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Abstract. We consider positive solutions to second-order four-point boundary value problem{
x′′(t) + f(t, x, x′) = 0, t ∈ (0, 1)

x(0) = αx(η), x(1) = βx(ξ)

By using fixed point theorem, we present sufficient conditions which ensure the existence of three

positive solutions to this problem. It’s necessary to point out that it’s the first time that positive

solutions to this problem were established for the general case η, ξ ∈ (0, 1). An examples is given to
illustrate the main results.
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1. Introduction

In this paper, we consider the existence of positive solutions of the following four-
point boundary value problem

x′′(t) + f(t, x, x′) = 0, t ∈ (0, 1) (1.1)

x(0) = αx(η), x(1) = βx(ξ) (1.2)

under following conditions
C1) f : [0, 1]× [0,+∞)× (−∞,+∞) → [0,+∞) is continuous.

C2) η, ξ ∈ (0, 1) with 0 < α <
1

1− η
, 0 < β <

1
ξ
, (1− βξ)(1− α) + αη(1− β) > 0.

Multi-point boundary-value problems for ordinary differential equations arise in
different areas of applied mathematics and physics. Recently, the existence and mul-
tiplicity of positive solutions for nonlinear ordinary differential equations and differ-
ence equations have received a great deal of attentions. To identify a few, we refer
the reader to [1− 12] and references along this line.
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As for four point boundary value problem, Liu [8] obtained the existence of one or
two positive solutions for the problem:{

u′′(t) + h(t)f(u) = 0, t ∈ (0, 1)
u(0) = αu(η), u(1) = βu(ξ)

under assumptions that
C3) f ∈ C([0,+∞), [0,+∞));
C4) h ∈ C([0, 1], [0,+∞)) and there exists t0 ∈ [0, 1] such that h(t0) > 0;

C5) η ≤ ξ, 0 < α <
1

1− η
, 0 < β <

1
ξ
,Λ := (1− βξ)(1− α) + αη(1− β) > 0.

In [9], the authors obtained at least three positive solutions for the problem:{
u′′(t) + q(t)f(t, u, u′) = 0, t ∈ (0, 1)
u(0) = αu(η), u(1) = βu(ξ)

Recently, second order four point boundary value problems still grasp people’s atten-
tion, see [10, 11, 12]. However all the above works [8-12] are all established under the
condition η ≤ ξ. We see in section 2 that the case η ≥ ξ may cause some difficulties in
discussing the positive solutions for second order four point boundary value problems
(bvps). In this paper,we overcome this difficulties and extend existence results to
arbitrary η, ξ ∈ (0, 1). In this sense, we established some general results for positive
solutions of second order four point bvps and extend the main results of [8-12].

2. Some lemmas

For the convenience of the reader, we present here the necessary definitions from
cone theory in Banach spaces. This definitions can be found in recent literature.
Definition 2.1 Let E be a real Banach space over R. A nonempty convex closed set
P ⊂ E is said to be a cone provided that (i) au ∈ P , for all u ∈ P, a ≥ 0 and (ii)
u, −u ∈ P implies u = 0.
Definition 2.2 An operator is called completely continuous if it is continuous and
maps bounded sets into pre-compact sets.
Definition 2.3 The map α is said to be a nonnegative continuous convex functional
on cone P of a real Banach space E provided that α : P → [0, +∞) is continuous
and α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y), for all x, y ∈ P and t ∈ [0, 1].
Definition 2.4 The map β is said to be a nonnegative continuous concave functional
on the cone P of a real Banach space E provided that β : P → [0, +∞) is continuous
and β(tx+ (1− t)y) ≥ tβ(x) + (1− t)β(y), for all x, y ∈ P and t ∈ [0, 1].

We introduce a fixed-point theorem due to Avery and Peterson [7], which is the
main tool we use in this paper.

Let γ, θ be nonnegative continuous convex functionals on P, α be a nonnegative
continuous concave functional on P and ψ be a nonnegative continuous functional on
P. Then for positive numbers a, b, c and d, we define the following convex sets:

P (γ, d) = {x ∈ P |γ(x) < d},

P (γ, α, b, d) = {x ∈ P |b ≤ α(x), γ(x) ≤ d},
P (γ, θ, α, b, c, d) = {x ∈ P |b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d}
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and a closed set R(γ, ψ, a, d) = {x ∈ P |a ≤ ψ(x), γ(x) ≤ d}.
Lemma 2.1. Let P be a cone in a real Banach space E. Let γ, θ be non-

negative continuous convex functionals on P, α be a nonnegative continuous con-
cave functional on P and ψ be a nonnegative continuous functional on P satisfying
ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, such that for some positive numbers l and d we have

α(x) ≤ ψ(x), ‖x‖ ≤ lγ(x), for all x ∈ P (γ, d).

Suppose T : P (γ, d) → P (γ, d) is completely continuous and there exist positive
numbers a, b, c with a < b such that
(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);
(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;
(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.
Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b;ψ(x3) < a.

Lemma 2.2 Suppose y(t) ≥ 0 for t ∈ [0, 1]. Then problem

x′′(t) + y(t) = 0, t ∈ (0, 1) (2.1)

x(0) = αu(η), x(1) = βu(ξ) (2.2)
has no positive solution under one of following cases:

(1): α >
1

1− η
, or β >

1
ξ
;

(2): Λ = αη(1− β) + (1− α)(1− βξ) < 0.
Lemma 2.3. If Λ 6= 0 then, for y(t) ∈ C[0, 1], the problem (2.1),(2.2) has a unique

solution

x(t) =
∫ 1

0

G(t, s)y(s)ds, (2.3)

where G(t, s) is the Green’s function of problem{
−x′′(t) = 0, t ∈ (0, 1)
x(0) = αx(η), x(1) = βx(ξ)

which is given as follows:
For η ≤ ξ

G(t, s) =
1
Λ



(αη + t− αt)[(1− βξ) + (β − 1)s] + α(s− η)[(1− βξ) + (β − 1)t]
0 ≤ s ≤ η, t ≤ s

s[(1− βξ) + (β − 1)t]
0 ≤ s ≤ η, t ≥ s

(αη + t− αt)[(1− βξ) + (β − 1)s]
η ≤ s ≤ ξ, t ≤ s

(αη + s− αs)[(1− βξ) + (β − 1)t]
η ≤ s ≤ ξ, t ≥ s

(1− s)[αη + (1− α)t]
ξ ≤ s ≤ 1, t ≤ s

(αη + s− αs)[(1− βξ) + (β − 1)t] + β(ξ − s)[αη + (1− α)t]
ξ ≤ s ≤ 1, t ≥ s
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For η ≥ ξ

G(t, s) =
1
Λ



(αη + t− αt)[(1− βξ) + (β − 1)s] + α(s− η)[(1− βξ) + (β − 1)t]
0 ≤ s ≤ ξ, t ≤ s

s[(1− βξ) + (β − 1)t]
0 ≤ s ≤ ξ, t ≥ s

(1− s)[αη + (1− α)t] + α(s− η)[(1− βξ) + (β − 1)t]
ξ ≤ s ≤ η, t ≤ s

s[(1− βξ) + (β − 1)t] + β(ξ − s)[αη + (1− α)t]
ξ ≤ s ≤ η, t ≥ s

(1− s)[αη + (1− α)t]
η ≤ s ≤ 1, t ≤ s

(αη + s− αs)[(1− βξ) + (β − 1)t] + β(ξ − s)[αη + (1− α)t]
η ≤ s ≤ 1, t ≥ s

Proof. Considering the definition and properties of the Green’s function together
with boundary condition (2.2), we can get the expression of the Green’s function. �

Denote

G1(t, s) =
1
Λ

{
(αη + t− αt)[(1− βξ) + (β − 1)s] t ≤ s
(αη + s− αs)[(1− βξ) + (β − 1)t] t ≥ s

P (t) =
α

Λ

∫ η

0

[(1−βξ)+(β−1)t](s−η)y(s)ds+ β

Λ

∫ 1

ξ

[αη+(1−α)t](ξ−s)y(s)ds. (2.4)

Then (2.3) is given by

x(t) =
∫ 1

0

G1(t, s)y(s)ds+ P (t), 0 ≤ t ≤ 1. (2.5)

Remark 2.1 Considering the Green’s function is not symmetrical, we can give the
expressing of the solution by using a symmetrical kernel function and a linear function.
We claim that (2.5) is satisfied under arbitrary η, ξ ∈ (0, 1).In fact,if η ≤ ξ, P (t) is
given by (2.6). If η > ξ, by computation we get

P (t) =
α

Λ

∫ ξ

0

[(1− βξ) + (β − 1)t](s− η)y(s)ds

+
1
Λ

∫ η

ξ

[α(1− βξ + βt− t)(s− η) + β(αη + t− αt)(ξ − s)]y(s)ds

+
β

Λ

∫ 1

η

[αη + (1− α)t](ξ − s)y(s)ds

=
α

Λ

∫ η

0

[(1− βξ) + (β − 1)t](s− η)y(s)ds+
β

Λ

∫ 1

ξ

[αη + (1− α)t](ξ − s)y(s)ds.

Considering condition (C2) it’s easy to see

αη + (1− α)t ≥ 0, (1− βξ) + (β − 1)t ≥ 0, t ∈ [0, 1],

then we can easily prove that G(t, s) ≥ 0, if η ≤ ξ. But we also can see G(t, s) can
change sign on [0, 1] × [0, 1] if η > ξ even if (C2) is satisfied. In this case we prove
that the solution is positive mainly by (2.5).
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The following lemma is important in the proof of our main results.
Lemma 2.4 If y(t) ≥ 0, for all t ∈ [0, 1], if there exists t0 ∈ [0, 1] with y(t0) > 0

and condition (C2) holds, then:
(1) x(t) > 0, t ∈ [0, 1].
(2) x(t) ≥ δ max

0≤t≤1
x(t), t ∈ [0, 1], where

δ = min{β(1− ξ)
1− βξ

,
βξ

βξ + 1− β
,

αη

αη + 1− α
,
α(1− η)
1− αη

} ≤ 1.

(3) max
0≤t≤1

|x(t)| ≤ l max
0≤t≤1

|x′(t)|, where l =
αη

(1− α)δ
.

Proof. (1) For η ≤ ξ, from (2.5) we have

x(η) =
1
Λ

∫ η

0

[(1− βξ) + (β − 1)η][αη + (1− α)s]y(s)ds

+
η

Λ

∫ 1

η

[(1− βξ) + (β − 1)s]y(s)ds

+
α

Λ

∫ η

0

(s− η)[(1− βξ) + (β − 1)η]y(s)ds+
βη

Λ

∫ 1

ξ

(ξ − s)y(s)ds

=
1− βξ + (β − 1)η

Λ

∫ η

0

sy(s)ds+
η

Λ

∫ ξ

η

[(1− βξ) + (β − 1)s]y(s)ds

+
η

Λ

∫ 1

ξ

(1− s)y(s)ds > 0.

Similarly for η ≥ ξ we have

x(η) =
1− βξ + (β − 1)η

Λ

∫ ξ

0

sy(s)ds+
1
Λ

∫ η

ξ

[s(1− η) + βξ(η − s)]y(s)ds

+
η

Λ

∫ 1

η

(1− s)y(s)ds > 0.

So x(0) = αx(η) > 0.
Then we show x(1) > 0. Otherwise, suppose x(1) ≤ 0. Then x(ξ) ≤ 0. By

the concavity of x(t) and by
x(ξ)− x(0)

ξ − 0
≥ x(1)− x(0)

1− 0
, we get x(1) ≤ 1

ξ
x(ξ) +

ξ − 1
ξ

x(0) <
1
ξ
x(ξ), which means βξx(ξ) < x(ξ), thus βξ > 1. A contradiction to

β <
1
ξ
. So x(1) > 0. Considering x(0) > 0, x(1) > 0 together with the concavity of

x(t) we get the conclusion of (1).
(2) Let max

0≤t≤1
x(t) = x(t1), min

0≤t≤1
x(t) = x(t2). Obviously t2 = 0, or t2 = 1. We

distinguish two cases:
(i) t2 = 1. Here 0 < β ≤ 1, x(0) ≥ x(1). For t1 ≤ ξ < 1, we see

x(t1)− x(1)
t1 − 1

≥ x(ξ)− x(1)
ξ − 1

, so x(1) ≥ β(1− ξ)
1− βξ

x(t1).
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For 0 < ξ ≤ t1, similarly with above we can get

x(t1) ≤
t1x(ξ)− (t1 − ξ)x(0)

ξ
≤ t1x(ξ)− (t1 − ξ)x(1)

ξ
≤ t1 − β(t1 − ξ)

βξ
x(1).

Then x(1) ≥ βξ

βξ + 1− β
x(t1)

(ii) t2 = 0. Here 0 < α ≤ 1, x(0) ≤ x(1). For η ∈ (0, t1] we have

x(t1)− x(0)
t1

≤ x(η)− x(0)
η

, then x(0) ≥ αη

αη + 1− α
x(t1),

and for η ∈ [t1, 1) we get

x(t1) ≤
(1− t1)x(η)− (η − t1)x(1)

1− η
≤ 1− t1 − α(η − t1)

α(1− η)
x(0) ≤ 1− αη

α(1− η)
x(0).

If δ := min{β(1− ξ)
1− βξ

,
βξ

βξ + 1− β
,

αη

αη + 1− α
,
α(1− η)
1− αη

}, then x(t) ≥ δ max
0≤t≤1

x(t).

(3) There exists constant τ such that x(η) − x(0) = x′(τ)η. Considering the
boundary condition x(0) = αx(η) and x(0) > δ max

0≤t≤1
|x(t)|, we complete the proof. �

3. Existence results

In this section, we impose growth conditions on f which allow us to apply Lemma
2.1 to establish the existence of three positive solutions of our problem.

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals γ, θ and the nonnegative continuous functional ψ be defined on
the cone by

γ(x) = max
0≤t≤1

|x′(t)|, θ(x) = ψ(x) = max
0≤t≤1

|x(t)|, α(x) = min
0≤t≤1

|x(t)|.

By Lemma 5,6 the functionals defined above satisfy:

δθ(x) ≤ α(x) ≤ θ(x) = ψ(x), ‖x‖ = max{θ(x), γ(x)} ≤ lγ(x). (3.1)

Let m = min0≤t≤1

∫ 1

0
|G(t, s)|ds,M = max0≤t≤1

∫ 1

0
|∂G(t,s)

∂t |ds

N = max0≤t≤1

∫ 1

0
G(t, s)ds, λ = min{

m

M
, δl}.

To present our main results, we assume there exist constants 0 < a, b, c, d with
a < b < λd such that
A1) f(t, u, v) ≤ d/M, (t, u, v) ∈ [0, 1]× [0, ld]× [−d, d];
A2) f(t, u, v) > b/m, (t, u, v) ∈ [0, 1]× [b, b/δ]× [−d, d];
A3) f(t, u, v) < a/N, (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].

Theorem 1. Under the assumptions A1)−A3), the boundary value problem (1.1)-
(1.2) has at least three positive solutions x1, x2, x3 satisfying

max
0≤t≤1

|x′i(t)| ≤ d, i = 1, 2, 3; b < min
0≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b; max
0≤t≤1

|x3(t)| ≤ a. (3.2)



EXISTENCE OF POSITIVE SOLUTIONS 473

Proof. Problem (1.1)-(1.2) has a solution x = x(t) if and only if x solves the operator
equation

x(t) =
∫ 1

0

G(t, s)f(s, x, x′)ds = (Tx)(t). (3.3)

For x ∈ P (γ, d), γ(x) = max
0≤t≤1

|x′(t)| ≤ d. Using Lemma 5, assumption (A1) implies

that f(t, x, x′) ≤ d/M. On the other hand, for x ∈ P ,

γ(Tx) = max
0≤t≤1

|
∫ 1

0

∂G(t, s)
∂t

f(s, x, x′)ds| ≤M

∫ 1

0

f(s, x, x′)ds ≤ d

M
M = d.

Hence T : P (γ, d) → P (γ, d) and T is a completely continuous operator. To check

condition (S1) of Lemma 1, we choose x(t) =
b

δ
= c. It’s easy to see x(t) =

b

δ
∈

P (γ, θ, α, b, c, d) and α(
b

δ
) > b. So {x ∈ P (γ, θ, α, b, c, d|α(x) > b)} 6= ∅.

If x ∈ P (γ, θ, α, b, c, d),we have b ≤ x(t) ≤ b

δ
, |x′(t)| < d for 0 ≤ t ≤ 1. From (A2), we

have f(t, x, x′) ≥ b
m . By the definition of α and of the cone P we get

α(Tx) = min
0≤t≤1

|
∫ 1

0

G(t, s)f(s, x, x′)ds| ≥> b

m

∫ 1

0

G(t, s)ds >
b

m
m = b.

Thus α(Tx) > b, for all x ∈ P (γ, θ, α, b, b/δ, d). Next, from w (4.1) and b < λd, we
have α(Tx) ≥ δθ(Tx) > δb/δ = b for all x ∈ P (γ, α, b, d) with θ(Tx) > b/δ.
Thus, condition (S2) of Lemma 1 is satisfied. Finally, we show that (S3) also holds.
Clearly, as ψ(0) = 0 < a, we see 0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with
ψ(x) = a. Then, by (A3), we have

ψ(Tx) = max0≤t≤1|(Tx)(t)| = max
0≤t≤1

|
∫ 1

0

G(t, s)f(s, x, x′)ds|

<
a

N
max
0≤t≤1

∫ 1

0

|G(t, s)|ds = a. (3.4)

Since condition (S3) is satisfied, Lemma 1 implies the boundary value problem (1.5)-
(1.6) has at least three positive solutions x1, x2, x3 satisfying (3.2). �

Remark 3.1.To apply Lemma 1, we only need T : P (γ, d) → P (γ, d), therefore
condition C1) can be substituted with a weaker condition
H1) : f ∈ C([0, 1]× [0, ld]× [−d, d], [0,+∞)).

4. Application

Finally we present an example to check our main results. Consider the boundary
value problem

u′′(t) + f(t, u, u′) = 0, 0 < t < 1, (4.1)

u(0) =
1
2
u(

3
4
), u(1) = u(

1
2
), (4.2)
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where

f(t, u, v) =


1
6
et +

1
2
u3 +

1
6
(
v

5000
)3 0 ≤ u ≤ 10

1
6
et + 500 +

1
6
(
v

5000
)3 u > 10

Choose a = 1, b = 6, d = 4000, and note that M = 2,m =
1
18
, l =

15
4
, δ =

1
5
, λ =

1
36
, N =

3
4
. We can check that conditions C2),H1) are satisfied and f(t, u, v) satisfy

f(t, u, v) ≤ 2000, (t, u, v) ∈ [0, 1]× [0, 15000]× [−4000, 4000];

f(t, u, v) ≥ 108, (t, u, v) ∈ [0, 1]× [6, 30]× [−4000, 4000];

f(t, u, v) ≤ 4
3
, (t, u, v) ∈ [0, 1]× [0, 1]× [−4000, 4000].

Since all the assumptions of Theorem 1 are satisfied, problem (4.1) − (4.2) has at
least three positive solutions x1, x2, x3 such that max

0≤t≤1
|x′i(t)| ≤ 4000, for each i ∈

{1, 2, 3};min0≤t≤1 x1(t) > 6; max
0≤t≤1

x2(t) > 1, min
0≤t≤1

x2(t) < 6; max
0≤t≤1

x3(t) < 1.

Remark. In (4.1)-(4.2), we have η > ξ and, thus, the Green’s function can change
sign. So, the results in [8-12], concerning the positive solutions, are not applicable.
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