Fixed Point Theory, 12(2011), No. 2, 247-254 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT THEOREMS FOR CONDENSING MULTIVALUED MAPPINGS UNDER WEAK TOPOLOGY FEATURES

RAVI P. AGARWAL*, DONAL O'REGAN** AND MOHAMED-AZIZ TAOUDI***

*Department of Mathematical Sciences, Florida Institute of Technology 150 West University Boulevard, Melbourne Florida 32901, USA

E-mail: agarwal@fit.edu

and

KFUPM Chair Professor, Mathematics and Statistics Department King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia.

**Department of Mathematics, National University of Ireland Galway, Ireland.

E-mail: donal.oregan@nuigalway.ie

***Université Cadi Ayyad, Laboratoire de Mathématiques et de Dynamique de Populations, Marrakech, Maroc and

> Centre Universitaire Kalaa des Sraghna B.P. 263, Kalaa des Sraghna, Maroc. E-mail: taoudi@ucam.ac.ma

Abstract. We present new fixed point theorems for weakly condensing multivalued maps with weakly sequentially closed graph. Our fixed point results are obtained under Sadovskii's, Leray-Schauder's and Furi-Pera's type conditions.

Key Words and Phrases: Sadovskii's fixed point theorem, Krasnosel'skii's fixed point theorem, Leray-Schauder's fixed point theorem, measure of weak noncompactness, weakly condensing, multivalued maps.

2010 Mathematics Subject Classification: 47H10, 47H04, 47H09, 47H14.

1. INTRODUCTION

In this paper, we present new fixed-point results for weakly condensing multivalued maps with weakly sequentially closed graph on a Banach space. Our results in particular extend those of Arino et al. [4], Agarwal and O'Regan [3] and O'Regan [14, 15]. For the remainder of this section we gather some notations and preliminary facts. Let X be a Banach space, let $\mathcal{B}(X)$ denote the collection of all nonempty bounded subsets of X and $\mathcal{W}(X)$ the subset of $\mathcal{B}(X)$ consisting of all weakly compact subsets of X. Also, let B_r denote the closed ball centered at 0 with radius r.

In our considerations the following definition will play an important role.

Definition 1.1. [5] A function $\psi: \mathcal{B}(X) \to \mathbb{R}_+$ is said to be a measure of weak noncompactness if it satisfies the following conditions :

(1) The family $\ker(\psi) = \{M \in \mathcal{B}(X) : \psi(M) = 0\}$ is nonempty and $\ker(\psi)$ is contained in the set of relatively weakly compact sets of X.

- (2) $M_1 \subseteq M_2 \Rightarrow \psi(M_1) \le \psi(M_2).$
- (3) $\psi(\overline{co}(M)) = \psi(M)$, where $\overline{co}(M)$ is the closed convex hull of M.
- (4) $\psi(\lambda M_1 + (1 \lambda)M_2) \le \lambda \psi(M_1) + (1 \lambda)\psi(M_2)$ for $\lambda \in [0, 1]$.
- (5) If $(M_n)_{n\geq 1}$ is a sequence of nonempty weakly closed subsets of X with M_1 bounded and $M_1 \supseteq M_2 \supseteq \ldots \supseteq M_n \supseteq \ldots$ such that $\lim_{n\to\infty} \psi(M_n) = 0$, then $M_{\infty} := \bigcap_{n=1}^{\infty} M_n$ is nonempty.

The family ker ψ described in (1) is said to be the kernel of the measure of weak noncompactness ψ . Note that the intersection set M_{∞} from (5) belongs to ker ψ since $\psi(M_{\infty}) \leq \psi(M_n)$ for every n and $\lim_{n\to\infty} \psi(M_n) = 0$. Also, it can be easily verified that the measure ψ satisfies

$$\psi(\overline{M^w}) = \psi(M) \tag{1.1}$$

where $\overline{M^w}$ is the weak closure of M.

A measure of weak noncompactness ψ is said to be $\mathit{regular}$ if

 $\psi(M) = 0$ if and only if M is relatively weakly compact. (1.2)

subadditive if

$$\psi(M_1 + M_2) \le \psi(M_1) + \psi(M_2), \tag{1.3}$$

homogeneous if

$$\psi(\lambda M) = |\lambda|\psi(M), \quad \lambda \in \mathbb{R}, \tag{1.4}$$

set additive if

$$\psi(M_1 \cup M_2) = max(\psi(M_1), \psi(M_2)). \tag{1.5}$$

The first important example of a measure of weak noncompactness has been defined by De Blasi [7] as follows :

$$w(M) = \inf\{r > 0: \text{ there exists } W \in \mathcal{W}(X) \text{ with } M \subseteq W + B_r\},$$
(1.6)

for each $M \in \mathcal{B}(X)$.

Notice that w(.) is regular, homogeneous, subadditive and set additive (see [7]).

In what follows we shall recall some classical definitions and results regarding multivalued mappings. Let X and Y be topological spaces. A multivalued map $F: X \to 2^Y$ is a point to set function if for each $x \in X$, F(x) is a nonempty subset of Y. For a subset M of X we write $F(M) = \bigcup_{x \in M} F(x)$ and $F^{-1}(M) = \{x \in X : F(x) \cap M \neq \emptyset\}$. The graph of F is the set $Gr(F) = \{(x, y) \in X \times Y : y \in F(x)\}$. We say that F is upper semicontinuous (u.s.c. for short) at $x \in X$ if for every neighborhood V of F(x) there exists a neighborhood U of x with $F(U) \subseteq V$ (equivalently, $F: X \to 2^Y$ is u.s.c. if for any net $\{x_\alpha\}$ in X and any closed set B in Y with $x_\alpha \to x_0 \in X$ and $F(x_\alpha) \cap B \neq \emptyset$ for all α , we have $F(x_0) \cap B \neq \emptyset$). We say that $F: X \to 2^Y$ is upper semicontinuous if it is upper semicontinuous at every $x \in X$ The function F is lower semicontinuous (l.s.c.) if the set $F^{-1}(B)$ is open for any open set B in Y. If F is l.s.c. and u.s.c., then F is continuous.

If Y is compact, and the images F(x) are closed, then F is upper semicontinuous if and only if F has a closed graph. In this case, if Y is compact, we have that F is upper semicontinuous if $x_n \to x$, $y_n \to y$, and $y_n \in F(x_n)$, together imply that $y \in F(x)$. When X is a Banach space we say that $F: X \to 2^X$ is weakly upper semicontinuous if F is upper semicontinuous in X endowed with the weak topology. Also, $F: X \to 2^X$ is said to have weakly sequentially closed graph if the graph of F is sequentially closed w.r.t. the weak topology of X.

Definition 1.2. Let X be a Banach space and let ψ be a measure of weak noncompactness on X. A multivalued mapping $B: D(B) \subseteq X \to 2^X$ is said to be ψ -condensing if it maps bounded sets into bounded sets and $\psi(B(S)) < \psi(S)$ whenever S is a bounded subset of D(B) such that $\psi(S) > 0$.

We recall the following extension of the Arino-Gautier-Penot fixed point theorem for multivalued mappings. For a proof we refer to [15, Theorem 2.2.].

Theorem 1.1. Let X be a metrizable locally convex linear topological space and let C be a weakly compact, convex subset of X. Suppose $F: C \to C(C)$ has a weakly sequentially closed graph. Then F has a fixed point; here C(C) denotes the family of nonempty, closed, convex subsets of C.

2. Fixed point theorems

We start with the following Sadovskii type fixed point theorem for multivalued mappings with weakly sequentially closed graph.

Theorem 2.1. Let X be a Banach space, ψ a regular set additive measure of weak noncompactness on X and C a nonempty closed convex subset of X. Suppose $F: C \rightarrow C(C)$ is ψ -condensing, F(C) is bounded and F has a weakly sequentially closed graph. Then F has a fixed point.

Proof. Choose a point $x_0 \in C$ and let

 $\mathcal{F} = \{A \subseteq C, \ \overline{co}(A) = A, \ x_0 \in A \text{ and } F(x) \in C(A) \text{ for all } x \in A\}.$ The set \mathcal{F} is nonempty since $C \in \mathcal{F}$. Set

$$M = \bigcap_{A \in \mathcal{F}} A$$

and

$$K = \overline{co}(F(M) \cup \{x_0\}).$$

Clearly M is a closed convex subset of C and $F(x) \in C(M)$ for all $x \in M$. Thus $M \in \mathcal{F}$. This implies $K \subseteq M$. Hence $F(K) \subseteq F(M) \subseteq K$. Consequently $K \in \mathcal{F}$. Hence $M \subseteq K$. As a result K = M. Using the properties of the measure of weak noncompactness we get

$$\psi(M) = \psi(K) = \psi(\overline{co}(F(M) \cup \{x_0\})) = \psi(FM),$$

which yields that M is weakly compact. Since $F: M \to C(M)$, then the result follows from Theorem 1.1.

Remark 2.1. Theorem 2.1 is the mutivalued version of [11, Theorem 12] and [13, Theorem 2]. It is also an extension of [14, Theorem 2.2] and [15, Theorem 2.3].

Our next result is the following fixed point theorem of Leray-Schauder type.

Theorem 2.2. Let X be a Banach space and ψ a regular set additive measure of weak noncompactness on X. Let Q and C be closed, convex subsets of X with $Q \subseteq C$. In addition, let U be a weakly open subset of Q with $0 \in U$. Suppose $F: \overline{U^w} \to C(C)$ has a weakly sequentially closed graph , $F(\overline{U^w})$ is bounded and F is a ψ -condensing map; here C(C) denotes the family of nonempty, closed, convex subsets of C. Also assume U is weakly open in C. Then either

$$F has a fixed point, (2.7)$$

or

there is a point
$$u \in \partial_Q U$$
 and $\lambda \in (0,1)$ with $u \in \lambda F u$; (2.8)

here $\partial_Q U$ is the weak boundary of U in Q.

Proof. Suppose (2.8) does not occur and F does not have a fixed point on $\partial_Q U$ (otherwise we are finished since (2.7) occurs). Let

$$M = \{ x \in U^w : x \in \lambda Fx \text{ for some } \lambda \in [0, 1] \}.$$

The set M is nonempty since $0 \in U$. Also M is weakly sequentially closed. Indeed let (x_n) be sequence of M which converges weakly to some $x \in \overline{U^w}$ and let (λ_n) be a sequence of [0,1] satisfying $x_n \in \lambda_n F x_n$. Then for each n there is a $z_n \in F x_n$ with $x_n = \lambda_n z_n$. By passing to a subsequence if necessary, we may assume that (λ_n) converges to some $\lambda \in [0,1]$ and $\lambda_n \neq 0$ for all n. This implies that the sequence (z_n) converges to some $z \in \overline{U^w}$ with $x = \lambda z$. Since F has a weakly sequentially closed graph then $z \in F(x)$. Hence $x \in \lambda F x$ and therefore $x \in M$. Thus M is weakly sequentially closed. We now claim that M is relatively weakly compact. Suppose $\psi(M) > 0$. Since $M \subseteq co(F(M) \cup \{0\})$ then

$$\psi(M) \le \psi(co(F(M) \cup \{0\})) = \psi(F(M)) < \psi(M),$$

which is a contradiction. Hence $\psi(M) = 0$ and therefore $\overline{M^w}$ is weakly compact. This proves our claim. Now let $x \in \overline{M^w}$. Since $\overline{M^w}$ is weakly compact then there is a sequence (x_n) in M which converges weakly to x. Since M is weakly sequentially closed we have $x \in M$. Thus $\overline{M^w} = M$. Hence M is weakly closed and therefore weakly compact. From our assumptions we have $M \cap \partial_Q U = \emptyset$. Since X endowed with the weak topology is a locally convex space then there exists a weakly continuous mapping $\rho: \overline{U^w} \to [0, 1]$ with $\rho(M) = 1$ and $\rho(\partial_Q U) = 0$ (see [9]). Let

$$J(x) = \begin{cases} \rho(x)F(x), & x \in \overline{U^w}, \\ 0, & x \in C \setminus \overline{U^w}. \end{cases}$$

Clearly $J: C \to C(C)$ has a weakly sequentially closed graph since F has a sequentially closed graph. Moreover, for any $S \subseteq C$ we have

$$J(S) \subseteq co(F(S \cap U) \cup \{0\}).$$

This implies that

$$\psi(J(S)) \le \psi(co(F(S \cap U) \cup \{0\})) = \psi(F(S \cap U)) \le \psi(F(S)) < \psi(S).$$

if $\psi(S) > 0$. Thus $J: C \to C(C)$ is ψ -condensing. By Theorem 2.1 there exists $x \in C$ such that $x \in J(x)$. Now $x \in U$ since $0 \in U$. Consequently $x \in \rho(x)F(x)$ and so $x \in M$. This implies $\rho(x) = 1$ and so $x \in F(x)$.

Remark 2.2. Theorem 2.2 extends [15, Theorem 2.4], [15, Theorem 2.5] and [14, Theorem 2.3]. In Theorem 2.2 above notice $\partial_Q U = \partial_C U$ (see [2] for a discussion). We note that the condition U is weakly open in C was omitted in Theorem 2.6 in [1] and in Theorem 2.1 (and the other results in Section 2) in [16].

Now we present a fixed point theorem of Furi-Pera type for weakly compact multivalued mappings with weakly sequentially closed graph.

Theorem 2.3. Let X be a reflexive separable Banach space, C a closed bounded convex subset of X, and Q a closed convex subset of C with $0 \in Q$. Also, assume $F: Q \to C(C)$ has a weakly sequentially closed graph. In addition, assume that the following condition is satisfied:

if $\{(x_j, \lambda_j)\}_{j=1}^{\infty}$ is a sequence in $Q \times [0, 1]$ with $x_j \to x \in \partial Q, \lambda_j \to \lambda$ and $x \in \lambda F(x), 0 \leq \lambda < 1$, then $\lambda_j F(x_j) \subseteq Q$ for j sufficiently large; here ∂Q is the weak boundary of Q relative to C.

Then F has a fixed point in Q.

Proof. Since X' is separable (note X reflexive and separable implies X' separable) and Q is weakly compact (note that a closed convex bounded subset of a reflexive Banach space is weakly compact) we know from [12] that there exists a weakly continuous retraction $r: X \to Q$. Consider

$$B = \{ x \in X : x \in Fr(x) \}.$$

We first show that $B \neq \emptyset$. To see this, consider $rF: Q \to C(Q)$. Clearly rF has a weakly sequentially closed graph, since F has a weakly sequentially closed graph and r is weakly continuous. Also rF(Q) is relatively weakly compact since F(Q)is relatively weakly compact and r is weakly continuous. Applying Theorem 2.1 we infer that there exists $y \in Q$ with $y \in rF(y)$. Let $z \in F(y)$ such that y = r(z). Then $z \in F(y) = Fr(z)$. Thus $z \in B$ and $B \neq \emptyset$. In addition B is weakly sequentially closed, since Fr has a weakly sequentially closed graph. Moreover, since $B \subseteq Fr(B) \subseteq F(Q)$ then B is relatively weakly compact. Now let $x \in \overline{B^w}$. Since $\overline{B^w}$ is weakly compact then there is a sequence (x_n) of elements of B which converges weakly to some x. Since B is weakly sequentially closed then $x \in B$. Thus, $\overline{B^w} = B$. This implies that Bis weakly compact. We now show that $B \cap Q \neq \emptyset$. Suppose $B \cap Q = \emptyset$. Now since Xis separable we know from [8, 17] (note C is weakly compact) that the weak topology

on C is metrizable, let d^* denote the metric. With respect to (C, d^*) note Q is closed, B is compact, $B \cap Q = \emptyset$ so there exists $\epsilon > 0$ with

$$d^*(B,Q) = \inf\{d^*(x,y) : x \in B, y \in Q\} > \epsilon.$$

For $i \in \{1, 2...\}$, let $U_i = \{x \in C : d^*(x, Q) < \frac{\epsilon}{i}\}$. For each $i \in \{1, 2...\}$ fixed, U_i is open with respect to d^* and so U_i is weakly open in C. Also

$$\overline{U_i^w} = \overline{U_i^{d^*}} = \{ x \in C : d^*(x, Q) \le \frac{\epsilon}{i} \} \quad \text{and} \quad \partial U_i = \{ x \in C : d^*(x, Q) = \frac{\epsilon}{i} \}.$$

Keeping in mind that $\overline{U_i^w} \cap B = \emptyset$, Theorem 2.2 (with F = Fr, $U = U_i$, Q = C) guarantees that there exists $y_i \in \partial Q$ and $\lambda_i \in (0, 1)$ with $y_i \in \lambda_i Fr(y_i)$. Note since $y_i \in \partial U_i$ that $\lambda_i Fr(y_i) \not\subseteq Q$. We now consider

$$D = \{ x \in X : x \in \lambda Fr(x), \text{ for some } \lambda \in [0, 1] \}.$$

The same reasoning as above implies that D is weakly compact. Then, up to a subsequence, we may assume that $\lambda_i \to \lambda^* \in [0, 1]$ and $y_i \to y^* \in \partial Q$. Since F has a weakly sequentially closed graph then $y^* \in \lambda^* Fr(y^*)$. Note $\lambda^* \neq 1$ since $B \cap Q = \emptyset$. From the assumption in the statement of Theorem 2.3 it follows that $\lambda_i Fr(y_i) \subseteq Q$ for j sufficiently large, which is a contradiction. Thus $B \cap Q \neq \emptyset$, so there exists $x \in Q$ with $x \in Fr(x)$, i.e., $x \in Fx$.

Remark 2.3. Theorem 2.3 extends [15, Theorem 2.6] and [14, Theorem 2.4]. We note that one of the conditions in Theorem 2.10 in [1] is stated incorrectly and that the proof there has to be adjusted slightly (see the proof of Theorem 2.3 above). We also refer the reader to [3].

The following lemma was proved in [1]. We give here the proof for the convenience of the reader.

Lemma 2.1. Let X be a Banach space and $B: X \to X$ a k-Lipschitzian map, that is

$$\forall x, y \in X, \quad \|Bx - By\| \le k\|x - y\|.$$

In addition, suppose that B is weakly sequentially continuous. Then for each bounded subset S of X we have

$$w(BS) \le kw(S);$$

here, w is the De Blasi measure of weak noncompactness.

Proof. Let S be a bounded subset of X and r > w(S). There exist $0 \le r_0 < r$ and a weakly compact subset K of X such that $S \subseteq K + B_{r_0}$. Now we show that

$$BS \subseteq BK + B_{kr_0} \subseteq \overline{BK^w} + B_{kr_0}.$$
(2.9)

To see this let $x \in S$. Then there is a $y \in K$ such that $||x - y|| \leq r_0$. Since B is k-Lipschizian then $||Bx - By|| \leq k||x - y|| \leq kr_0$. This proves (2.9). Further, since B is weakly sequentially continuous, then the Eberlein-Šmulian theorem [8, p. 430] implies that $\overline{BK^w}$ is weakly compact. Consequently

$$w(BS) \le kr_0 \le kr. \tag{2.10}$$

Letting $r \to w(S)$ we get

$$w(BS) \le kw(S). \tag{2.11}$$

Now we are is a position to prove our next result.

Theorem 2.4. Let Q and C be closed convex subsets of a Banach space X with $Q \subseteq C$. In addition, let U be a weakly open subset of Q with $0 \in U$, $A: \overline{U^w} \to C(X)$ and $B: X \to X$ are two mappings satisfying :

- (i) $A(\overline{U^w})$ is relatively weakly compact and A has a weakly sequentially closed graph,
- (ii) B is a weakly sequentially continuous nonexpansive map,
- (iii) if (x_n) is a sequence of M such that $((I B)x_n)$ is weakly convergent then the sequence (x_n) has a convergent subsequence,
- (iv) $Ax + Bx \subseteq C$ for all $x \in \overline{U^w}$.

Also assume U is weakly open in C. Then either

$$A + B has a fixed point,$$
 (2.12)

or

there is $u \in \partial_Q U$ and $\lambda \in (0,1)$ with $u \in \lambda(A+B)u$; (2.13)

here $\partial_Q U$ is the weak boundary of U in Q.

Proof. Let $\mu \in (0,1)$ and $F_{\mu} := \mu A + \mu B$. Keeping in mind that A has closed convex values and using assumption (iv) we infer that $F_{\mu}(x) \subseteq C$ for all $x \in \overline{U^w}$, since $0 \in U$. Now we show that $F_{\mu} : \overline{U^w} \to C(C)$ is w-condensing; here w is the De Blasi measure of weak noncompactness. To see this let S be a bounded subset of $\overline{U^w}$. Using the homogeneity and the subadditivity of the De Blasi measure of weak noncompactness we obtain

$$w(F_{\mu}(S)) \le w(\mu AS + \mu BS) \le \mu w(AS) + \mu w(BS).$$

$$(2.14)$$

Taking into account that A is weakly compact and using Lemma 2.1 we deduce that

$$w(F_{\mu}(S)) \le \mu w(S) < w(S),$$
 (2.15)

whenever w(S) > 0. This proves that F_{μ} is *w*-condensing. Next suppose (2.13) does not occur. If there exists a $u \in \partial_Q U$ and $\lambda \in (0, 1)$ with $u \in \lambda F_{\mu} u$, then $u \in \lambda \mu A u + \lambda \mu B u$ which is a impossible since $\lambda \mu \in (0, 1)$. By Theorem 2.2 there exists $x_{\mu} \in \overline{U^w}$ such that $x_{\mu} \in F_{\mu}(x_{\mu})$. Now choose a sequence $\{\mu_n\}$ in (0, 1) such that $\mu_n \to 1$ and consider the corresponding sequence $\{x_n\}$ of elements of $\overline{U^w}$ satisfying

$$x_n \in F_{\mu_n}(x_n) = \mu_n A x_n + \mu_n B x_n. \tag{2.16}$$

Hence

$$x_n - \mu_n B x_n \in \mu_n A x_n. \tag{2.17}$$

Using the fact that $A(\overline{U^w})$ is weakly compact and passing eventually to a subsequence, we may assume that $\{x_n - \mu_n B x_n\}$ converges weakly to some $y \in \overline{U^w}$. Since $\{x_n\}$ is a sequence in $\overline{U^w}$ then it is norm bounded and so is $\{Bx_n\}$. Consequently

$$\|(x_n - Bx_n) - (x_n - \mu_n Bx_n)\| = (1 - \mu_n) \|Bx_n\| \to 0.$$
(2.18)

253

x

As a result

$$a_n - Bx_n \rightharpoonup y.$$
 (2.19)

By hypothesis (iii) the sequence $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ which converges weakly to some $x \in \overline{U^w}$. The weak sequential continuity of B implies y = x - Bx. Now since A has a weakly sequentially closed graph, the use of (2.17) gives $x - Bx \in Ax$, i.e., $x \in Bx + Ax$.

Remark 2.4. We note that the condition U is weakly open in C was omitted in Theorem 2.9 in [1].

References

- R.P. Agarwal, D. O'Regan, M.A. Taoudi, Browder-Krasnoselskii type fixed point theorems in Banach spaces, Fixed Point Theory Appl. 2010(2010), Article ID 243716, 20 pp.
- [2] R.P. Agarwal, D. O'Regan, Fixed point theory for k-CAR sets, J. Math. Anal. Appl., 251(2000), no. 1, 13-27.
- [3] R.P. Agarwal, D. O'Regan, Fixed point theory for weakly sequentially upper-semicontinuous maps with applications to differential inclusions, Nonlinear Oscillations, 5(2002), no. 3, 277-286.
- [4] O. Arino, S. Gautier and J. P. Penot, A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations, Funkc. Ekvac., 27(1984), 273-279.
- [5] J. Banas, J. Rivero, On measures of weak noncompactness, Ann. Mat. Pura Appl., 151(1988), 213-224.
- [6] D. Boyd, J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969), 458-464.
- [7] F.S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. Roum., 21(1977), 259-262.
- [8] N. Dunford, J.T. Schwartz, *Linear Operators, Part I: General Theory*, Interscience Publishers, New York, 1958.
- [9] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [10] K. Floret, Weakly compact sets, Lecture Notes in Mathematics, 801, Springer, Berlin, 1980.
- [11] J. Garcia-Falset, Existence of fixed points and measure of weak noncompactness, Nonlinear Anal., 71(2009), 2625-2633.
- [12] G.J.O. Jameson, An elementary proof of the Arens and Borsuk extension theorems, J. London Math. Soc., 14(1976), 364-368.
- [13] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discussiones Math.-Diff. Incl., 15(1995), 15-20.
- [14] D. O'Regan, Fixed point theory for weakly contractive maps with applications to operator inclusions in Banach spaces relative to the weak topology, Zeitschrift für Analysis und ihre Anwendungen, 17(1998), 282-296.
- [15] D. O'Regan, Fixed point theorems for weakly sequentially closed maps, Arch. Math., 36(2000), no. 1, 61-70.
- [16] D. O'Regan, M.A. Taoudi, Fixed point theorems for the sum of two weakly sequentially continuous mappings, Nonlinear Anal., 73(2010), no. 2, 283-289.
- [17] E. Zeidler, Nonlinear Functional Analysis and its Applications, I : Fixed Point Theorems, Springer-Verlag, New York, 1986.

Received: May 3, 2010; Accepted: July 6, 2010.