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1. Introduction

The theory of modular spaces was initiated by Nakano [11] in connection with the
theory of order spaces which was further generalized by Musielak and Orlicz [9] (see
also [10]). The fixed point theory for nonlinear mappings is an important subject
of nonlinear functional analysis and is widely applied to nonlinear integral equations
and differential equations. The study of this theory in the context of modular func-
tion spaces was initiated by Khamsi [5] (see also [1] and [4]). Kumam [7] obtained
some fixed point theorems for nonexpansive mappings in arbitrary modular spaces.
Recently, Kutabi and Latif [8] studied fixed points of multivalued maps in modular
function spaces. The objective of this paper is to prove some fixed point theorems for
expansive type mappings in modular function space. Due to this, some basic facts
and notations about modular spaces are recalled from [6].

Definition 1.1. Let X be an arbitrary vector space. A functional ρ : X → [0,∞] is
called a modular if for any arbitrary x, y in X

(m1) ρ(x) = 0 if and only if x = 0.
(m2) ρ(αx) = ρ(x) for every scalar α with |α| = 1.
(m3) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1, α ≥ 0, β ≥ 0.

If (m3) is replaced by ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1, α ≥ 0, β ≥ 0 then ρ
is called convex modular.
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The vector space Xρ given by Xρ = {x ∈ X; ρ(λx) → 0 as λ → 0} is called a modular
space. Generally, the modular ρ is not sub-additive and therefore does not behave as
a norm or a distance. One can associate to a modular an F−norm.
The modular space Xρ can be equipped with an F−norm defined by

‖x‖ρ = inf{α > 0; ρ(
x

α
) ≤ α}.

When ρ is convex modular, then ‖x‖ρ = inf{α > 0; ρ( x
α ) ≤ 1} defines a norm on the

modular space Xρ which is called the Luxemburg norm.
Define the ρ−ball, Bρ(x, r), centered at x ∈ Xρ with radius r as

Bρ(x, r) = {h ∈ Xρ; ρ(x− h) ≤ r}.
A point x ∈ Xρ is called a fixed point of T : Xρ → Xρ if T (x) = x.

Definition 1.2. A function modular is said to satisfy the ∆2−type condition, if there
exists K > 0 such that for any x ∈ Xρ, we have ρ(2x) ≤ Kρ(x).

Definition 1.3. Let Xρ be a modular space. The sequence {xn} ⊂ Xρ is called:
(t1) ρ−convergent to x ∈ Xρ, if ρ(xn − x) → 0 as n →∞.
(t2) ρ−Cauchy, if ρ(xn − xm) → 0 as n and m →∞.

Note that, ρ−convergence does not imply ρ-Cauchy since ρ does not satisfy the
triangle inequality. In fact, this will happen if and only if ρ satisfies the ∆2−condition.
We know that [1] the norm and modular convergence are also the same when we deal
with the ∆2-type condition. In the sequel, suppose the modular function ρ is convex
and satisfies the ∆2-type condition. We also state the following definition and results
given in [2] ( see also, [3] ).

Definition 1.4. The growth function wρ of a function modular ρ is defined as:

wρ(t) = sup
{

ρ(tx)
ρ(x)

, x ∈ Xρ\{0}
}

for all 0 ≤ t < ∞.

Observe that wρ(t) ≤ 1 for all t ∈ [0, 1].

Lemma 1.5. The growth function ω has the following properties:
(g1) ω(t) < ∞, for each t ∈ [0,∞).
(g2) ω : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is contin-

uous.
(g3) ω(αβ) ≤ ω(α)ω(β); for all α, β ∈ [0,∞).
(g4) ω−1(α)ω−1(β) ≤ ω−1(αβ); for all αβ ∈ [0,∞), where ω−1 is the inverse

function of ω.

The following lemma shows that the growth function can be used to give an upper
bound for ‖x‖ρ for each x ∈ Xρ.

Lemma 1.6. Let ρ be a convex modular function satisfying the ∆2-type condition.
Then

‖x‖ρ ≤
1

ω−1(
1

ρ(x)
)
, whenever x ∈ Xρ.
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2. Fixed point for expansive type mappings

In this section, some fixed point theorems for expansive type mappings are proved
as follows:

Theorem 2.1. Let Xρ be a modular function space. If a surjective mapping T :
Xρ → Xρ satisfies

ρ(Tx− Ty) ≥ a1ρ(x− y) + a2ρ(x− Tx) + a3ρ(y − Ty)

for all x, y ∈ Xρ with x 6= y, where a1, a2, a3 ≥ 0, a2 < 1 and a1 + a2 + a3 > 1. Then
T has a fixed point in Xρ.

Proof. Suppose x0 is an arbitrary point of Xρ. Since T is surjective, there is
x1 ∈ Xρ such that x0 = Tx1. Also,there exists x2 ∈ Xρ such that x1 = Tx2.
Continuing this process, having chosen xn in Xρ, we can choose xn+1 in Xρ such that
xn = Txn+1. Assume that for any n = 0, 1, · · · , xn−1 6= xn . Otherwise, if there is
n0 such that xn0−1 = xn0 = Txn0−1, then xn0−1 becomes a fixed point of T and the
result is proved. Now

ρ(xn−1 − xn) = ρ(Txn − Txn+1)
≥ a1ρ(xn − xn+1) + a2ρ(xn − Txn) + a3ρ(xn+1 − Txn+1)
= a1ρ(xn − xn+1) + a2ρ(xn − xn−1) + a3ρ(xn+1 − xn),

which further implies that (1 − a2)ρ(xn−1 − xn) ≥ (a1 + a3)ρ(xn − xn+1). Thus

ρ(xn − xn+1) ≤ hρ(xn−1 − xn), where h =
1− a2

a1 + a3
< 1. By continuing this process

we get that ρ(xn − xn+1) ≤ hnρ(x0 − x1). Hence
1

hnρ(x0 − x1)
≤ 1

ρ(xn − xn+1)
.

Since ρ is a convex function modular satisfying the ∆2−type condition we have

‖xn − xn+1‖ρ ≤
1

w−1(
1

ρ(xn − xn+1)
)
.

Since
w−1(

1
hnρ(x0 − x1)

) ≤ w−1(
1

ρ(xn − xn+1)
)

from (g3) we obtain

w−1(
1
h

)n)w−1(
1

ρ(x0 − x1)
) ≤ w−1(

1
ρ(xn − xn+1)

).

Therefore
‖xn − xn+1‖ρ ≤

1

w−1(
1
h

)nw−1(
1

ρ(x0 − x1)
)
.

Since w(1) = 1 and h < 1 then 1 < w−1( 1
h ). Hence {xn} is a Cauchy sequence

in (Xρ, ‖.‖ρ). Since (Xρ, ‖.‖ρ) is complete so there exists x ∈ Xρ such that ‖xn −
x‖ρ → 0. Moreover, ∆2−type condition implies the equivalence of norm and modular
convergence. Therefore ρ(xn − x) → 0 as n →∞. Since T is surjective on Xρ, there
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exists j in Xρ such that x = T (j). Without loss of generality, for any n we assume
that xn 6= x. Thus

ρ(xn − x) = ρ(Txn+1 − Tj)
≥ a1ρ(xn+1 − j) + a2ρ(xn+1 − xn) + a3ρ(j − Tj)
= a1ρ(xn+1 − j) + a2ρ(xn+1 − xn) + a3ρ(j − x).

By taking limit as n → ∞, we have 0 ≥ (a1 + a3)ρ(j − x), which implies that
ρ(j − x) = 0. Hence j = x = Tj and j is a fixed point of T in Xρ. �

Theorem 2.2. Let Xρ be a modular function space and suppose that mapping T :
Xρ → Xρ is surjective and satisfies

ρ(T px− T qy) ≥ hρ(x− y), for all x, y ∈ Xρ

where p, q are the integers and h is constant with h > 1. Then T has a unique fixed
point.

Proof. Suppose x0 is an arbitrary point of Xρ. Since T is surjective, there is
x1 ∈ Xρ such that x0 = Tx1. Also there exists x2 ∈ Xρ such that x1 = Tx2.
Continuing this process, having chosen xn in Xρ,we can choose xn+1 in Xρ such that
xn = Txn+1. Take

y0 = x0,
y2n−1 = x(n−1)(p+q)+q = T p(xn(p+q)) and

y2n = xn(p+q) = T q(xn(p+q)+q)

Note that, {yn} is a Cauchy sequence in Xρ because

ρ(y2n−1 − y2n) = ρ(T p(xn(p+q))− T q(xn(p+q)+q))
≥ hρ(xn(p+q) − xn(p+q)+q)
= hρ(y2n − y2n+1)

which gives that ρ(y2n − y2n+1) ≤ 1
hρ(y2n−1 − y2n). Similarly, ρ(y2n−1 − y2n) ≤

1
hρ(y2n−2 − y2n−1). Thus ρ(yn+2 − yn+1) ≤ 1

hρ(yn+1 − yn). Since h > 1 we have
that {yn} is a contractive sequence. Following the similar arguments to those given
in Theorem 2.1, we conclude that {yn} is a Cauchy sequence in Xp. Since Xρ is
complete there, is y ∈ Xρ such that yn → y as n →∞. As, T is surjective on Xρ, one
obtains j ∈ Xρ such that y = T pj. Moreover

ρ(y − y2n) = ρ(T pj − T q(xn(p+q)+q))
≥ hρ(j − xn(p+q)+q)) = hρ(j − y2n+1).

Letting n →∞, we have 0 ≥ hρ(j−y). Therefore j = y = T p(j). Also, j = y = T q(j).
To prove uniqueness, assume that w ∈ Xρ is a common fixed point of T p and T q then

ρ(y − w) = ρ(T py − T qw) ≥ hρ(y − w)

which implies that y = w. Finally, from Ty = T (T py) = T p(Ty), and Ty =
T (T qy) = T q(Ty), we conclude that y is a unique fixed point of T . �

Theorem 2.3. Let Xρ be a modular function space. If a surjective mapping T :
Xρ → Xρ satisfies

ρ(Tx− Ty) ≥ a1[ρ(x− Tx) + ρ(y − Ty)] + a2ρ(x− y)) + a3ρ(x− Ty)
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for all x, y ∈ Xρ with x 6= y, where a1, a2, a3 ≥ 0, a1 + a2 + a3 > 1 and 2a1 + a2 > 1.
Then T has a fixed point in Xρ.

Proof. Suppose x0 is an arbitrary point of Xρ. Since T is surjective, there is
x1 ∈ Xρ such that x0 = Tx1. Moreover, there exists x2 ∈ Xρ such that x1 = Tx2.
Continuing this process, having chosen xn in Xρ we can choose xn+1 in Xρ such that
xn = Txn+1. Assume, xn−1 6= xn, for all n = 0, 1, · · · . Otherwise, if there is n0 such
that xn0−1 = xn0 = Txn0−1, then xn0−1 is a fixed point of T and the result is proved.
We have

ρ(xn−1 − xn) = ρ(Txn − Txn+1)
≥ a1[ρ(xn − xn−1) + ρ(xn+1 − xn)] + a2ρ(xn − xn+1)

+a3ρ(xn − xn)

Thus
ρ(xn+1 − xn) ≤ hρ(xn−1 − xn), where h =

1− a1

a1 + a2
< 1.

Continuing this process we obtain that ρ(xn+1 − xn) ≤ hnρ(x0 − x1). Following the
similar arguments to those given in Theorem 2.1, it can be shown that {xn} is a
Cauchy sequence in (Xρ, ‖.‖ρ). Since (Xρ, ‖.‖ρ) is complete, there exists x ∈ Xρ such
that ‖xn−x‖ρ → 0. Also ∆2−condition implies the equivalence of norm and modular
convergence. Therefore ρ(xn − x) → 0 as n →∞. Since T is surjective on Xρ, there
exists j in Xρ such that x = T (j). Without loss of generality, we assume that xn 6= x,
for any n. Thus

ρ(xn − x) = ρ(Txn+1 − Tj)
≥ a1[ρ(xn+1 − xn) + ρ(j − x)] + a2ρ(xn+1 − j)

+a3ρ(xn+1 − x).

By taking limit as n → ∞, we obtain 0 ≥ (a1 + a2)ρ(j − x), which implies that
ρ(j − x) = 0. Hence j = x = Tj and j is a fixed point of T in Xρ. �

Theorem 2.4. Let Xρ be a modular function space. If a surjective mapping T :
Xρ → Xρ satisfies

ρ(Tx− Ty) ≥ a1ρ(x− Tx) + a2 max{ρ(y − Ty) + ρ(x− y), ρ(x− Ty)}
for all x, y ∈ Xρ with x 6= y, where a1, a2 ≥ 0 and a1 + 2a2 > 1. Then T has a fixed
point in Xρ.

Proof. Suppose x0 is an arbitrary point of Xρ. Since T is surjective, there is
x1 ∈ Xρ such that x0 = Tx1. Moreover, there exists x2 ∈ Xρ such that x1 = Tx2.
Continuing this process, having chosen xn in Xρ, we can choose xn+1 in Xρ such that
xn = Txn+1. Assume, xn−1 6= xn, for all n = 0, 1, · · · . Otherwise, if there is n0 such
that xn0−1 = xn0 = Txn0−1, then xn0−1 becomes a fixed point of T and the result is
proved.

ρ(xn−1 − xn) = ρ(Txn − Txn+1)
≥ a1ρ(xn − xn−1) + a2 max{2ρ(xn+1 − xn), ρ(xn − xn)}.

Thus
ρ(xn−1 − xn) ≥ a1ρ(xn − xn−1) + 2a2ρ(xn+1 − xn),
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which implies that

ρ(xn+1 − xn) ≤ 1− a1

2a2
ρ(xn−1 − xn).

Thus
ρ(xn+1 − xn) ≤ hρ(xn−1 − xn), where h =

1− a1

2a2
< 1.

Continuing this process we obtain that ρ(xn+1 − xn) ≤ hnρ(x0 − x1). Following the
similar arguments to those given in Theorem 2.1, it can be shown that {xn} is a
Cauchy sequence in (Xρ, ‖.‖ρ). Since (Xρ, ‖.‖ρ) is complete so there exists x ∈ Xρ

such that ‖xn − x‖ρ → 0. Moreover, ∆2−condition implies the equivalence of norm
and modular convergence. Therefore ρ(xn − x) → 0 as n →∞. Since T is surjective
on Xρ, there exists j in Xρ such that x = T (j). Without loss of generality, we assume
that xn 6= x, for any n. Thus

ρ(xn − x) = ρ(Txn+1 − Tj)
≥ a1ρ(xn+1 − Txn+1) + a2 max{ρ(j − Tj) + ρ(xn+1 − j), ρ(xn+1− Tj)}
≥a1(xn+1 − xn) + a2 max{ρ(j − x) + ρ(xn+1 − j), ρ(xn+1 − x)},

where by taking limit as n → ∞, we obtain 0 ≥ 2a2ρ(j − x), which implies that
ρ(j − x) = 0. Hence j = x = Tj. �
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