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1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H. We recall some
definitions.
(i) A mapping T of C into H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
(ii) T is strictly pseudocontractive if there exists κ with 0 ≤ κ < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2, for all x, y ∈ C.
If k = 0, then T is nonexpansive.
(iii) A mapping T : C → C is called asymptotically nonexpansive (cf. [11]) if there
exists a sequence {kn} of positive numbers satisfying the property limn→∞ kn = 1
and

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1.
(iv) T : C → C is asymptotically nonexpansive in the intermediate sense [4] provided
T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0.
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(v) A mapping T : C → C is said to be asymptotically κ-strict pseudocontractive
mapping with sequence {γn} [13] if there exists a constant κ ∈ [0, 1) and a sequence
{γn} in [0,∞) with limn→∞ γn = 0 such that

‖Tnx− Tny‖2 ≤ (1 + γn)‖x− y‖2 + κ‖x− Tnx− (y − Tny)‖2

for all x, y ∈ C and n ≥ 1.
(vi) T : C → C is asymptotically κ-strict pseudocontractive mapping in the intermedi-
ate sense with sequence {γn} [21] if there exists a constant κ ∈ [0, 1) and a sequence
{γn} in [0,∞) with limn→∞ γn = 0 such that

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖2 − (1 + γn)‖x− y‖2 − κ‖x− Tnx− (y − Tny)‖2) ≤ 0.

Throughout this paper we assume that

cn = sup
x,y∈C

{‖Tnx− Tny‖2 − (1 + γn)‖x− y‖2 − κ‖x− Tnx− (y − Tny)‖2}.

Then cn ≥ 0 for all n ≥ 1, cn → 0 as n→∞ and the above reduces to the relation

‖Tnx− Tny‖2 ≤ (1 + γn)‖x− y‖2 + κ‖x− Tnx− (y − Tny)‖2 + cn

for all x, y ∈ C and n ≥ 1.
There are some iterative methods for approximation of fixed points of the mappings

defined above; see, for instance, [14, 17, 20, 21, 22, 24, 27].
Let F : C×C → R be a bifunction. The equilibrium problem for F is to determine

its equilibrium points, i.e. the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0 ∀y ∈ C}.

Let G = {Fi}i∈I be a family of bifunctions from C × C to R. The system of
equilibrium problems for G = {Fi}i∈I is to determine common equilibrium points for
G = {Fi}i∈I , i.e. the set

EP (G) := {x ∈ C : Fi(x, y) ≥ 0 ∀y ∈ C ∀i ∈ I}. (1.1)

Many problems in applied sciences, such as monotone inclusion problems, saddle point
problems, variational inequality problems, minimization problems, Nash equilibria in
noncooperative games, vector equilibrium problems, as well as certain fixed point
problems reduce into finding some element of EP (F ), see [2, 9, 10, 18]. The formula-
tion (1.1), extends this formalism to systems of such problems, covering in particular
various forms of feasibility problems [1, 8].

Recall that a mapping A : C → H is called α-inverse-strongly monotone [3], if
there exists a positive real number α such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

It is easy to see that if A : C → H is α-inverse-strongly monotone, then it is a
1
α -Lipschitzian mapping.

Let A : C → H be a mapping. The classical variational inequality problem is to
find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.2)
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The set of solutions of variational inequality (1.2) is denoted by V I(C,A). Put A =
I − T , where T : C → H is a strictly pseudocontractive mapping with κ. It is known
that A is 1−κ

2 -inverse-strongly monotone and A−1(0) = Fix(T ) = {x ∈ C : Tx = x}.
Recently, weak and strong convergence theorems for finding a common element of

EP (F ), V I(C,A) and Fix(T ), have been studied by many authors (see e.g., [5, 6, 18,
19, 23, 25, 26] and references therein). But, in the case that T is an asymptotically
κ-strict pseudocontractive mapping, there were not any strong convergence result for
finding an element of EP (F ) ∩ V I(C,A) ∩ Fix(T ) (or even EP (F ) ∩ Fix(T ) and
V I(C,A) ∩ Fix(T )).

In this paper, motivated by [18, 19, 21, 23, 25, 26], we introduce iterative algo-
rithms for finding a common element of the set of fixed point for an asymptotically
κ-strict pseudocontractive mapping in the intermediate sense, the set of solutions of
a system of equilibrium problems EP (G) for a family G = {Fi : i = 1, . . . ,M} of
bifunctions and the set of solutions of variational inequalities V I(C,Aj) for a family
{Aj : j = 1 . . . N} of α-inverse-strongly monotone mappings from C into H in a
Hilbert space H. We establish some weak and strong convergence theorems of the
sequences generated by our proposed algorithms. We obtain our strong convergence
results via the hybrid method. Our results are new even for asymptotically κ-strict
pseudocontractive mappings.

2. Preliminaries

Let C be a nonempty closed and convex subset of H. Let F : C × C → R be a
bifunction. The equilibrium problem for F is to determine its equilibrium points, i.e.
the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0 ∀y ∈ C}.
Given any r > 0. The operator JF

r : H → C defined by

JF
r (x) := {z ∈ C : F (z, y) +

1
r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C}

is called the resolvent of F .

Lemma 2.1 ([9]) Let C be a nonempty closed convex subset of H and F : C×C →
R satisfy
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C.
(A3) for all x, y, z ∈ C,

lim inf
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.
Then:
(1) JF

r is single-valued;
(2) JF

r is firmly nonexpansive, i.e.

‖JF
r x− JF

r y‖2 ≤ 〈JF
r x− JF

r y, x− y〉, for all x, y ∈ H;

(3) Fix(JF
r ) = EP (F );

(4) EP (F ) is closed and convex.



452 SHAHRAM SAEIDI

Recall the metric (nearest point) projection PC from a Hilbert space H to a closed
convex subset C of H is defined as follows: given x ∈ H, PCx is the only point in C
with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.
It is known that PC is a nonexpansive mapping and satisfies:

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H. (2.1)

PC is characterized as follows.

y = PCx ⇐⇒ 〈x− y, y − z〉 ≥ 0, ∀z ∈ C. (2.2)

In the context of the variational inequality problem, this implies that

u ∈ V I(C,A) ⇐⇒ u = PC(u− λAu), ∀λ > 0. (2.3)

A set-valued mapping T : H → 2H is said to be monotone, if for all x, y ∈ H, f ∈ Tx,
and g ∈ Ty imply that 〈f − g, x− y〉 ≥ 0. A monotone mapping T : H → 2H is said
to be maximal, if the graph G(T ) of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping is maximal, if and
only if for (x, f) ∈ H ×H, 〈f − g, x− y〉 ≥ 0, ∀(y, g) ∈ G(T ) imply that f ∈ Tx. Let
A : C → H be an α-inverse-strongly monotone mapping and let NCv be the normal
cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C},

and define

Tv =
{
Av +NCv, v ∈ C;
∅, v 6∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A) (see [12, 16]).
It is easy to show that for given λ ∈ [0, 2α], the mapping (I − λA) : C → H is
nonexpansive.

Lemma 2.2 ([15]) Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers satisfying the recursive inequality:

δn+1 ≤ βnδn + γn for all n ∈ N.

If βn ≥ 1,
∑∞

n=1(βn − 1) <∞ and
∑∞

n=1 γn <∞, then limn→∞ δn exists.

Lemma 2.3 ([21]) Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → C a continuous asymptotically κ-strict pseudocontractive mapping in
the intermediate sense. Then
(a) if T is uniformly continuous and {xn} is a sequence in C such that ‖xn+1−xn‖ →
0 and ‖xn − Tnxn‖ → 0, as n→∞, then ‖xn − Txn‖ → 0, as n→∞;
(b) I − T is demiclosed at zero in the sense that if {xn} is a sequence in C such that
xn ⇀ x ∈ C and lim supm→∞ lim supn→∞ ‖xn − Tmxn‖ = 0, then (I − T )x = 0
(c) F (T ) is closed and convex.
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3. Strong convergence

The following is our main strong convergence result, which is a generalization of
[21, Theorem 4.1].

Theorem 3.1 Let C be a nonempty closed convex subset of a Hilbert space H,
T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive mapping
in the intermediate sense with sequence {γn}, G = {Fj : j = 1, . . . ,M} a finite
family of bifunctions from C × C into R which satisfy (A1)-(A4), {Ak : k = 1 . . . N}
a finite family of α-inverse-strongly monotone mappings from C into H, and F :=
∩N

k=1V I(C,Ak) ∩ Fix(T ) ∩ EP (G) nonempty and bounded.
Let {αn} be a sequence in [0, 1] such that 0 < δ ≤ αn ≤ 1 − κ for all n ∈ N,

{λk,n}N
k=1 sequences in [c, d] ⊂ (0, 2α) such that limn |λk,n − λk,n+1| = 0 for every

k ∈ {1, . . . , N} and {rj,n}M
j=1 sequences in (0,∞) such that lim infn rj,n > 0 and

limn rj,n/rj,n+1 = 1 for every j ∈ {1, . . . ,M}.
If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,

un = JFM
rM,n

. . . JF2
r2,n

JF1
r1,n

xn,

vn = PC(I − λN,nAN ) . . . PC(I − λ2,nA2)PC(I − λ1,nA1)un,
yn = (1− αn)vn + αnT

nvn,
Cn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn(x),

where θn = cn + γn∆n and ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞, then the sequences
{xn} and {yn} converge strongly to PF (x).
Proof. Take

J k
n := JFk

rk,n
. . . JF2

r2,n
JF1

r1,n
, (k = 1, . . . ,M),

Pk
n := PC(I − λk,nAk) . . . PC(I − λ2,nA2)PC(I − λ1,nA1), (k = 1, . . . , N),

and let J 0
n := I and P0

n := I. So, we can write

yn = (1− αn)PN
n JM

n xn + αnT
nPN

n JM
n xn.

We shall divide the proof into several steps.
Step 1. The sequence {xn} is well defined.
Proof of Step 1. The sets Cn and Qn are closed and convex subsets of H for every
n ∈ N; see [21]. So, Cn ∩Qn is a closed convex subset of H for any n ∈ N. Let p ∈ F .
Since, for each k ∈ {1, . . . ,M}, JFk

rk,n
is nonexpansive, it follows, by Lemma 2.1,

‖un − p‖ = ‖JM
n xn − p‖ = ‖JM

n xn − JM
n p‖ ≤ ‖xn − p‖. (3.1)

On the other hand, because Ak : C → H is α-inverse-strongly monotone and λn,k ∈
[c, d] ⊂ [0, 2α], PC(I − λn,kAk) is nonexpansive. Thus, PN

n is nonexpansive. Also, by
(2.3), we have PN

n p = p. Thus,

‖vn − p‖ = ‖PN
n un − PN

n p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (3.2)

So, because αn ≤ 1− κ, we get

‖yn − p‖2 = ‖(1− αn)(vn − p) + αn(Tnvn − p)‖2
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= (1− αn)‖vn − p‖2 + αn‖Tnvn − p‖2 − αn(1− αn)‖vn − Tnvn‖2

≤ (1− αn)‖xn − p‖2 + αn((1 + γn)‖vn − p‖2 + κ‖vn − Tnvn‖2 + cn)
−αn(1− αn)‖vn − Tnvn‖2

≤ ‖xn − p‖2 + αn(κ− (1− αn))‖vn − Tnvn‖2 + cn + γn∆n

≤ ‖xn − p‖2 + θn. (3.3)
So, we have p ∈ Cn; thus, F ⊂ Cn, for every n ∈ N. Next, we show by induction that

F ⊂ Cn ∩Qn,

for each n ∈ N. Since F ⊂ C1 and Q1 = H, we get F ⊂ C1 ∩Q1. Suppose that F ⊂
Ck ∩Qk for k ∈ N. Then, there exists xk+1 ∈ Ck ∩Qk such that xk+1 = PCk∩Qk

(x).
Therefore, for each z ∈ Ck ∩Qk, we have

〈xk+1 − z, x− xk+1〉 ≥ 0.

So, we get
F ⊂ Ck ∩Qk ⊂ Qk+1.

From this and F ⊂ Cn (∀n), we have

F ⊂ Ck+1 ∩Qk+1.

This means that the sequence {xn} is well defined.
Step 2. The sequences {xn}, {yn}, {J k

n xn}M
k=1 and {Pk

nun}N
k=1 are bounded and

lim
n→∞

‖xn − x‖ = c, for some c ∈ R. (3.4)

Proof of Step 2. From xn+1 = PCn∩Qn
(x), we have

‖xn+1 − x‖ ≤ ‖z − x‖, ∀z ∈ Cn ∩Qn.

Since PF (x) ∈ F ⊂ Cn ∩Qn, we have

‖xn+1 − x‖ ≤ ‖PF (x)− x‖, (3.5)

for every n ∈ N. Therefore {xn} is bounded. From this, the sequence {∆n} is bounded
and consequently θn → 0 as n → ∞. So, from (3.1), (3.2) and (3.3), the sequences
{J k

n xn}M
k=1, {Pk

nun}N
k=1 and {yn} are also bounded.

It is easy to show that xn = PQn(x). From this and xn+1 ∈ Qn, we have

‖x− xn‖ ≤ ‖x− xn+1‖,
for every n ∈ N. Since {xn} is bounded, there exists c ∈ R such that (3.4) holds.
Step 3. limn→∞ ‖xn − xn+1‖ = 0.
Proof of Step 3. Since xn = PQn

(x), xn+1 ∈ Qn and (xn + xn+1)/2 ∈ Qn, we have

‖x− xn‖2 ≤ ‖x− xn + xn+1

2
‖2

= ‖1
2
(x− xn) +

1
2
(x− xn+1‖2

=
1
2
‖x− xn‖2 +

1
2
‖x− xn+1‖2 −

1
4
‖xn − xn+1‖2.

So, we get
1
4
‖xn − xn+1‖2 ≤

1
2
‖x− xn+1‖2 −

1
2
‖x− xn‖2.
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From (3.4), we obtain limn→∞ ‖xn − xn+1‖2 = 0.
Step 4. Let {ωn} be a bounded sequence in H. Then

lim
n→∞

‖J k
n+1wn − J k

nωn‖ = 0 (3.6)

for every k ∈ {1, . . . ,M}.
Proof of Step 4. From [7], we have that

lim
n
‖JFk

rk,n+1
ωn − JFk

rk,n
ωn‖ = 0 (3.7)

for for every k ∈ {1, . . . ,M}. Note that for every k ∈ {1, . . . ,M}, we have

J k
n = JFk

rk,n
J k−1

n .

So,
‖J k

n+1wn − J k
nωn‖‖ ≤ ‖JFk

rk,n+1
J k−1

n+1wn − JFk
rk,n

J k−1
n+1wn‖

+‖JFk
rk,n

JFk−1
rk−1,n+1

J k−2
n+1wn − JFk

rk,n
JFk−1

rk−1,n
J k−2

n+1wn‖+ . . .

+‖JFk
rk,n

JFk−1
rk−1,n

. . . JF3
r3,n

JF2
r2,n+1

JF1
r1,n+1

ωn − JFk
rk,n

JFk−1
rk−1,n

. . . JF3
r3,n

JF2
r2,n

JF1
r1,n+1

ωn‖
+‖JFk

rk,n
JFk−1

rk−1,n
. . . JF3

r3,n
JF2

r2,n
JF1

r1,n+1
ωn − JFk

rk,n
JFk−1

rk−1,n
. . . JF3

r3,n
JF2

r2,n
JF1

r1,n
ωn‖

≤ ‖JFk
rk,n+1

J k−1
n+1wn − JFk

rk,n
J k−1

n+1wn‖+ ‖JFk−1
rk−1,n+1

J k−2
n+1wn − JFk−1

rk−1,n
J k−2

n+1wn‖
+ · · ·+ ‖JF2

r2,n+1
JF1

r1,n+1
ωn − JF2

r2,n
JF1

r1,n+1
ωn‖+ ‖JF1

r1,n+1
ωn − JF1

r1,n
ωn‖

=
k∑

j=1

‖JFj
rj,n+1

(J j−1
n+1wn)− JFj

rj,n
(J j−1

n+1wn)‖.

From this and (3.7), it is easy to conclude (3.6).
Step 5. Let {ωn} be a bounded sequence in C. Then

lim
n→∞

‖PC(I − λk,n+1Ak)wn − PC(I − λk,nAk)ωn‖ = 0,

and
lim

n→∞
‖Pk

n+1wn − Pk
nωn‖ = 0

for every k ∈ {1, . . . , N}.
Proof of Step 5. Since {ωn} is bounded and Ak for k ∈ {1, . . . , N} a Lipschitzian
mapping, we know that

L := sup
n
{‖Akωn‖} <∞.

Now,
‖PC(I − λk,n+1Ak)wn − PC(I − λk,nAk)ωn‖
≤ ‖(I − λk,n+1Ak)wn − (I − λk,nAk)ωn‖

= |λk,n+1 − λk,n|‖Akωn‖ ≤ |λk,n+1 − λk,n|L→ 0, as n→∞.

Now, applying a technique similar to that used in proof of Step 4, it is easy to prove
the second assertion.
Step 6. limn→∞ ‖xn − yn‖ = 0.
Proof of Step 6. From the convexity of ‖.‖2 and xn+1 ∈ Cn, we have

‖xn − yn

2
‖2 ≤ 1

2
‖xn − xn+1‖2 +

1
2
‖xn+1 − yn‖2 ≤ ‖xn − xn+1‖2 +

1
2
θn.
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Since θn → 0 and ‖xn − xn+1‖ → 0, the desired result follows.
Step 7. limn→∞ ‖J k

n xn − J k+1
n xn‖ = 0, ∀k ∈ {0, 1, . . . ,M − 1}.

Proof of Step 7. Let p ∈ F and k ∈ {0, 1, . . . ,M − 1}. Since J
Fk+1
rk+1,n is firmly

nonexpansive, we obtain

‖p− J k+1
n xn‖2 = ‖JFk+1

rk+1,n
p− JFk+1

rk+1,n
J k

n xn‖2

≤ 〈JFk+1
rk+1,n

J k
n xn − p,J k

n xn − p〉

=
1
2
(‖JFk+1

rk+1,n
J k

n xn − p‖2 + ‖J k
n xn − p‖2 − ‖J k

n xn − JFk+1
rk+1,n

J k
n xn‖2).

It follows that

‖J k+1
n xn − p‖2 ≤ ‖xn − p‖2 − ‖J k

n xn − J k+1
n xn‖2.

Therefore, by the convexity of ‖.‖2, we have

‖yn − p‖2 = (1− αn)‖vn − p‖2 + αn‖Tnvn − p‖2 − αn(1− αn)‖vn − Tnvn‖2

≤ (1− αn)‖xn − p‖2 + αn((1 + γn)‖vn − p‖2 + κ‖vn − Tnvn‖2 + cn)
−αn(1− αn)‖vn − Tnvn‖2

≤ (1− αn)‖xn − p‖2 + αn‖vn − p‖2 + αn(κ− (1− αn))‖vn − Tnvn‖2 + cn + γn∆n

≤ (1− αn)‖xn − p‖2 + αn‖vn − p‖2 + θn (3.8)

≤ (1− αn)‖xn − p‖2 + αn‖J k+1
n xn − p‖2 + θn

≤ (1− αn)‖xn − p‖2 + αn(‖xn − p‖2 − ‖J k
n xn − J k+1

n xn‖2) + θn

= ‖xn − p‖2 − αn‖J k
n xn − J k+1

n xn‖2 + θn.

Since {αn} ⊂ [δ, 1], we get

δ‖J k
n xn − J k+1

n xn‖2 ≤ αn‖J k
n xn − J k+1

n xn‖2

≤ ‖xn − p‖2 − ‖yn − p‖2 + θn ≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖) + θn.

From this and Step 6, we get the desired result.
Step 8. limn→∞ ‖Pk

nun − Pk+1
n un‖ = 0, ∀k ∈ {0, 1, . . . , N − 1}.

Proof of Step 8. Since {Ak : k = 1 . . . N} are α-inverse-strongly monotone, by the
assumptions imposed on {λk,n} for given p ∈ F and k ∈ {0, 1, . . . , N − 1} we have

‖Pk+1
n un − p‖2

= ‖PC(I − λk+1,nAk+1)Pk
nun − PC(I − λk+1,nAk+1)p‖2

≤ ‖(I − λk+1,nAk+1)Pk
nun − (I − λk+1,nAk+1)p‖2

≤ ‖Pk
nun − p‖2 + λk+1,n(λk+1,n − 2α)‖Ak+1Pk

nun −Ak+1p‖2

≤ ‖xn − p‖2 + c(d− 2α)‖Ak+1Pk
nun −Ak+1p‖2.

From this and (3.8), we have

‖yn − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖vn − p‖2 + θn

≤ (1− αn)‖xn − p‖2 + αn‖Pk+1
n un − p‖2 + θn (3.9)

≤ (1− αn)‖xn − p‖2 + αn(‖xn − p‖2 + c(d− 2α)‖Ak+1Pk
nun −Ak+1p‖2) + θn

= ‖xn − p‖2 + c(d− 2α)αn‖Ak+1Pk
nun −Ak+1p‖2 + θn.
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So,
c(2α− d)αn‖Ak+1Pk

nun −Ak+1p‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2 + θn

≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖) + θn.

Since αn ⊂ [δ, 1], θn → 0 and Step 6, we obtain

‖Ak+1Pk
nun −Ak+1p‖ → 0 (n→∞). (3.10)

From (2.1) and the fact that I − λk+1,nAk+1 is nonexpansive, we have

‖Pk+1
n un − p‖2 = ‖PC(I − λk+1,nAk+1)Pk

nun − PC(I − λk+1,nAk+1)p‖2

≤ 〈(Pk
nun − λk+1,nAk+1Pk

nun)− (p− λk+1,nAk+1p),Pk+1
n un − p〉

=
1
2
{‖(Pk

nun − λk+1,nAk+1Pk
nun)− (p− λk+1,nAk+1p)‖2 + ‖Pk+1

n un − p‖2

−‖(Pk
nun − λk+1,nAk+1Pk

nun)− (p− λk+1,nAk+1p)− (Pk+1
n un − p)‖2}

≤ 1
2
{‖Pk

nun − p‖2 + ‖Pk+1
n un − p‖2

−‖Pk
nun − Pk+1

n un − λk+1,n(Ak+1Pk
nun −Ak+1p)‖2}

=
1
2
{‖Pk

nun − p‖2 + ‖Pk+1
n un − p‖2 − ‖Pk

nun − Pk+1
n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1p〉

−λ2
k+1,n‖Ak+1Pk

nun −Ak+1p‖2}.
This implies that

‖Pk+1
n un − p‖2 ≤ ‖Pk

nun − p‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1p〉

−λ2
k+1,n‖Ak+1Pk

nun −Ak+1p‖2

≤ ‖xn − p‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1p〉.

Then, from this and (3.9), we have

‖yn − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖Pk+1
n un − p‖2 + θn

≤ (1− αn)‖xn − p‖2 + αn{‖xn − p‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1p〉}+ θn

≤ ‖xn − p‖2 − αn‖Pk
nun − Pk+1

n un‖2

+2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖+ θn,

which implies that

δ‖Pk
nun − Pk+1

n un‖2 ≤ αn‖Pk
nun − Pk+1

n un‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

+2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖+ θn.

Hence it follows from θn → 0, Step 6 and (3.10) that ‖Pk
nun − Pk+1

n un‖ → 0.
Step 9. limn→∞ ‖vn − Tvn‖ = 0.
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Proof of Step 9. Observe that

‖un − vn‖ = ‖P0
nun − PN

n un‖ ≤
N−1∑
k=0

‖Pk
nun − Pk+1

n un‖,

and

‖xn − un‖ = ‖J 0
nxn − JM

n xn‖ ≤
M−1∑
k=0

‖J k
n xn − J k+1

n xn‖.

So, by Steps 7 and 8, we have ‖un − vn‖ → 0 and ‖xn − un‖ → 0, as n→∞. On the
other hand,

αnT
nvn = yn − (1− αn)vn.

So, we have
δ‖vn − Tnvn‖ ≤ αn‖vn − Tnvn‖

= ‖yn − (1− αn)vn − αnvn‖ = ‖yn − vn‖
≤ ‖yn − xn‖+ ‖xn − un‖+ ‖un − vn‖ → 0, as n→∞.

From these and Step 6, we obtain

lim
n→∞

‖vn − Tnvn‖ = 0. (3.11)

In this stage, note that

‖vn − vn+1‖ = ‖PN
n un − PN

n+1un+1‖

≤ ‖PN
n un − PN

n+1un‖+ ‖PN
n+1un − PN

n+1un+1‖

≤ ‖PN
n un − PN

n+1un‖+ ‖un − un+1‖

= ‖PN
n un − PN

n+1un‖+ ‖JM
n xn − JM

n+1xn+1‖

≤ ‖PN
n un − PN

n+1un‖+ ‖JM
n xn − JM

n+1xn‖+ ‖JM
n+1xn − JM

n+1xn+1‖

≤ ‖PN
n un − PN

n+1un‖+ ‖JM
n xn − JM

n+1xn‖+ ‖xn − xn+1‖.
It follows from this and Steps 3, 4 and 5 that ‖vn− vn+1‖ → 0, as n→∞. By (3.11),
we obtain from Lemma 2.3 that limn→∞ ‖vn − Tvn‖ = 0.
Step 10. The weak ω-limit set of {xn}, ωw(xn), is a subset of F .
Proof of Step 10. Let z0 ∈ ωw(xn) and let {xnm

} be a subsequence of {xn} weakly
converging to z0. From Steps 7 and 8, we obtain also that

J k
nm
xnm

⇀ z0,

for all k ∈ {1, . . . ,M}, and
Pk

nm
unm ⇀ z0,

for all k ∈ {1, . . . , N}. In particular, unm
⇀ z0 and vnm

⇀ z0. We need to show that
z0 ∈ F . First, we prove z0 ∈ Fix(T ). Since limn→∞ ‖vn − Tvn‖ = 0 by Step 9, it
follows from uniform continuity of T that limn→∞ ‖vn − Tmvn‖ = 0 for all m ∈ N.
So, from vnm ⇀ z0 and Lemma 2.3, we get

z0 ∈ Fix(T ).
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Now, we prove z0 ∈ ∩N
i=1V I(C,Ai). For this purpose, let k ∈ {1, . . . , N} and Tk

be the maximal monotone mapping defined by

Tkx =
{
Akz +NCz, z ∈ C;
∅, z 6∈ C.

For any given (z, u) ∈ G(Tk), hence u−Akz ∈ NCz. Since Pk
nun ∈ C, by the definition

of NC , we have
〈z − Pk

nun, u−Akz〉 ≥ 0. (3.12)
On the other hand, since Pk

nun = PC(Pk−1
n un − λk,nAkPk−1

n un), we have

〈z − Pk
nun,Pk

nun − (Pk−1
n un − λk,nAkPk−1

n un)〉 ≥ 0.

So

〈z − Pk
nun,

Pk
nun − Pk−1

n un

λk,n
+AkPk−1

n un〉 ≥ 0.

By (3.12) and the α-inverse monotonicity, we have

〈z − Pk
nm
unm

, u〉 ≥ 〈z − Pk
nm
unm

, Akz〉

≥ 〈z − Pk
nm
unm

, Akz〉

−〈z − Pk
nm
unm

,
Pk

nm
unm

− Pk−1
nm

unm

λk,nm

+AkPk−1
nm

unm
〉

= 〈z − Pk
nm
unm , Akz −AkPk

nm
unm〉

+〈z − Pk
nm
unm , AkPk

nm
unm −AkPk−1

nm
unm〉

−〈z − Pk
nm
unm ,

Pk
nm
unm

− Pk−1
nm

unm

λk,nm

〉

≥ 〈z − Pk
nm
unm

, AkPk
nm
unm

−AkPk−1
nm

unm
〉

−〈z − Pk
nm
unm

,
Pk

nm
unm

− Pk−1
nm

unm

λk,nm

〉.

Since ‖Pk
nJM

n xn − Pk−1
n JM

n xn‖ → 0, Pk
nm
unm ⇀ z0 and {Ak : k = 1, . . . , N} are

Lipschitz continuous, we have

lim
m→∞

〈z − Pk
nm
unm , u〉 = 〈z − z0, u〉 ≥ 0.

Again since Tk is maximal monotone, hence 0 ∈ Tkz0. This shows that z0 ∈
V I(C,Ak). From this, it follows that

z0 ∈ ∩N
i=1V I(C,Ai).

Note that by (A2) for given y ∈ C and k ∈ {0, 1, . . . ,M − 1}, we have
1

rk+1,n
〈y − J k+1

n xn,J k+1
n xn − J k

n xn〉 ≥ Fk+1(y,J k+1
n xn).

Thus

〈y − J k+1
nm

xnm
,
J k+1

nm
xnm

− J k
nm
xnm

rk+1,nm

〉 ≥ Fk+1(y,J k+1
nm

xnm
). (3.13)
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By condition (A4), Fi(y, .), ∀i, is lower semicontinuous and convex, and thus weakly
semicontinuous. Step 7 and condition lim infn rj,n > 0 imply that

J k+1
nm

xnm
− J k

nm
xnm

rk+1,nm

→ 0,

in norm. Therefore, letting m→∞ in (3.13) yields

Fk+1(y, z0) ≤ lim
m
Fk+1(y,J k+1

nm
xnm

) ≤ 0,

for all y ∈ C and k ∈ {0, 1, . . . ,M − 1}. Replacing y with yt := ty + (1 − t)z0 with
t ∈ (0, 1) and using (A1) and (A4), we obtain

0 = Fk+1(yt, yt) ≤ tFk+1(yt, y) + (1− t)Fk+1(yt, z0) ≤ tFk+1(yt, y).

Hence Fk+1(ty + (1 − t)z0, y) ≥ 0, for all t ∈ (0, 1) and y ∈ C. Letting t → 0+

and using (A3), we conclude Fk+1(z0, y) ≥ 0, for all y ∈ C and k ∈ {0, . . . ,M − 1}.
Therefore

z0 ∈
M⋂

k=1

EP (Fk) = EP (G).

Step 11. The sequences {xn} and {yn} converge strongly to PF (x).
Proof of Step 11. Let z0 ∈ ωw(xn) and let {xnm

} be a subsequence of {xn} weakly
converging to z0. From (3.5) and Step 10, we have

‖x− PF (x)‖ ≤ ‖x− z0‖ ≤ lim inf
m→∞

‖x− xnm
‖

≤ lim sup
m→∞

‖x− xnm
‖ ≤ ‖x− PF (x)‖.

Hence
lim

m→∞
‖x− xnm

‖ = ‖x− z0‖ = ‖x− PF (x)‖.

Since z0 ∈ F and H is a Hilbert space, we obtain

xnm
−→ z0 = PF (x).

Since z0 ∈ ωw(xn) was arbitrary, we get xn −→ PF (x). �

Corollary 3.2 Let C be a nonempty closed convex subset of a Hilbert space H,
T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive mapping
in the intermediate sense with sequence {γn}, ψ = {Tj : j = 1 . . . N} a finite family
of strictly pseudocontractive mappings with 0 ≤ κ < 1 from C into C, G = {Fj : j =
1, . . . ,M} a finite family of bifunctions from C × C into R which satisfy (A1)-(A4),
and F := Fix(T ) ∩ Fix(ψ) ∩ EP (G) nonempty and bounded.

Let {αn} be a sequence in [0, 1] such that 0 < δ ≤ αn ≤ 1 − κ for all n ∈ N,
{λk,n}N

k=1 sequences in [c, d] ⊂ (0, 1− κ) such that limn |λk,n − λk,n+1| = 0 for every
k ∈ {1, . . . , N} and {rj,n}M

j=1 sequences in (0,∞) such that lim infn rj,n > 0 and
limn rj,n/rj,n+1 = 1 for every j ∈ {1, . . . ,M}.

If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,
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un = JFM
rM,n

. . . JF2
r2,n

JF1
r1,n

xn,

vn = ((1− λN,n)I + λN,nTN ) . . . ((1− λ1,n)I + λ1,nT1)un,
yn = (1− αn)vn + αnT

nvn,
Cn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x),
where θn = cn + γn∆n and ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞, then the sequences
{xn} and {yn} converge strongly to PF (x).
Proof. Put Aj = I − Tj for every j ∈ {1, . . . , N}. Then Aj is 1−k

2 -inverse-strongly
monotone. We have that Fix(Tj) is the solution set of V I(C,Aj); i.e., Fix(Tj) =
V I(C,Aj). Therefore, Fix(ψ) = ∩N

k=1V I(C,Ak) and it suffices to apply Theorem
3.1. �

At this stage, considering Theorem 3.1, we present a numerical example in Hilbert
space l2:

Example 3.3 Let H = l2 and C = l2 ∩
∏∞

i=1[0, 1]. For each (w1, w2, . . . ) ∈ C, we
define T (w1, w2, . . . ) = (T1(w1), T2(w2), . . . ), where for any natural number k,

Tk(t) =


1
2k t if t ∈ [0, 1

2k ],

0 if t ∈ ( 1
2k , 1].

It is easy to show that

|Tn
k t− Tn

k s|2 ≤ (
1

2kn
|t− s|+ 1

2kn
)2 ≤ |t− s|2 +

3
4kn

,

for all t, s ∈ [0, 1] and k, n ∈ N. (See also [21, Example 1.6]). Hence, for (wk), (zk) ∈ C
and n ∈ N, we have

‖Tn(wk)− Tn(zk)‖2 ≤ ‖(Tn
k wk)− (Tn

k zk)‖2

=
∞∑

k=1

|Tn
k wk − Tn

k zk|2 ≤
∞∑

k=1

{|wk − zk|2 +
3

4kn
}

= ‖(wk)− (zk)‖2 +
3

4n − 1
.

Therefore, T : C → C is an asymptotically κ-strict pseudocontractive mapping in the
intermediate sense with κ = 0, γn = 0 and cn = 3

4n−1 , for all n. It is easy to see that
T is discontinuous at ( 1

2 ,
1
22 , . . . ,

1
2k , . . . ). Now, taking αn = 1, for all n, Ak ≡ 0, for

k = 1, ..., N , Fj ≡ 0, for j = 1, ...,M and x1 = x = ( 1
2 , 0, 0, . . . ), in Theorem 3.1, we

have θn = 3
4n−1 , yn = Tnvn, un = PCxn and vn = un, for all n. In particular, we

may compute {xn} as follows:

x ∈ C1, D1 = l2 =⇒ x2 = PC1∩Q1(x) = x;

x ∈ C2, D2 = l2 =⇒ x3 = PC2∩Q2(x) = x;

y3 =
1
23

(
1
2
, 0, 0, . . . ),
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C3 = {z ∈ l2 : ‖y3 − z‖2 ≤ ‖x3 − z‖2 +
3

43 − 1
}

= {(zi) ∈ l2 : | 1
24
− z1|2 ≤ ‖1

2
− z1‖2 +

3
43 − 1

}

= {(zi) ∈ l2 : z1 ≤ 0/3356717}, D3 = l2

=⇒ x4 = PC3∩Q3(x) = (0/3356717, 0, 0, . . . );

y4 =
1
24

(0/3356717, 0, 0, . . . ) = (0/0209795, 0, 0, . . . ),

C4 = {(zi) ∈ l2 : z1 ≤ 0/197018},
D4 = {(zi) ∈ l2 : z1 ≤ 0/3356717}

=⇒ x5 = PC4∩Q4(x) = (0/197018, 0, 0, . . . );

y5 =
1
25

(0/197018, 0, 0, . . . ) = (0/0061568, 0, 0, . . . ),

C5 = {(zi) ∈ l2 : z1 ≤ 0/1092623},
D5 = {(zi) ∈ l2 : z1 ≤ 0/197018}

=⇒ x6 = PC5∩Q5(x) = (0/1092623, 0, 0, . . . );

y6 =
1
26

(0/1092623, 0, 0, . . . ) = (0/0017072, 0, 0, . . . ),

C6 = {(zi) ∈ l2 : z1 ≤ 0/0588905},
D6 = {(zi) ∈ l2 : z1 ≤ 0/1092623}

=⇒ x7 = PC6∩Q6(x) = (0/0588905, 0, 0, . . . );

...

Note that the argument used for computing C4 have been used for computing C5 and
C6. As we expected, it is easy to see that {xn} tends to 0.

4. Weak convergence

The following is a weak convergence theorem which extends [21, Theorem 3.4].

Theorem 4.1 Let C be a nonempty closed convex subset of a Hilbert space H,
T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive mapping
in the intermediate sense with sequence {γn} such that

∑∞
n=1(γn+cn) <∞, G = {Fj :

j = 1, . . . ,M} a finite family of bifunctions from C × C into R which satisfy (A1)-
(A4), {Ak : k = 1 . . . N} a finite family of α-inverse-strongly monotone mappings
from C into H, and F := ∩N

k=1V I(C,Ak) ∩ Fix(T ) ∩ EP (G) 6= ∞.
Let {αn} be a sequence in [0, 1] such that 0 < δ ≤ αn ≤ 1 − κ − δ, {λk,n}N

k=1

sequences in [c, d] ⊂ (0, 2α) such that limn |λk,n−λk,n+1| = 0 for every k ∈ {1, . . . , N}
and {rj,n}M

j=1 sequences in (0,∞) such that lim infn rj,n > 0 and limn rj,n/rj,n+1 = 1
for every j ∈ {1, . . . ,M}.

If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,
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un = JFM

rM,n
. . . JF2

r2,n
JF1

r1,n
xn,

vn = PC(I − λN,nAN ) . . . PC(I − λ2,nA2)PC(I − λ1,nA1)un,
xn+1 = (1− αn)vn + αnT

nvn,

then the sequence {xn} converges weakly to an element of F .
Proof. We will apply the notations used in proof of Theorem 3.1.
Step 1. {xn} is bounded and limn→∞ ‖xn − p‖ exists for all p ∈ F .
Proof of Step 1. Let p ∈ F . Then

‖xn+1 − p‖2 = ‖(1− αn)(vn − p) + αn(Tnvn − p)‖2

= (1− αn)‖vn − p‖2 + αn‖Tnvn − p‖2 − αn(1− αn)‖vn − Tnvn‖2

≤ (1− αn)‖xn − p‖2 + αn((1 + γn)‖vn − p‖2 + κ‖vn − Tnvn‖2 + cn)

−αn(1− αn)‖vn − Tnvn‖2

= (1− αn)‖xn − p‖2 + αn(1 + γn)‖vn − p‖2 − αn(1− αn − κ)‖vn − Tnvn‖2 + αncn

≤ (1− αn)‖xn − p‖2 + αn(1 + γn)‖vn − p‖2 − δ2‖vn − Tnvn‖2 + cn (4.1)

≤ (1 + γn)‖xn − p‖2 − αn(1− αn − κ)‖vn − Tnvn‖2 + cn

≤ (1 + γn)‖xn − p‖2 − δ2‖vn − Tnvn‖2 + cn (4.2)

≤ (1 + γn)‖xn − p‖2 + cn (4.3)
By Lemma 2.2, (4.3) and the assumption

∑∞
n=1(γn + cn) <∞, we obtain that

lim
n→∞

‖xn − p‖ exists. (4.4)

Hence, {xn} is bounded.
Step 2. limn→∞ ‖J k

n xn − J k+1
n xn‖ = 0, ∀k ∈ {0, 1, . . . ,M − 1}.

Proof of Step 2. For p ∈ F , as in Step 7 of Theorem 3.1, we get

‖J k+1
n xn − p‖2 ≤ ‖xn − p‖2 − ‖J k

n xn − J k+1
n xn‖2,

for all k ∈ {0, 1, . . . ,M − 1}. Therefore, by (4.1), we have

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn(1 + γn)‖vn − p‖2 + cn

≤ (1− αn)‖xn − p‖2 + αn(1 + γn)‖J k+1
n xn − p‖2 + cn

≤ (1− αn)‖xn − p‖2 + αn(1 + γn){‖xn − p‖2 − ‖J k
n xn − J k+1

n xn‖2}+ cn

≤ ‖xn − p‖2 − δ‖J k
n xn − J k+1

n xn‖2 + γn‖xn − p‖2 + cn.

Since γn → 0 and cn → 0, applying (4.4), we have

δ‖J k
n xn − J k+1

n xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + γn‖xn − p‖2 + cn → 0.
So, we get the desired result.
Step 3. limn→∞ ‖Pk

nun − Pk+1
n un‖ = 0, ∀k ∈ {0, 1, . . . , N − 1}.

Proof of Step 3. For p ∈ F and k ∈ {0, 1, . . . , N − 1}, like that in Step 8 of Theorem
3.1, we get

‖Pk+1
n un − p‖2 ≤ ‖xn − p‖2 + c(d− 2α)‖Ak+1Pk

nun −Ak+1p‖2.
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From this and (4.1), we have

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn(1 + γn)‖vn − p‖2 + cn

≤ (1− αn)‖xn − p‖2 + αn(1 + γn)‖Pk+1
n un − p‖2 + cn (4.5)

≤ (1−αn)‖xn− p‖2 +αn(1 + γn){‖xn− p‖2 + c(d− 2α)‖Ak+1Pk
nun−Ak+1p‖2}+ cn

= ‖xn − p‖2 + c(d− 2α)αn‖Ak+1Pk
nun −Ak+1p‖2 + γn‖xn − p‖2 + cn.

So,
c(2α− d)αn‖Ak+1Pk

nun −Ak+1p‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + γn‖xn − p‖2 + cn → 0.
Since 0 < δ ≤ αn ≤ 1− κ− δ, we obtain

‖Ak+1Pk
nun −Ak+1p‖ → 0 (n→∞). (4.6)

Again, like that in Step 8 of Theorem 3.1, we have

‖Pk+1
n un − p‖2 ≤ ‖xn − p‖2 − ‖Pk

nun − Pk+1
n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1p〉.

Then, from this and (4.5), we have

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn(1 + γn)‖Pk+1
n un − p‖2 + cn

≤ (1− αn)‖xn − p‖2 + αn(1 + γn){‖xn − p‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1p〉}+ cn

≤ ‖xn − p‖2 − δ‖Pk
nun − Pk+1

n un‖2 + γn‖xn − p‖2

+2λk+1,n(1− γn)‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖+ cn,

which implies that

δ‖Pk
nun − Pk+1

n un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+γn‖xn − p‖2 + 2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖+ cn.

Hence it follows from cn → 0, γn → 0, Step 1 and (4.6) that ‖Pk
nun − Pk+1

n un‖ → 0.
Step 4. limn→∞ ‖xn − xn+1‖ = 0.
Proof of Step 4. It is easy to see from (4.2) that

δ2‖vn − Tnvn‖2 ≤ (1 + γn)‖xn − p‖2 − ‖xn+1 − p‖2 + cn,

which implies that
lim

n→∞
‖vn − Tnvn‖ = 0. (4.7)

Therefore,
‖xn+1 − vn‖ = αn‖vn − Tnvn‖ → 0, as n→∞. (4.8)

From Steps 2 and 3 we see that ‖xn − un‖ → 0 and ‖un − vn‖ → 0, as n → ∞. So,
from this and (4.8), we obtain

‖xn+1 − xn‖ ≤ ‖xn+1 − vn‖+ ‖vn − un‖+ ‖un − xn‖ → 0,

as n→∞.
Step 5. limn→∞ ‖vn − Tvn‖ = 0.
Proof of Step 5. It is easy to see that the assertions of Steps 4 and 5 of Theorem 3.1
hold in our assumptions. From this fact and ‖xn−xn+1‖ → 0, by a proof like that in
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Step 9 of Theorem 3.1, we can get ‖vn+1 − vn‖ → 0, as n→∞. By (4.7), we obtain
from Lemma 2.3 that limn→∞ ‖vn − Tvn‖ = 0.
Step 6. {xn} converges weakly to an element of F .
Proof of Step 6. Applying Steps 2, 3 and 5, by a proof similar to Step 10 of Theorem
3.1, we can show that the weak ω-limit set of {xn}, ωw(xn), is a subset of F .

Now, (4.4) and the Opial’s property of Hilbert space imply that ωw(xn) is singleton.
Therefore, xn ⇀ z0 for some z0 ∈ F . �

Corollary 4.2 Let C be a nonempty closed convex subset of a Hilbert space H,
T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive mapping
in the intermediate sense with sequence {γn} such that

∑∞
n=1(γn + cn) < ∞, ψ =

{Tj : j = 1 . . . N} a finite family of strictly pseudocontractive mappings with 0 ≤ κ < 1
from C into C, G = {Fj : j = 1, . . . ,M} a finite family of bifunctions from C × C
into R which satisfy (A1)-(A4), and F := Fix(T ) ∩ Fix(ψ) ∩ EP (G) 6= ∞.

Let {αn} be a sequence in [0, 1] such that 0 < δ ≤ αn ≤ 1 − κ − δ, {λk,n}N
k=1

sequences in [c, d] ⊂ (0, 1 − κ) such that limn |λk,n − λk,n+1| = 0 (1 ≤ k ≤ N) and
{rj,n}M

j=1 sequences in (0,∞) such that lim infn rj,n > 0 and limn
rj,n

rj,n+1
= 1 for every

j ∈ {1, . . . ,M}.
If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,


un = JFM

rM,n
. . . JF2

r2,n
JF1

r1,n
xn,

vn = ((1− λN,n)I + λN,nTN ) . . . ((1− λ1,n)I + λ1,nT1)un,
xn+1 = (1− αn)vn + αnT

nvn,

then the sequence {xn} converges weakly to an element of F .

Remark 4.3 We may put

vn = PC(I − λN,n(I − TN )) . . . PC(I − λ2,n(I − T2))PC(I − λ1,n(I − T1))un,

in the schemes of Corollaries 3.2 and 4.2, and obtain schemes for families of non-self
strictly pseudocontractive mappings.
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