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Abstract. In this paper we deal with special types of data dependence, the so-called Ulam stabilities,

regarding the first order iterative functional-differential equation

x′(t) = f(t, x[1](t), x[2](t), . . . , x[m](t)), t ∈ [a, b], a, b ∈ R, a < b,

with x ∈ C1([a, b], [a, b]). Here x[m] denotes the mth iterate of the function x, (m ≥ 0) i.e.

x[m] := x ◦ x ◦ . . . ◦ x
| {z }

m

.
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1. Introduction

Let a, b ∈ R (a < b), and f : [a, b]m+1 → R, ϕ : [a, b] → R+ be two continuous
functions. Our aim is to investigate the Ulam–Hyers stability and the generalized
Ulam–Hyers–Rassias stability of the first order iterative functional-differential equa-
tion

x′(t) = f(t, x[1](t), x[2](t), . . . , x[m](t)), t ∈ [a, b], (1.1)
x ∈ C1([a, b], [a, b]).

For this purpose, consider first the following associated differential inequalities:

|y′(t)− f(t, y[1](t), y[2](t), . . . , y[m](t))| ≤ ε, t ∈ [a, b], (1.2)

|y′(t)− f(t, y[1](t), y[2](t), . . . , y[m](t))| ≤ ϕ(t), t ∈ [a, b], (1.3)

|y′(t)− f(t, y[1](t), y[2](t), . . . , y[m](t))| ≤ εϕ(t), t ∈ [a, b]. (1.4)
We make the following remarks.

Remark 1.1. A function y ∈ C1([a, b], [a, b]) is a solution of the inequality (1.2)
(also called an ε-solution of the equation (1.1)) if and only if there exists a function
g ∈ C([a, b], R), which depends on y, such that

(1) |g(t)| ≤ ε, ∀t ∈ [a, b];
(2) y′(t) = f(t, y[1](t), y[2](t), . . . , y[m](t)) + g(t), ∀t ∈ [a, b].
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Remark 1.2. A function y ∈ C1([a, b], [a, b]) is a solution of the inequality (1.3) if
and only if there exists a function h ∈ C([a, b], R), which depends on y, such that

(1) |h(t)| ≤ ϕ(t), ∀t ∈ [a, b];
(2) y′(t) = f(t, y[1](t), y[2](t), . . . , y[m](t)) + h(t), ∀t ∈ [a, b].

Remark 1.3. A function y ∈ C1([a, b], [a, b]) is a solution of the inequality (1.4) if
and only if there exists a function k ∈ C([a, b], R), which depends on y, such that

(1) |k(t)| ≤ εϕ(t), ∀t ∈ [a, b];
(2) y′(t) = f(t, y[1](t), y[2](t), . . . , y[m](t)) + k(t), ∀t ∈ [a, b].

Following [5] and [7] we present the following notions (see also [3], [4],[6],[8], [1]):

Definition 1.1. The equation (1.1) is Ulam–Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution y ∈ C1([a, b], [a, b]) of (1.2)
there exists a solution x ∈ C1([a, b], [a, b]) of the equation (1.1) with

‖y − x‖ ≤ cfε.

Definition 1.2. The equation (1.1) is generalized Ulam–Hyers stable if there exists
a real valued function θf ∈ C(R+, R+), θf (0) = 0 such that for each solution y ∈
C1([a, b], [a, b]) of (1.2) there exists a solution x ∈ C1([a, b], [a, b]) of (1.1) with

‖y − x‖ ≤ θf (ε).

Definition 1.3. The equation (1.1) is Ulam–Hyers–Rassias stable with respect to ϕ
if there exists a real number cf,ϕ > 0 such that for each ε > 0 and for each solution
y ∈ C1([a, b], [a, b]) of (1.4) there exists a solution x ∈ C1([a, b], [a, b]) of (1.1) with

‖y − x‖ ≤ cf,ϕεϕ(t).

Definition 1.4. The equation (1.1) is generalized Ulam–Hyers–Rassias stable with
respect to ϕ if there exists a real number cf,ϕ > 0 such that for each solution y ∈
C1([a, b], [a, b]) of (1.3) there exists a solution x ∈ C1([a, b], [a, b]) of (1.1) with

‖y − x‖ ≤ cf,ϕϕ(t).

In the present paper we shall give some results in terms of Ulam–Hyers stability
and generalized Ulam–Hyers–Rassias stability of the equation (1.1). For this we will
need the following result:

Lemma 1.1 (data dependence, [2]). Let (X, d) be a complete metric space and A,B :
X → X be to operators. We suppose that:

i) the operator A is a contraction, i.e. there exists LA ∈ [0, 1) with

d(A(x), A(y)) ≤ LAd(x, y), ∀x, y,∈ X;

ii) FB 6= ∅;
iii) there exists η such that d(A(x), B(x)) ≤ η, for all x ∈ X.

Then, if FA = {x∗A} and x∗B ∈ FB , we have

d(x∗A, x∗B) ≤ η

1− LA
.
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2. Ulam–Hyers stability

Consider the equation (1.1) and let L > 0 be a real number. Denote by
CL([a, b], [a, b]) the space of those continuous functions, defined on [a, b] taking val-
ues on [a, b], which have the same Lipschitz constant, L > 0. We endow the set
CL([a, b], [a, b]) ⊂ C([a, b], R) with the Chebyshev metric dC(x, y) := ‖x − y‖C =
maxt∈[a,b] |x(t) − y(t)|, for all x, y ∈ CL([a, b], [a, b]). In what follows we will work in
this metric space.

We have our first result:

Theorem 2.1. Consider the iterative functional-differential equation (1.1) with the
Cauchy condition

x(a) = x0. (2.1)
Suppose that the following conditions are satisfied:

(i) f ∈ C([a, b]m+1, R);
(ii) there exists Lf > 0, such that

|f(t, u1, u2, . . . , um)− f(t, v1, v2, . . . vm)| ≤ Lf

m∑
i=1

|ui − vi|,

for all t, ui, vi ∈ [a, b], i = 1,m;
(iii) for Mf := max

[t0−a,t0+a]m+1
|f(t, u1, u2, . . . , um)| we have

Mf ≤ min
{

b− x0

b− a
,
x0 − a

b− a
, L

}
;

(iv) Lf (b− a)
m∑

i=1

iLm−i < 1.

Then
(1) the Cauchy problem (1.1) + (2.1) has a unique solution in CL([a, b], [a, b]);
(2) Let Mf ≤ L and

X1 := {y ∈ CL([a, b], [a, b]) | Mf ≤ min
{

b− y(a)
b− a

,
y(a)− a

b− a
, L

}
}.

Then the equation (1.1) is Ulam–Hyers stable in X1.

Proof.
(1) In this first part we consider the operator

A : CL([a, b], [a, b]) → CL([a, b], [a, b]),

given by

A(x)(t) := x0 +
∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds, t ∈ [a, b]. (2.2)

This operator is well-defined, since for all x ∈ CL([a, b], [a, b]) we have A(x) ∈
CL([a, b], [a, b]). Indeed, let x ∈ C([a, b], [a, b]) with

|x(t1)− x(t2)| ≤ L|t1 − t2|, ∀t1, t2 ∈ [a, b].
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Then, from the definition of the operator A and due to the assumption (iii), for all
t ∈ [a, b] we get A(x)(t) ≤ x0 +Mf (b−a) ≤ b and A(x)(t) ≥ x0−Mf (b−a) ≥ a. Since
the mapping t 7→ f(t, y[1](t), y[2](t), . . . , y[m](t)) is continuous, the latter affirmations
justifies that A(x) ∈ C([a, b], [a, b]). From (iii) we have that Mf ≤ L and so we can
obtain that

|A(x)(t1)−A(x)(t2)| =
∣∣∣∣∫ t2

t1

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds

∣∣∣∣ ≤
≤ Mf |t1 − t2| ≤ L|t1 − t2|, ∀t1, t2 ∈ [a, b].

In this manner we get that A(x) ∈ CL([a, b], [a, b]).
We will prove now that the operator A is a contraction. Indeed, we have:

|A(x)(t)−A(y)(t)| =

=
∣∣∣∣∫ t

a

[
f(s, x(s), x[2](s), . . . , x[m](s))− f(s, y(s), y[2](s), . . . , y[m](s))

]
ds

∣∣∣∣ ≤
≤Lf |t− a|

m∑
i=1

|x[i](s)− y[i](s)|.

By induction we can prove that, for all x, y ∈ CL([a, b], [a, b]) the following succes-
sive estimations hold:

|x[1](s)− y[1](s)| ≤ ‖x− y‖C ;

|x[2](s)− y[2](s)| = |x(x(s))− x(y(s)) + x(y(s))− y(y(s))| ≤
≤ L|x(s)− y(s)|+ |x(y(s))− y(y(s))| ≤
≤ (1 + L)‖x− y‖C ;

|x[3](s)− y[3](s)| = |x(x[2])(s)− x(y[2](s)) + x(y[2](s))− y(y[2])(s)| ≤

≤ L|x[2](s)− y[2](s)|+ ‖x− y‖C ≤
≤ (1 + L + L2)‖x− y‖C ;

...

|x[m](s)− y[m](s)| ≤ (1 + L + L2 + · · ·+ Lm−1)‖x− y‖C .

Summing up the corresponding relations, we receive
m∑

i=1

|x[i](s)− y[i](s)| ≤ ‖x− y‖C

m∑
i=1

iLm−i.

Therefore, we obtain

|A(x)(t)−A(y)(t)| ≤ Lf (b− a)‖x− y‖C

m∑
i=1

iLm−i, ∀t ∈ [a, b],

and finally,

‖A(x)−A(y)‖C ≤

[
Lf (b− a)

m∑
i=1

iLm−i

]
‖x− y‖C .
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Due to (iv) we have that Lf (b− a)
m∑

i=1

iLm−i < 1 and, therefore, the operator A is

a contraction. From Banach’s fixed point theorem A has a unique fixed point. Con-
sequently the Cauchy problem (1.1)+(2.1) has a unique solution in CL([a, b], [a, b]).

(2) Since y ∈ CL([a, b], [a, b]) is a solution of the differential inequality (1.2), it
satisfies the relation

|y′(t)− f(t, y[1](t), y[2](t), . . . , y[m](t))| ≤ ε, t ∈ [a, b].

Then, y is a solution of the integral inequality∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds

∣∣∣∣ ≤ (t− a)ε,∀t ∈ [a, b].

Indeed, by Remark 1.1 we have that

y′(t) = f(t, y[1](t), y[2](t), . . . , y[m](t)) + g(t),

with
|g(t)| ≤ ε, ∀t ∈ [a, b].

Accordingly, we obtain

y(t) = y(a) +
∫ t

a

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds +
∫ t

a

g(s)ds, t ∈ [a, b], (2.3)

which implies that∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

a

g(s)ds

∣∣∣∣ ≤
≤

∫ t

a

|g(s)|ds ≤ ε(t− a).

Moreover, we denote by x ∈ CL([a, b], [a, b]) the unique solution of the Cauchy
problem

x′(t) = f(t, x[1](t), x[2](t), . . . , x[m](t)), t ∈ [a, b], (2.4)

x(a) = y(a), (2.5)

which solution is ensured by the previous proven part. We mention that the function
y in the initial value condition (2.5) is the solution of the inequality (1.2).

Then we clearly have,

x(t) = y(a) +
∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds, t ∈ [a, b]. (2.6)

We introduce the operators

A : CL([a, b], [a, b]) → CL([a, b], [a, b]),

A(x)(t) := the right hand side of the equation (2.6),

and

B : CL([a, b], [a, b]) → CL([a, b], [a, b]),

B(y)(t) := the right hand side of the equation (2.3).
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These are well-defined. Observe that from (2.6) and (2.3) we have

|A(x)(t)−B(x)(t)| =
∣∣∣∣y(a) +

∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds− x(a)−

−
∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds−
∫ t

a

g(s)ds

∣∣∣∣ =

=
∣∣∣∣∫ t

a

g(s)ds

∣∣∣∣ ≤ ε(b− a).

We mention that the operator A is a contraction with the constant

LA := Lf (b− a)
n∑

i=1

iLm−i.

Denote by x∗A its unique fixed point and let y∗B denote a fixed point of the operator
B. Then due to Lemma 1.1 we have:

‖x∗A − y∗B‖C ≤ ε(b− a)

1− Lf (b− a)
n∑

i=1

iLm−i

.

Now the obtained relation means that the equation (1.1) is Ulam–Hyers stable. Note

that cf =
b− a

1− Lf (b− a)
n∑

i=1

iLm−i

. �

3. Example

Consider the first order iterative functional-differential equation

x′(t) = ax(x(t)) + bx(t) + c, t ∈ [−h, h], h > 0, (3.1)

with the initial value condition
x(0) = x0 (3.2)

and the inequality

|y′(t)− ay(y(t))− by(t)− c| < ε, t ∈ [−h, h]. (3.3)

Theorem 3.1. Let L > 0. Suppose that, concerning the initial value problem (3.1) +
(3.2), the following assumptions hold:

i. h
(
|a|+ |b|

)
+ |c| ≤ min

{
h− x0

2h
,
h + x0

2h
,L

}
;

ii. 2h max{|a|, |b|}(L + 2) < 1.

Then
(1) the Cauchy problem (3.1)+(3.2) has a unique solution in CL([−h, h], [−h, h]);
(2) if y ∈ CL([−h, h], [−h, h]) is a solution of the inequality (3.3) so that

h
(
|a|+ |b|

)
+ |c| ≤ min

{
h− y(0)

2h
,
h + y(0)

2h
,L

}
,

then the equation (3.1) is Ulam–Hyers stable.
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Proof. Notice that in this case we have

f(t, u, v) = av + bu + c,

Lf = max{|a|, |b|},
Mf = h(|a|+ |b|) + |c|.

Using Theorem 2.1, the proof follows. �

4. Generalized Ulam–Hyers–Rassias stability

We present now another stability result.

Theorem 4.1. Let ϕ : [a, b] → R+ be an increasing continuous operator. Consider the
iterative functional–differential equation (1.1). Suppose that we are in the conditions
of Theorem 1.1 and, additionally, there exists λϕ > 0, such that∫ t

a

ϕ(s)ds ≤ λϕϕ(t), ∀t ∈ [a, b].

Then the equation (1.1) is generalized Ulam-Hyers-Rassias stable on the set
CL([a, b], [a, b]).

Proof. Let y ∈ CL([a, b], [a, b]) be a solution of the differential inequality (1.3),
i.e. satisfying

|y′(t)− f(t, y[1](t), y[2](t), . . . , y[m](t))| ≤ ϕ(t), t ∈ [a, b].

Then, y is a solution of the integral inequality∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds

∣∣∣∣ ≤ λϕϕ(t), ∀t ∈ [a, b].

Indeed, we have the following

y′(t) = f(t, y[1](t), y[2](t), . . . , y[m](t)) + h(t), with |h(t)| ≤ ϕ(t), ∀t ∈ [a, b].

Consequently, we obtain

y(t) = y(a) +
∫ t

a

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds +
∫ t

a

h(s)ds, t ∈ [a, b], (4.1)

implying∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y[1](s), y[2](s), . . . , y[m](s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

a

h(s)ds

∣∣∣∣ ≤
≤

∫ t

a

|h(s)|ds ≤
∫ t

a

ϕ(s)ds ≤ λϕϕ(t).

Henceforward we take x ∈ CL([a, b], [a, b]), denoting the unique solution of the
Cauchy problem (2.4)+(2.5).

Then, the following relation holds:

x(t) = y(a) +
∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds, t ∈ [a, b]. (4.2)
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Similarly to the proof of Theorem 1.1 we define the operators

A1 : CL([a, b], [a, b]) → CL([a, b], [a, b]), A1(x)(t) := the right hand side of (4.1),

B1 : CL([a, b], [a, b]) → CL([a, b], [a, b]), B1(y)(t) := the right hand side of (4.2).
Then, we have

|A1(x)(t)−B1(x)(t)| =
∣∣∣∣y(a) +

∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds− x(a)−

−
∫ t

a

f(s, x[1](s), x[2](s), . . . , x[m](s)) ds−
∫ t

a

h(s)ds

∣∣∣∣ =

=
∣∣∣∣∫ t

a

h(s)ds

∣∣∣∣ ≤ ∫ t

a

|h(s)|ds ≤ λϕϕ(t)

Denote by x∗A1 the unique fixed point of the contraction A1 and let y∗B1 denote a
fixed point of the operator B1. From Lemma 1.1 we obtain

‖x∗A1 − y∗B1‖C ≤ λϕϕ(t)

1− Lf (b− a)
n∑

i=1

iLm−i

,

that is, the equation (1.1) is generalized Ulam–Hyers–Rassias stable with

cf,ϕ =
λϕ

1− Lf (b− a)
n∑

i=1

iLm−i

. �
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