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1. Introduction

In [24], [25], the authors generalized, in the metric case, the concept of absolute
neighbourhood retracts to absolute neighbourhood multiretracts. Here, this notion
will be furthermore extended, for non-metric spaces, to the one of admissible multi-
retracts.

The main aim of this paper is to formulate Lefschetz-type and Nielsen-type asymp-
totic fixed point theorems on these very general Hausdorff topological spaces.

As explained e.g. in [19, Chapter 15.5], the asymptotic fixed point theory concerns
theorems in which the existence of fixed points of a map is established from assump-
tions imposed on its iterates. Usually, only a certain amount of compactness is needed
in this way, for maps under consideration. The typical example is the Browder fixed
point theorem [11] and its various generalizations in [2]–[4], [5]–[7], [8], [9], [10], [12],
[13], [14], [15], [16], [17], [18], [19], [22], [23], [24].
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Since discrete dynamical systems are generated by the iterates of maps, the as-
ymptotic fixed point theorems can be regarded in this light as a crucial part of their
theory, because stationary regimes play always an essential role among dynamics.

On the other hand, the nontrivial application of our new fixed point theorems to
differential equations (i.e. practically only in the metric case) seems to be rather
delicate. In the last part of our paper, we indicate possible applications in the form
of two theorems and several remarks.

2. Some auxiliary definitions

In this paper, all spaces are assumed to be Hausdorff topological spaces and all
mappings under consideration are continuous.

Let f : X → X be a map. Then the sequence

O(x) := {x, f(x), f2(x), . . . , fn(x), . . .}

is called the orbit of x under f .
A compact set A ⊂ X is called a window for f if, for every x ∈ X, we have:

O(x) ∩A 6= ∅,

and it is called an attractor for f if

O(x) ∩A 6= ∅,

where O(x) denotes the closure of O(x) in X.
(1.1) Evidently, if A is a window for f , then A is also an attractor for f .

The following example demonstrates that the converse to (1.1) is not true.
(1.2) Example. Let (X, d) be a complete metric space and f : X → X be a contrac-
tion. Letting A := {x0}, where x0 ∈ X is a unique fixed point of f , A is an attractor
for f , but it is not a window for f .

Recall that a map f : X → X is compact if there exists a compact set K ⊂ X
such that f(X) ⊂ K. Similarly, f is locally compact if, for every point x ∈ X, there
exists an open neighbourhood Vx of x in X and a compact set Kx ⊂ X such that
f(Vx) ⊂ Kx. The set

Cf :=
∞⋂

n=1

fn(X)

is called the core of f .
Let E be a topological vector space over the field of real numbers R. We say that

E is a Klee admissible space (cf. [2]) if, for any compact K ⊂ E and for any open
neighbourhood V of 0 ∈ E, there exists a map:

πV : K → E

such that the following conditions are satisfied:
(1.3) πV (x) ∈ x + V , for any x ∈ K,
(1.4) there exists a natural number n = nK such that πV (K) ⊂ En, where En is

an n-dimensional subspace of E.
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Roughly speaking, a space E is Klee admissible if compact mappings into E can
be approximated by compact finite dimensional mappings.
(1.5) Open Problem. Is it true that any topological vector space is Klee admissible?

Let Top2 be the category of pairs of Hausdorff topological spaces and continuous
mappings of such pairs. By a pair (X, A) in Top2, we understand a Hausdorff space X
and its subset A. A pair (X, ∅) will be shortly denoted by X. By a map f : (X, A)→
(Y,B), we understand a continuous map from X to Y such that f(A) ⊂ B. We shall
use the following notations: if f : (X, A)→ (Y,B) is a map of pairs, then by fX : X →
Y and fA : A→ B we shall understand the respective induced mappings. Let us also
denote by VectG the category of graded vector spaces over the field of rational numbers
Q and linear maps of degree zero between such spaces. By H : Top2 → VectG, we
denote the Čech homology functor with compact carriers and coefficients in Q.

Thus, for any pair (X, A), we have

H(X, A) = {Hq(X, A)}q≥0,

a graded vector space in VectG and, for any map f : (X, A) → (Y, B), we have the
induced linear map

f∗ := {f∗q} : H(X, A)→ H(Y, B),
where f∗q : Hq(X, A) → Hq(Y, B) is a linear map from the q-dimensional homology
Hq(X, A) of the pair (X, A) into the q-dimensional homology Hq(Y, B) of the pair
(Y,B).

For further properties of H, we recommend the monograph [2].
A non-empty space X is called acyclic if:
(1.6) Hq(X) = 0, for every q ≥ 1, and
(1.7) H0(X) ≈ Q.

(1.8) Definition. A map p : Γ → X is called a Vietoris map if the following condi-
tions are safisfied:
(1.8.1) p is onto and closed,
(1.8.2) for every x ∈ X, the set p−1(x) is compact and acyclic.
(1.9) Vietoris Theorem. ([15]) If p : Γ → X is a Vietoris map, then the induced
linear map p∗ : H(Γ) ∼−→H(X) is an isomorphism, i.e., for every q ≥ 0, the linear
map

p∗q : Hq(Γ) ∼−→Hq(X)
is an isomorphism.

For further properties of Vietoris mappings, see e.g. [20].
The following notions introduced in definitions will play here a crucial role. At

first, by ϕ : X ( Y , we shall denote a multivalued map, i.e. a map which assigns to
every point x ∈ X a compact nonempty set ϕ(x) ⊂ Y .
(1.10) Definition. (cf. [2], [15]) A multivalued map ϕ : X ( Y is called admissible
if there exists a diagram

X
p←−Γ

q−→Y

in which p is a Vietoris map, q is continuous and we have:

ϕ(x) = q(p−1(x)), for every x ∈ X.
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Note that the class of admissible mappings is quite large. In particular, it contains
compositions of acyclic mappings.
(1.11) Definition. (cf. [24]) A map r : X → Y is said to be a multiretraction map
(mr-map) if there exists an admissible map ϕ : Y ( X such that r ◦ ϕ = IdY .
(1.12) Definition. (cf. [24]) A Hausdorff topological space X is called an admissible
multiretract (X ∈ AMR) if there exists an open subset U of some space E which is
admissible in the sense of the Klee such that X is a multiretract of U , i.e. there is an
mr-map r : U → X.

Observe that if X is a retract of U ⊂ E, then X ∈ AMR, where E is a Klee
admissible space. Moreover, if there exists a Vietoris map p : X → U , then X ∈ AMR.
Note that the class of AMR-spaces is obviously larger than of ANR-spaces.

For some nontrivial examples and more details concerning metric AMR-spaces, we
recommend [24].

3. Maps with only a certain amount of compactness

In this section, we shall consider noncompact mappings for which the Lefschetz
and, in particular, the Schauder fixed point theorems are true.
(2.1) Definition. ([12], cf. also [13], [2] and [21]) A map f : X → X is called a
compact absorbing contraction (f ∈ CAC(X)) if there exists an open set U ⊂ X such
that:
(2.1.1) f(U) ⊂ U ,
(2.1.2) f(U) is a compact subset of U ,
(2.1.3) for every x ∈ X, there exists a natural number nx such that fnx(x) ∈ U .

We let
K(X) := {f : X → X | f is compact},
EC(X) := {f : X → X | f is locally compact and there exists a natural number n

such that fn ∈ K(X)},
CW(X) := {f : X → X | f is locally compact and there exists a compact window

A for f},
ASC(X) := {f : X → X | f is locally compact, every orbit O(x) is relatively

compact and the core Cf of f is nonempty and relatively compact},
CA(X) := {f : X → X | f is locally compact and there exists a compact attractor

A for f}.
Note that if X is a locally compact Hausdorff space, then every map f : X → X is

locally compact. Let us also note that in Definition (2.1) we do not assume that f is
locally compact.

It is well known that, for locally compact Hausdorff spaces, it holds (see [15], [16],
[21]):

(2.2) K(X) ⊂ EC(X) ⊂ CW(X) ⊂ ASC(X) ⊂ CA(X) ⊂ CAC(X).

Moreover, each of the above inclusions is proper. The inclusion CW(X) ⊂ ASC(X)
is obvious.

Now, we are still going to generalize the class of compact absorbing contractions.
For a map f : X → X, by Λ(f), we shall denote the Lefschetz number of f .
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We say that f is a Lefschetz map if the Lefschetz number Λ(f) of f is well defined
and Λ(f) 6= ∅ implies that Fix(f) := {x ∈ X | f(x) = x} 6= ∅.

For a map f : (X, A) → (X, A), by fX : X → X and fA : A → A, we denote
the respective mappings induced by f , i.e., fX(x) = f(x), for every x ∈ X, and
fA(x) = f(x), for every x ∈ A.
(2.3) Definition. (cf. [18]) Let f, h : (X, A) → (X, A) be two mappings. We say
that fX : X → X is a generalized compact absorbing contraction with respect to h
(written fX ∈ GCAC(X)) if the following conditions are satisfied:
(2.3.1) fA : A→ A is a Lefschetz map,
(2.3.2) for every compact K ⊂ X, there exists n = nK such that fn(h(K)) ⊂ A (or

h(fn(K)) ⊂ A and f(h−1(A)) ⊂ h−1(A)),
(2.3.3) h∗ : H(X, A)→ H(X, A) is an epimorphism (or h∗ : H(X, A)→ H(X, A) is a

monomorphism).
(2.4) Remark. Observe that if X ∈ AMR, A is an open subset of X and h = Id(X,A),
then the class of GCAC-mappings reduces to the class of CAC-mappings.

It will be also useful to consider the following class of mappings.
(2.5) Definition. (cf. [18]) Let f : (X, A)→ (X, A) be a map. We say that fX : X → X
is acyclically compact absorbing contraction (written fX ∈ ACAC(X)) if the following
conditions are satisfied:
(2.5.1) fA : A→ A is a compact map,
(2.5.2) there exists an acyclic set K ⊂ X such that fA(A) ⊂ K and (K ∩A) ∈ AMR,
(2.5.3) there exists an n = nK such that fn(K) ⊂ A.

4. Lefschetz theorems for generalized CAC-maps on AMR-spaces

At first, we shall formulate the Lefschetz-type fixed point theorems for CAC-
mappings on AMR-spaces. We are able to obtain the following result:
(3.1) Theorem. Let X ∈ AMR and f ∈ CAC(X). Then f is a Lefschetz map.
(3.2) Remark.
(3.2.1) For a metric AMR-space X, Theorem (3.1) was formulated as a single-valued

version of Theorem 5.3 in [24].
(3.2.2) In the above case, we have to prove (3.1) for compact mappings (cf. [24] and

[21]), and then we can proceed quite analogously as in the proof of Theorem
4.4 in [18].

The most general result in this field is the following:
(3.3) Theorem. Let X be a Hausdorff topological space and fX ∈ GCAC(X). Then
fX is a Lefschetz map.
Sketch of the proof. According to Definition (2.3), we have a map f : (X, A)→ (X, A)
such that the conditions (2.3.1)–(2.3.3) are satisfied. So, we have three maps:

f : (X, A)→ (X, A), fX : X → X, fA : A→ A

such that fA is a Lefschetz map. Now, from the assumptions (2.3.2) and (2.3.3), we
can deduce that the Lefschetz number Λ(f) = 0 (cf. the proof of (4.4) in [18]).

On the other hand, it is known (see [2] and [16]) that

0 = Λ(f) = Λ(fX)− Λ(fA).
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Assuming Λ(fX) 6= 0, we obtain Λ(fA) 6= 0, and since fA is a Lefschetz map, we get
that Fix(fA) 6= ∅. Thus, Fix(fX) 6= ∅, and the proof is complete. �

Note that from Theorem (3.3), we can deduce far reaching generalizations of the
Schauder fixed point theorem. Recall that if X is an acyclic space then, for every
f : X → X, we have Λ(f) = 1 (cf. e.g. [2], [15]).

Hence, we get:
(3.4) Corollary. If X is still an acyclic space and fX ∈ GCAC(X), then

Fix(fX) 6= ∅.
Similarly, in view of the above inclusion hierarchy (2.2), Theorem (3.1) immediately

implies:
(3.5) Corollary. Let X be an acyclic AMR-space. If f ∈ K(X) or f ∈ EC(X)or
f ∈ CW(X) or f ∈ ASC(X) or f ∈ CA(X) or f ∈ CAC(X), then Fix(f) 6= ∅.

Finally, using the same techniques as in the proof of Theorem 4.5 in [18], we are
able to proof the following:
(3.6) Theorem. If fX ∈ ACAC(X), then Fix(fX) 6= ∅.

Let us also note that all the results obtained in this section represent very general
asymptotic fixed point theorems on a large class of topological spaces.

5. Nielsen theorem for CAC-maps on AMR-spaces

In this section, by X we shall denote an AMR-space and by f : X → X a CAC-
mapping. We shall assume the following:
(4.1) Assumption. We additionally suppose that X admits a universal covering
PX : X̃ → X.

Using the above Assumption (4.1), there exists a lift f̃ : X̃ → X̃ of f : X → X, i.e.
that the following diagram is commutative:

X̃

Px

��

f̃ // X̃

Px

��
X

f // X

We let
ΘX := {α : X̃ → X̃ | PX ◦ α = PX}.

We fix points x0 ∈ X and x̃0 ∈ X̃ and a loop ω : [0, 1]→ X based at x0. Let ω̃ denote
the unique lift of ω starting from x̃0. We subordinate to [ω] ∈ π1(X, x0) the unique
transformation from ΘX sending ω̃(0) to ω̃(1), where π1(X, x0) is the fundamental
group of X based at x0. Then the homomorphism f̃ ! : ΘX → ΘX corresponds to the
induced endomorphism f# : π1(X, x0)→ π1(X, f(x0)).

Now, it is easy to see that the set Fix(f) := {x ∈ X | x = f(x)} is compact
(f ∈ CAC(X)). The above lifts split the set Fix(f) into finite Nielsen classes (for
more details, see [5], [6]).

We still need the following assumption which, in particular, implies (4.1):
(4.2) Assumption. X is paracompact, connected, locally contractible and π1(X) is
a finitely generated abelian fundamental group of X.
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Assumption (4.2) also implies that there exists a normal subgroup H ⊂ ΘX of a
finite index satisfying f̃ !(H) ⊂ H.

We say that f is H-admissible if f ∈ CAC(X), X ∈ AMR and (4.2) is satisfied.
In the rest of this section, we will consider only H-admissible mappings.
(4.3) Definition. A Nielsen class of Fix(f) is essential if the related Lefschetz
number is nontrivial, i.e. if Λ(α ◦ f̃) 6= 0, where α ∈ H.

The above definition does not depend on the choice of α ∈ H (see Lemma 5.5 in
[5]).
(4.4) Definition. We define the Nielsen number N(f) of f (modulo H) as the
number of essential Nielsen classes of Fix(f).

Now, from the homotopy invariance of the Lefschetz number, it immediately fol-
lows:
(4.5) Theorem. Assume that f, g : X → X are two homotopic H-admissible map-
pings. Then we have:
(4.5.1) N(f) = N(g),
(4.5.2) f and g have at least N(f) fixed points.

6. Simple application in the metric case

For a simple example of the application of the above fixed point theory, let us
consider the system of differential equations

x′ = F (t, x), F (t, x) ≡ F (t + τ, x), τ > 0, (5.1)

where F : [0, τ ]×Rn → Rn is a Carathéodory function, i.e. F (·, x) is measurable, for
every x ∈ Rn, and F (t, ·) is continuous, for almost all t ∈ [0, τ ]. Assuming, further-
more, that system (5.1) satisfies a uniqueness condition and that the (Carathéodory)
locally absolutely continuous solutions x(·) of (5.1) exist on the whole line, we can de-
fine the Poincaré translation operator Tτ : Rn → Rn along the trajectories of system
(5.1) as

Tτ (x0) := {x(τ) | x(·) is a solution of (5.1) with x(0) = x0}, (5.2)

where x0 ∈ Rn and τ > 0 is a given number.
This operator is well known (see e.g. [1], [4]) to be completely continuous and

locally compact and to have the property T k
τ (x0) = Tkτ (x0), where T k

τ denotes the
kth iterate of Tτ defined in (5.2).

Suppose, for a moment, that the system (5.1) is dissipative in the sense of N. Levin-
son, i.e. there exists a constant D > 0 such that

lim sup
t→∞

|x(t)| < D (5.3)

holds, for every solution x(·) of (5.1), i.e.

lim sup
t→∞

∣∣T k
τ (x0)

∣∣ < D, (5.4)

for every x0 ∈ Rn, where Tτ is defined in (5.2).
As already pointed out e.g. in [1], [10], we can easily check that Tτ ∈ CA(Rn), and

so that Tτ : Rn → Rn is H-admissible.
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Thus, as a trivial consequence of Corollary (3.5), Tτ has a fixed point determining
a τ -periodic solution x(·) of (5.1) with |x(0)| < D.

Assuming still that an AMR-space A ⊂ Rn is a compact subinvariant set w.r.t. Tτ

such that {x ∈ Rn | |x| < D} ⊂ A, Theorem (3.6) can also be applied, when taking
X = K := Rn. Nevertheless, such an application would not have much meaning,
because under the additional assumption above only |x(0)| < D can be proved again,
for a τ -periodic solution x(·) of (5.1).

On the other hand, assuming still that Tτ |A : A → A holds, where A ⊂ Rn is a
compact, acyclic AMR-space (observe that, in view of (5.3) and the subinvariance
of A, it must be A ∩ {x ∈ Rn | |x| < D} 6= ∅), and subsequently Tτ |A ∈ K(A),
Corollary (3.5) implies the existence of a τ -periodic solution x(·) of (5.1), this time
with x(0) ∈ A ∩ {x ∈ Rn | |x| < D}.
(5.5) Remark. If A ⊂ Rn is as above, then (5.1) need not be dissipative. On the
other hand if, for a compact A ⊂ Rn,

lim
t→∞

%(x(t), A) = 0

holds, for all solutions x(·) of (5.1) with x(0) ∈ Rn, where % stands for the set distance,
then we can always assume that (5.3) is satisfied, because A ⊂ {x ∈ Rn | |x| < D}
holds, for a sufficiently large D > 0.

For a not necessarily dissipative system (5.1), we can give the following theorems:
(5.6) Theorem. Assume that F : [0, τ ]× Rn → Rn is a Carathéodory function such
that a uniqueness condition is satisfied. Assume, furthermore, that A ⊂ Rn is a locally
compact, acyclic AMR-space and A0 ⊂ A its compact subset such that x(τ) ∈ A and

lim
t→∞

%(x(t), A0) = 0

hold, for all solutions x(·) of (5.1) with x(0) ∈ A, where % stands for the set distance.
Then the system (5.1) admits a τ -periodic solution x(·) such that x(0) ∈ A0.
Sketch of the proof. One can readily check that Tτ |A : A→ A belongs to the CA(A)-
class, where A is as above. Therefore, the conclusion follows by means of (3.5). �
(5.7) Remark. Let F be as in Theorem (5.6). Assume that x(λτ) ∈ A holds, for
each λ ∈ (0, 1] and all solutions x(·) of (5.1) with x(0) ∈ A, where A ⊂ Rn is a
compact AMR-space. Then, by means of (3.1), we have that (cf. e.g. [2])

Λ(Tτ |A) = Λ(IdA) = χ(A),

where χ(A) denotes the Euler–Poincaré characteristic of A. Hence, (5.1) also admits
a τ -periodic solution, provided χ(A) 6= 0. Observe that A need not be acyclic.
(5.8) Theorem. Assume that F : [0, τ ]× Rn → Rn is a Carathéodory function such
that a uniqueness condition is satisfied. Assume, furthermore, that a compact AMR-
subset A ⊂ Rn exists such that x(λτ) ∈ A holds, for each λ ∈ (0, 1] and every solution
x(·) of (5.1) with x(0) ∈ A. Let h be a continuous self-map of A, i.e. h : A→ A. If A
additionally satisfies (4.2), but need not be acyclic, then the system (5.1) has at least
N(h) solutions x(·) such that x(0) = h(x(τ)).
Sketch of the proof. One can readily check that, for each λ ∈ [0, 1], Tλτ |A : A→ A as
well as the composition h ◦ Tλτ |A : A → A belong to the K(A)-class and with (4.2)
they are H-admissible maps. Moreover, Tτ |A is admissibly homotopic to the identity
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on A (see e.g. [1], [2]), and subsequently N (h ◦ Tτ |A) = N(h) holds. The application
of Theorem (4.5) completes the proof. �
(5.9) Remark. Theorem (5.8) provides the lower estimate of the number of solutions
x(·) of (5.1) such that x(0) = h(x(τ)). The computation of the Nielsen number N(h)
can, however, be a difficult task. For h = IdA, we already know that at least one
τ -periodic solution of (5.1) exists, provided A is still acyclic or such that χ(A) 6= 0.
On the other hand, it is hopeless to expect that N(IdA) > 1, for some A.
(5.10) Remark. The subinvariance of A w.r.t. Tλτ |A, λ ∈ (0, 1], in (5.6)–(5.8) can
be guaranteed by means of Liapunov-like bounding functions. For more details, see
e.g. [2], [4].

7. Concluding remark

The results presented above can be obviously generalized in many directions. In
particular,

(i) admissible multivalued maps,
(ii) periodic points and orbits,
(iii) further relative versions

can be taken into account with this respect.
Acknowledgements. The first author was supported by the Council of Czech Gov-
ernment (MSM 6198959214).
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