))-y(y(s))| \leq \\
& \leq L|x(s)-y(s)|+|x(y(s))-y(y(s))| \leq \\
& \leq(1+L)\|x-y\|_{C} ; \\
\left|x^{[3]}(s)-y^{[3]}(s)\right| & =\left|x\left(x^{[2]}\right)(s)-x\left(y^{[2]}(s)\right)+x\left(y^{[2]}(s)\right)-y\left(y^{[2]}\right)(s)\right| \leq \\
& \leq L\left|x^{[2]}(s)-y^{[2]}(s)\right|+\|x-y\|_{C} \leq \\
& \leq\left(1+L+L^{2}\right)\|x-y\|_{C} ; \\
& \vdots \\
\left|x^{[m]}(s)-y^{[m]}(s)\right| & \leq\left(1+L+L^{2}+\cdots+L^{m-1}\right)\|x-y\|_{C} .
\end{aligned}
$$

Summing up the corresponding relations, we receive

$$
\sum_{i=1}^{m}\left|x^{[i]}(s)-y^{[i]}(s)\right| \leq\|x-y\|_{C} \sum_{i=1}^{m} i L^{m-i}
$$

Therefore, we obtain

$$
|A(x)(t)-A(y)(t)| \leq L_{f}(b-a)\|x-y\|_{C} \sum_{i=1}^{m} i L^{m-i}, \quad \forall t \in[a, b]
$$

and finally,

$$
\|A(x)-A(y)\|_{C} \leq\left[L_{f}(b-a) \sum_{i=1}^{m} i L^{m-i}\right]\|x-y\|_{C}
$$

Due to (iv) we have that $L_{f}(b-a) \sum_{i=1}^{m} i L^{m-i}<1$ and, therefore, the operator A is a contraction. From Banach's fixed point theorem A has a unique fixed point. Consequently the Cauchy problem $(1.1)+(2.1)$ has a unique solution in $C_{L}([a, b],[a, b])$.
(2) Since $y \in C_{L}([a, b],[a, b])$ is a solution of the differential inequality (1.2), it satisfies the relation

$$
\left|y^{\prime}(t)-f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)\right| \leq \varepsilon, \quad t \in[a, b] .
$$

Then, y is a solution of the integral inequality

$$
\left|y(t)-y(a)-\int_{a}^{t} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s\right| \leq(t-a) \varepsilon, \forall t \in[a, b] .
$$

Indeed, by Remark 1.1 we have that

$$
y^{\prime}(t)=f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)+g(t),
$$

with

$$
|g(t)| \leq \varepsilon, \quad \forall t \in[a, b] .
$$

Accordingly, we obtain

$$
\begin{equation*}
y(t)=y(a)+\int_{a}^{t} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s+\int_{a}^{t} g(s) \mathrm{d} s, \quad t \in[a, b], \tag{2.3}
\end{equation*}
$$

which implies that

$$
\begin{aligned}
& \left|y(t)-y(a)-\int_{a}^{t} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s\right| \leq\left|\int_{a}^{t} g(s) \mathrm{d} s\right| \leq \\
& \leq \int_{a}^{t}|g(s)| \mathrm{d} s \leq \varepsilon(t-a)
\end{aligned}
$$

Moreover, we denote by $x \in C_{L}([a, b],[a, b])$ the unique solution of the Cauchy problem

$$
\begin{align*}
& x^{\prime}(t)=f\left(t, x^{[1]}(t), x^{[2]}(t), \ldots, x^{[m]}(t)\right), t \in[a, b], \tag{2.4}\\
& x(a)=y(a), \tag{2.5}
\end{align*}
$$

which solution is ensured by the previous proven part. We mention that the function y in the initial value condition (2.5) is the solution of the inequality (1.2).

Then we clearly have,

$$
\begin{equation*}
x(t)=y(a)+\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s, \quad t \in[a, b] . \tag{2.6}
\end{equation*}
$$

We introduce the operators

$$
\begin{aligned}
& A: C_{L}([a, b],[a, b]) \rightarrow C_{L}([a, b],[a, b]), \\
& A(x)(t):=\text { the right hand side of the equation (2.6), }
\end{aligned}
$$

and

$$
\begin{aligned}
& B: C_{L}([a, b],[a, b]) \rightarrow C_{L}([a, b],[a, b]), \\
& B(y)(t):=\text { the right hand side of the equation (2.3). }
\end{aligned}
$$

These are well-defined. Observe that from (2.6) and (2.3) we have

$$
\begin{aligned}
|A(x)(t)-B(x)(t)| & =\mid y(a)+\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s-x(a)- \\
& -\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s-\int_{a}^{t} g(s) \mathrm{d} s \mid= \\
& =\left|\int_{a}^{t} g(s) \mathrm{d} s\right| \leq \varepsilon(b-a) .
\end{aligned}
$$

We mention that the operator A is a contraction with the constant

$$
L_{A}:=L_{f}(b-a) \sum_{i=1}^{n} i L^{m-i}
$$

Denote by x_{A}^{*} its unique fixed point and let y_{B}^{*} denote a fixed point of the operator B. Then due to Lemma 1.1 we have:

$$
\left\|x_{A}^{*}-y_{B}^{*}\right\|_{C} \leq \frac{\varepsilon(b-a)}{1-L_{f}(b-a) \sum_{i=1}^{n} i L^{m-i}}
$$

Now the obtained relation means that the equation (1.1) is Ulam-Hyers stable. Note that $c_{f}=\frac{b-a}{1-L_{f}(b-a) \sum_{i=1}^{n} i L^{m-i}}$.

3. Example

Consider the first order iterative functional-differential equation

$$
\begin{equation*}
x^{\prime}(t)=a x(x(t))+b x(t)+c, \quad t \in[-h, h], h>0 \tag{3.1}
\end{equation*}
$$

with the initial value condition

$$
\begin{equation*}
x(0)=x_{0} \tag{3.2}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\left|y^{\prime}(t)-a y(y(t))-b y(t)-c\right|<\varepsilon, \quad t \in[-h, h] . \tag{3.3}
\end{equation*}
$$

Theorem 3.1. Let $L>0$. Suppose that, concerning the initial value problem (3.1) + (3.2), the following assumptions hold:
i. $h(|a|+|b|)+|c| \leq \min \left\{\frac{h-x_{0}}{2 h}, \frac{h+x_{0}}{2 h}, L\right\} ;$
ii. $2 h \max \{|a|,|b|\}(L+2)<1$.

Then
(1) the Cauchy problem $(3.1)+(3.2)$ has a unique solution in $C_{L}([-h, h],[-h, h])$;
(2) if $y \in C_{L}([-h, h],[-h, h])$ is a solution of the inequality (3.3) so that

$$
h(|a|+|b|)+|c| \leq \min \left\{\frac{h-y(0)}{2 h}, \frac{h+y(0)}{2 h}, L\right\},
$$

then the equation (3.1) is Ulam-Hyers stable.

Proof. Notice that in this case we have

$$
\begin{aligned}
& f(t, u, v)=a v+b u+c, \\
& L_{f}=\max \{|a|,|b|\} \\
& M_{f}=h(|a|+|b|)+|c|
\end{aligned}
$$

Using Theorem 2.1, the proof follows.

4. Generalized Ulam-Hyers-Rassias stability

We present now another stability result.
Theorem 4.1. Let $\varphi:[a, b] \rightarrow \mathbb{R}_{+}$be an increasing continuous operator. Consider the iterative functional-differential equation (1.1). Suppose that we are in the conditions of Theorem 1.1 and, additionally, there exists $\lambda_{\varphi}>0$, such that

$$
\int_{a}^{t} \varphi(s) d s \leq \lambda_{\varphi} \varphi(t), \quad \forall t \in[a, b]
$$

Then the equation (1.1) is generalized Ulam-Hyers-Rassias stable on the set $C_{L}([a, b],[a, b])$.

Proof. Let $y \in C_{L}([a, b],[a, b])$ be a solution of the differential inequality (1.3), i.e. satisfying

$$
\left|y^{\prime}(t)-f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)\right| \leq \varphi(t), \quad t \in[a, b] .
$$

Then, y is a solution of the integral inequality

$$
\left|y(t)-y(a)-\int_{a}^{t} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s\right| \leq \lambda_{\varphi} \varphi(t), \quad \forall t \in[a, b] .
$$

Indeed, we have the following

$$
y^{\prime}(t)=f\left(t, y^{[1]}(t), y^{[2]}(t), \ldots, y^{[m]}(t)\right)+h(t), \text { with }|h(t)| \leq \varphi(t), \quad \forall t \in[a, b] .
$$

Consequently, we obtain

$$
\begin{equation*}
y(t)=y(a)+\int_{a}^{t} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s+\int_{a}^{t} h(s) \mathrm{d} s, \quad t \in[a, b], \tag{4.1}
\end{equation*}
$$

implying

$$
\begin{aligned}
& \left|y(t)-y(a)-\int_{a}^{t} f\left(s, y^{[1]}(s), y^{[2]}(s), \ldots, y^{[m]}(s)\right) \mathrm{d} s\right| \leq\left|\int_{a}^{t} h(s) \mathrm{d} s\right| \leq \\
& \leq \int_{a}^{t}|h(s)| \mathrm{d} s \leq \int_{a}^{t} \varphi(s) \mathrm{d} s \leq \lambda_{\varphi} \varphi(t)
\end{aligned}
$$

Henceforward we take $x \in C_{L}([a, b],[a, b])$, denoting the unique solution of the Cauchy problem (2.4) $+(2.5)$.

Then, the following relation holds:

$$
\begin{equation*}
x(t)=y(a)+\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s, \quad t \in[a, b] . \tag{4.2}
\end{equation*}
$$

Similarly to the proof of Theorem 1.1 we define the operators
$A^{1}: C_{L}([a, b],[a, b]) \rightarrow C_{L}([a, b],[a, b]), A^{1}(x)(t):=$ the right hand side of (4.1),
$B^{1}: C_{L}([a, b],[a, b]) \rightarrow C_{L}([a, b],[a, b]), B^{1}(y)(t):=$ the right hand side of (4.2).
Then, we have

$$
\begin{aligned}
\left|A^{1}(x)(t)-B^{1}(x)(t)\right| & =\mid y(a)+\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s-x(a)- \\
& -\int_{a}^{t} f\left(s, x^{[1]}(s), x^{[2]}(s), \ldots, x^{[m]}(s)\right) \mathrm{d} s-\int_{a}^{t} h(s) \mathrm{d} s \mid= \\
& =\left|\int_{a}^{t} h(s) \mathrm{d} s\right| \leq \int_{a}^{t}|h(s)| \mathrm{d} s \leq \lambda_{\varphi} \varphi(t)
\end{aligned}
$$

Denote by $x_{A^{1}}^{*}$ the unique fixed point of the contraction A^{1} and let $y_{B^{1}}^{*}$ denote a fixed point of the operator B^{1}. From Lemma 1.1 we obtain

$$
\left\|x_{A^{1}}^{*}-y_{B^{1}}^{*}\right\|_{C} \leq \frac{\lambda_{\varphi} \varphi(t)}{1-L_{f}(b-a) \sum_{i=1}^{n} i L^{m-i}}
$$

that is, the equation (1.1) is generalized Ulam-Hyers-Rassias stable with

$$
c_{f, \varphi}=\frac{\lambda_{\varphi}}{1-L_{f}(b-a) \sum_{i=1}^{n} i L^{m-i}}
$$

References

[1] L. Cădariu, Stabilitatea Ulam-Hyers-Bourgin pentru ecuaţii funcţionale, Editura Universităţii de Vest, Timişoara, 2007.
[2] E. Egri, On First and Second Order Iterative Functional-Differential Equations and Systems, Presa Universitară Clujeană, Cluj-Napoca, 2008.
[3] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl., 311(2005), 139-146.
[4] S.-M. Jung and Th.M. Rassias, Generalized Hyers-Ulam stability of Riccati differential equation, Math. Ineq. Appl., 11(2008), No. 4, 777-782.
[5] I.A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babeş-Bolyai Math., 54(2009), No. 4, 125-133.
[6] I.A. Rus, Gronwall lemmas: Ten open problems, Sci. Math. Japon., 70(2009), No. 2, 221-228.
[7] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), No. 2, 305-320.
[8] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach spacevalued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc. 39(2002), No. 2, 309-315.

Received: June 12, 2010; Accepted: December 2, 2010.

