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1. INTRODUCTION

Let C be a nonempty closed convex subset of a Hilbert space H. We recall some
definitions.
(i) A mapping T of C into H is called nonezpansive if

|72 =Tyl < |z —yl, VayeC.
(ii) T is strictly pseudocontractive if there exists k with 0 < k < 1 such that
|72 = Ty|l? < la = ylI? + w||(I = T — (I = T)y|%, for all z,y € C.

If K =0, then T is nonexpansive.
(iii) A mapping T : C — C is called asymptotically nonexpansive (cf. [11]) if there
exists a sequence {k,} of positive numbers satisfying the property lim, . k, = 1
and

|T"2 —T"y|| < kpllz —yl, Vr,yeC, n>1.
(iv) T : C — C is asymptotically nonexpansive in the intermediate sense [4] provided
T is uniformly continuous and

limsup sup (||7"z — T"y|| — ||z — y||) < 0.

n—oo xz,yeC
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(v) A mapping T : C — C is said to be asymptotically k-strict pseudocontractive
mapping with sequence {7,} [13] if there exists a constant € [0,1) and a sequence
{¥»} in [0, 00) with lim, . 75 = 0 such that

|77 =TI < (14 3)llz = yl* + Klle = T2 — (y = T"y)

for all z,y € C and n > 1.
(vi) T : C — C is asymptotically k-strict pseudocontractive mapping in the intermedi-
ate sense with sequence {7, } [21] if there exists a constant x € [0,1) and a sequence
{¥»} in [0, 00) with lim, . 75 = 0 such that

limsup sup (|72 = T"y|1* = (1 +va)lle = yl* = Kllz = T — (y = T"y)|I*) < 0.

n—oo z,yeC
Throughout this paper we assume that

on = sup {|[T"e — T"y? = A+ )l = ylI* = slle = Tz — (y = T"y)|I*}.
x,ye

Then ¢, > 0 for all n > 1, ¢,, — 0 as n — oo and the above reduces to the relation
1Tz — T y|1? < (1 + )l =yl + &llz = Tz — (y = T"y)||* + cn

for all x,y € C and n > 1.

There are some iterative methods for approximation of fixed points of the mappings
defined above; see, for instance, [14, 17, 20, 21, 22, 24, 27].

Let F': C' xC — R be a bifunction. The equilibrium problem for F' is to determine
its equilibrium points, i.e. the set

EP(F):={xeC:F(x,y) >0Vy e C}.

Let G = {F;}icsr be a family of bifunctions from C x C to R. The system of
equilibrium problems for G = {F;};cs is to determine common equilibrium points for
g = {Fi}ie[, i.e. the set

EP(G):={z€C: F(z,y) >0y e CVieI}. (L1)

Many problems in applied sciences, such as monotone inclusion problems, saddle point
problems, variational inequality problems, minimization problems, Nash equilibria in
noncooperative games, vector equilibrium problems, as well as certain fixed point
problems reduce into finding some element of EP(F'), see [2, 9, 10, 18]. The formula-
tion (1.1), extends this formalism to systems of such problems, covering in particular
various forms of feasibility problems [1, 8].

Recall that a mapping A : C — H is called a-inverse-strongly monotone [3], if
there exists a positive real number « such that

<A$ - Ay,x - y> > Oz”A,CE - Ay||27 vxay e C.

It is easy to see that if A : C — H is a-inverse-strongly monotone, then it is a
é—Lipschitzian mapping.

Let A: C — H be a mapping. The classical variational inequality problem is to
find u € C such that

(Au,v —u) >0, Ywe C. (1.2)
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The set of solutions of variational inequality (1.2) is denoted by VI(C, A). Put A =
I —T,where T : C — H is a strictly pseudocontractive mapping with x. It is known
that A is 152-inverse-strongly monotone and A~*(0) = Fiz(T) = {z € C : Tz = z}.

Recently, weak and strong convergence theorems for finding a common element of
EP(F), VI(C,A) and Fiz(T), have been studied by many authors (see e.g., [5, 6, 18,
19, 23, 25, 26] and references therein). But, in the case that T is an asymptotically
k-strict pseudocontractive mapping, there were not any strong convergence result for
finding an element of EP(F)NVI(C,A) N Fiz(T) (or even EP(F) N Fiz(T) and
VI(C,A)n Fix(T)).

In this paper, motivated by [18, 19, 21, 23, 25, 26], we introduce iterative algo-
rithms for finding a common element of the set of fixed point for an asymptotically
k-strict pseudocontractive mapping in the intermediate sense, the set of solutions of
a system of equilibrium problems EP(G) for a family G = {F; : i = 1,..., M} of
bifunctions and the set of solutions of variational inequalities VI(C, A;) for a family
{4; : j = 1...N} of a-inverse-strongly monotone mappings from C into H in a
Hilbert space H. We establish some weak and strong convergence theorems of the
sequences generated by our proposed algorithms. We obtain our strong convergence
results via the hybrid method. Our results are new even for asymptotically x-strict
pseudocontractive mappings.

2. PRELIMINARIES

Let C be a nonempty closed and convex subset of H. Let FF: C x C — R be a
bifunction. The equilibrium problem for F' is to determine its equilibrium points, i.e.
the set

EP(F):={z€C:F(x,y) >0Vy € C}.
Given any 7 > 0. The operator JI" : H — C defined by

1
JE(x) = {zEC:F(z,y)—i—;(y—z,z—x} >0Vy e C}
is called the resolvent of F'.

Lemma 2.1 ([9]) Let C be a nonempty closed convex subset of H and F': Cx C —
R satisfy
(Al) F(z,xz) =0 for allz € C;
(A2) F is monotone, i.e. F(x,y)+ F(y,z) <0 for all z,y € C.
(A3) for all x,y,z € C,

lirtn iglfF(tz + (1 —-t)z,y) < F(z,y);

(A4) for allx € C, y — F(x,y) is convex and lower semicontinuous.
Then:
(1) JE is single-valued;
(2) JE is firmly nonexpansive, i.e.

172 = I y? < (JF e = Iy, —y), for allz,y € H;
(3) Fia(JF) = EP(F);
(4) EP(F) is closed and conver.
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Recall the metric (nearest point) projection Pe from a Hilbert space H to a closed
convex subset C' of H is defined as follows: given x € H, Pgx is the only point in C
with the property

o~ Pel| = int{lle — yll -y € C}.
It is known that Po is a nonexpansive mapping and satisfies:
| Pox — Poy||? < (Pex — Poy,x —y), Va,y € H. (2.1)
P is characterized as follows.
y=Pox < (x—y,y—2) >0, VzeC. (2.2)
In the context of the variational inequality problem, this implies that
u€eVI(C,A) <= u= Po(u— MNAu), VA>0. (2.3)

A set-valued mapping T : H — 2% is said to be monotone, if for all z,y € H, f € T,
and g € Ty imply that (f — g,z — %) > 0. A monotone mapping T : H — 2 is said
to be maximal, if the graph G(T') of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping is maximal, if and
only if for (x,f) €e Hx H, {(f — g,z —y) >0, V(y,g9) € G(T) imply that f € Tx. Let
A : C — H be an a-inverse-strongly monotone mapping and let Ngv be the normal
cone to C' at v € C| i.e.,

Nev={we H: {(v—u,w)>0,Yu e C},

and define
To — Av+ Nev, wveC;
) @, v e C.

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, A) (see [12, 16]).
It is easy to show that for given A\ € [0,2q], the mapping (I — \A) : C — H is
nonexpansive.

Lemma 2.2 ([15]) Let {,}, {Bn} and {v.} be three sequences of nonnegative
numbers satisfying the recursive inequality:

Ont1 < Bnbn + Yn for alln € N.

If B > 1, 500 (B — 1) <00 and > 07 | v < 00, then lim, .o 6, exists.

Lemma 2.3 ([21]) Let C be a nonempty closed convex subset of a Hilbert space
H and T : C — C a continuous asymptotically k-strict pseudocontractive mapping in
the intermediate sense. Then
(a) if T is uniformly continuous and {x,} is a sequence in C such that ||xn+1 —n| —
0 and ||z, — T"xy| — 0, as n — oo, then ||z, — Tx,| — 0, as n — oo;

(b) I =T is demiclosed at zero in the sense that if {x,} is a sequence in C such that
xp, = x € C and limsup,,_, . limsup,,_, . [|xn — T™2,|| =0, then (I —T)x =0
(c) F(T) is closed and conver.
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3. STRONG CONVERGENCE

The following is our main strong convergence result, which is a generalization of
[21, Theorem 4.1].

Theorem 3.1 Let C' be a nonempty closed convex subset of a Hilbert space H,
T :C — C a uniformly continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense with sequence {v,}, G = {F; : j = 1,...,M} a finite
family of bifunctions from C x C into R which satisfy (A1)-(A4), {Ax:k=1...N}
a finite family of a-inverse-strongly monotone mappings from C into H, and F :=
NA_,VI(C, Ax) N Fiz(T) N EP(G) nonempty and bounded.

Let {an} be a sequence in [0,1] such that 0 < § < o, < 1 — K for all m € N,
Dk}, sequences in [c,d] C (0,2a) such that limy, [Agn — Mens1| = 0 for every
ke {1,...,N} and {rj,}}L, sequences in (0,00) such that liminf, r;, > 0 and
lim,, 7,0 /7jmy1 = 1 for every j € {1,..., M}.

If {x,} is the sequence generated by x1 =x € H and Vn > 1,

Uy, = ijyn "'ng,n‘]f:l.nxm

Un = Pc([ — )\N,nAN) e Pc(I — )\QmAQ)Pc(I — Al,nAl)un,

Yn = (]- - an)vn + O[nTnUn,

Cn={2€ H: |lyn — 2| < lzn — 2| + 0n},

Qn={2€ H:{(x, —z,0 —xy,) >0},

Tpt1 = Po,nq, (2),
where 0, = ¢, + YA, and A, = sup{||z, — p||*> : p € F} < o0, then the sequences
{zn} and {yn} converge strongly to Pr(x).
Proof. Take

Tn=Jf gk gk (k=1 M),

PF = Po(I — MenAr) ... Po(I = Mgy A2)Po(I — M\ nAy), (k=1,...,N),
and let J? := I and P2 := I. So, we can write
Yn = (1 — ) PN TM 2, + a, T"PN TM g,

We shall divide the proof into several steps.

Step 1. The sequence {z,} is well defined.

Proof of Step 1. The sets C,, and @Q,, are closed and convex subsets of H for every
n € N; see [21]. So, C,, NQ,, is a closed convex subset of H for any n € N. Let p € F.
Since, for each k € {1,..., M}, Jrik,n is nonexpansive, it follows, by Lemma 2.1,

lun = pll = 172 20 = pll = 17" 20 = 0l <l =2l (3.2)
On the other hand, because A : C' — H is a-inverse-strongly monotone and A, ; €
[e,d] C [0,2a], Po(I — A\ Ag) is nonexpansive. Thus, P2 is nonexpansive. Also, by
(2.3), we have PYp = p. Thus,

[on =2l = 1P un = Pa'pll < llun = pll < [lzn —pl- (3:2)
So, because a,, < 1— kK, we get

g = pII* = 1(1 = an) (vn = p) + (T vy = p)II?
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= (1= an)[vn =PI + @nllT™0n = |2 = (1 — @) vn — T
< (1= an)llzn =l + an((L+va)lon = 2l + &llon = T"0n|1* + ¢n)
—an(1 = ag)|lvn — T, 12
<llzn *pHQ +an(s = (1 —ay))llvn — Tn”ﬂ”2 +cn +Mmln
<wn = pI* + 6, (3.3)
So, we have p € C,,; thus, F C C,, for every n € N. Next, we show by induction that
FCC,NQy,

for each n € N. Since F C C7 and Q1 = H, we get F C C7 N Q1. Suppose that F C
Ci N Qy, for k € N. Then, there exists zx+1 € Cy N Qy such that z441 = Po,ng, (X)-
Therefore, for each z € C;, N Q, we have

(Thy1 — 2, — Tpy1) > 0.
So, we get
FCCrNQr CQryr-
From this and F C C,, (Vn), we have
F C Cry1 N Qp1-

This means that the sequence {z,} is well defined.
Step 2. The sequences {zy,}, {yn}, {TFz, 1M, and {Pku,}_| are bounded and

lim ||z, —z| =¢, forsomeceR. (3.4)

Proof of Step 2. From x,41 = Pc,ng, (x), we have
Tt —z|| < ||z —z||, Yz € C,, N Q.
Since Pr(x) € F C Cp, N Qy, we have
[#ns1 — 2| < [|Pr(z) — ], (3.5)
for every n € N. Therefore {z,,} is bounded. From this, the sequence {A,,} is bounded
and consequently #,, — 0 as n — oco. So, from (3.1), (3.2) and (3.3), the sequences
{Tkx M {PFu, 3 and {y,} are also bounded.
It is easy to show that z,, = Pg, (z). From this and z,4+1 € @), we have
[ = x|l < |z = 2,
for every n € N. Since {x,} is bounded, there exists ¢ € R such that (3.4) holds.
Step 3. lim,—oo ||€n — Tnt1] = 0.
Proof of Step 3. Since z, = Py, (x), Tnt1 € Qn and (T, + Tn41)/2 € Qp, we have

Ty + xn+1 ||2
2

I = 2 < o -
1 1
=I5 = ) + 5 — T

1 1 1
= Sllz =2l + 3l — zsa|? = Fllan — 2ol
So, we get

1
&= 2nsa P = 5l — wall®.

N

i”xn - xn+1||2 <
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From (3.4), we obtain lim,, o ||, — 251> = 0.
Step 4. Let {wy} be a bounded sequence in H. Then

Tim [Ty, — Thewnl| =0 (3.6)

for every k € {1,...,M}.
Proof of Step 4. From [7], we have that

H F _ 7Fk
h,}}l HJTk,n«i»lwn Jrk.n

wal=0 (3.7)
for for every k € {1,..., M}. Note that for every k € {1,..., M}, we have
k Fr 7k—1
jn = JT]:nj’ﬂ .
So,
1T wn = Trwallll < NT5E L, Taviwn = I35 Tt wnll

Fy. Fi_ k—2 F Fy_ k—2
+||J7"kk,n J?“kv)i11,rrl+1‘7n+1 Wn — JTk'k,n J'f'kk—ll,n ‘7n+1 w”” +..

SO0 AR ST LI kY ST Cl Yl EL RN L il Y ik

Thkon“Th—1,n 3,n Y T2,n4+1"T1,n41 Tk Th—1,n T3,n Y T2,n Tl,n+1w"H
Fy 7Fk—1 Fs g1F> 1B _ 7P 7Fk-1 Fs g1F> 1B
+HJTk,nJ7‘k—1,n e J?”3,nJT2,nJT1,n+1w” Jrk,nJrk—l,n e JTs,n‘Jrz,nJm,nw"”
Fy k=1, 71F, 7k—1 Fy_1 k=2 1Fu_y 7k—2
S ||J’l‘k7n+1 n+1 Wn, J’I‘k,nj’n-‘rl wnH + ||JT)C_17,—L+1 n+1 Wn, J’I“k_l,nj’n-‘rl wnH

o I TE = TE TE w4+ T wn = T wy|

T2,n4+1"T1,nt1 T T2,n " Tl n+1 Tim41 T T1,n
k
. i—1 . i—1
= Z ||J7€fn,+1(u7$+1wn) - Jf;{n (jer-lwn)H-
j=1

From this and (3.7), it is easy to conclude (3.6).
Step 5. Let {w,} be a bounded sequence in C. Then

nh_)IIOlO ||PC(I — )\k,n—i-lAk)wn — PC(I — )\k,nAk)wnH = 0,

and
lim ||P,’§+1wn — PﬁwnH =0

for every k € {1,...,N}.
Proof of Step 5. Since {w,} is bounded and Ay for k € {1,..., N} a Lipschitzian
mapping, we know that

L := sup{|| Axwn ||} < oo.

Now,
| Pc(I — Ment1Ar)wn — Po(I — Ag nAk)wh ||
S ||(I - )\k,n+1Ak)wn - (I - )\k,nAk)wn”
= | Ment1 — MenlllArwn || < | Aknt1 — AenlL — 0, asn — oo.
Now, applying a technique similar to that used in proof of Step 4, it is easy to prove
the second assertion.
Step 6. limy, o0 |0 — ynll = 0.
Proof of Step 6. From the convexity of ||.||? and z,, 41 € C,,, we have

ITn — 1 1 1
12 < Sl = sl + Sl1onsn = gl < ll2n = s + 500,
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Since 6,, — 0 and ||z, — Tp41]| — 0, the desired result follows.
Step 7. lim,, . || TFz, — TFH 2, || =0, Vk € {0,1,...,M — 1}.
Proof of Step 7. Let p € F and k € {0,1,...,M — 1}. Since JHeR g firmly

k+1,n
nonexpansive, we obtain
k k
lp = Ta a2 = 50 p = Tkt Tiwnl®
< (JFr TR, — p, T¥an — p)
1
= SRR Tawn = P + 1T 5 wn = pl* = | Twn = IE8E, Tawnl)-

It follows that
IT5 =l < Nl = pl? = | Toen — T a1
Therefore, by the convexity of ||.||?, we have
lyn =2l = (1 = an)vn = plI* + anl| "0, = plI* — @n(l = an)|lvn — T >
< (1= an)lzn = plI* + an((L+ ) lvn = plI* + &llvn = T"0n]|* + c5)
—an (1= ap)||vn — T, ||
< (L= an)lzn = pl? + anllvn = pl* + anlk — (1 = an))llvn = ™01 + e + 1l
< (1 —an)|z, —p||2 + anllv, — p||2 +0,  (3.8)
< (1 —ap)|lrn _pH2 + an”jé“rlxn —p||2 +6n
< (1= an)llzn = pl? + an(lzn = pl* = [Ty en — T3 @nl®) + 60n
= llzn —pl* - Oén”jfmn - jf+1xn”2 +bn.

Since {ay} C [4, 1], we get

5”\77]:1% - jr}f+1xn|‘2 < O‘n”jvlfxn - jrlerlxn”Q

< llan = pl* = llyn = 2l + 00 < llzn = yall(lzn = 2l + llyn = pl) + -

From this and Step 6, we get the desired result.
Step 8. lim,, .o ||PFu, — PET1u,| =0, Vk € {0,1,...,N — 1}.

Proof of Step 8. Since {Ay : k = 1...N} are a-inverse-strongly monotone, by the
assumptions imposed on {Ay ,} for given p € F and k € {0,1,..., N — 1} we have

HP:;H_lUn _p||2

= |Pc(I = Mot 1,nArs1)Pitin — Po(I = A1 nArgr)pl

<N = Mg 1 Ar)Phun — (I = A1 Arr1)pl?
<Pt = plI* + Mt 1,0 Akt 1,n — 20) | A1 Plun — Agpap])?
< lwn = plI* + e(d = 20) || Ap1 Pt — Apyapl®.
From this and (3.8), we have
yn —plI> < (1 = an)llzn — plI* + anllvn — pl* + On
< (1= an)|en = pl? + an P un —pl> + 0, (3.9)
< (1= an)llzn = plI* + an(llzn — plI* + c(d — 20) | Ag 11 Pun — Ag1apl?) + bn
= |lzn — pl? + c(d — 20)n || Ak 11 Pryun — Agg1pl| + On.
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So,
c(2a = d)an || A1 Prun — Agapl® < llzn = pl* = llyn — pl* + 6,

< lzn = ynll(llzn = pll + lyn — pll) + On.
Since a,, C [4,1], 8, — 0 and Step 6, we obtain

| Aps1 P — Agiapl — 0 (0 — o). (3.10)
From (2.1) and the fact that I — A\g+1,,Aky1 is nonexpansive, we have
[Py un = plI? = | Po(I = Aes1,nAr1) Pt — Po(I = M1 Arr1)p|)?
< {(PRun = Mot 1,0 A1 Prtin) = (0 = Met1,n Ap410), Py — p)
= %{II(R’iun — Mt 1Ak 1 Phun) = (0= Mer1n Aeap) [I” + PR u — pl?
—[[(Phun = Aes1.nArt1Prun) = (0 = Air1,nArg1p) — (Pt uy — p) [P}
< 2 (P — pl? + 25— pl?
—||7’7'§Un - PvliJrl“n - /\k+1,n(Ak+1,P£un - Ak+1p)”2}
= %{Hpﬁun = pl? + 1Py = pl? = | Pyun — Pyt tu,|?
+2X e+ 1,0 Py — PE g, Ap 1 PRy, — Apip)
A1l Ak Prun — Aggapl*}.
This implies that
1Py — > < | Prun — > = [|Prun — PhH un|?
+2X 64 1,0 (Pity, — Pt g, Aps1Plun, — Agip)
—)\i+1,n||Ak+17)ﬁun - Ak+1p||2
<l = pl* = 1Phun — Py tu, |
+2X 6410 Py — PE  uy,, A1 PRun, — Aiap).
Then, from this and (3.9), we have
lyn = plI* < (1= an) |20 = pl* + an| Py up — p)|* + 6,
< (1= ap)l|zn = o + an{llzn = plI* = | Prun — Potunlf?
21,0 (Phttn — P, Ap 1 Pt — Aggap)} + On
<l = plI* = anl|Prun — Py unll?
21,0l Pt — P || A1 Pn — Aggapl + b,
which implies that
S| Phun — Potunl® < anl|Prun — PR un|? <z — ol = lyn — plI?
210l Phun — P un ||| Ap i1 Prtin — Apgapll + O

Hence it follows from 6,, — 0, Step 6 and (3.10) that ||PXu,, — P¥*1u,| — 0.
Step 9. limy, 0 ||vr, — Tvy|| = 0.
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Proof of Step 9. Observe that
N-1
[un — vnll = ”Pgun - Pr]zvun” < Z H’P,]fun - Pvlerlun”a
k=0

and
M—1

|27 — unll = ”jr?xn - «wawnH < Z erfxn - jrlf-HmnH-
k=0
So, by Steps 7 and 8, we have ||u,, — v,|| — 0 and ||, — u,|| — 0, as n — oo. On the
other hand,
anT"vp = Y — (1 — o) Up,.

So, we have

8|vn — TM0n || < anllvn — T 0y ||

= Hyn - (1 - Oén)Un - O‘n”n” = Hyn - UnH
< Mlyn — znll + |20 — un |l + lun — va|| — 0, as n — oo.
From these and Step 6, we obtain
lim ||v, — T"v,| = 0. (3.11)
n—oo
In this stage, note that
v — vny1]| = HP’I']LVun - 731]7u\[-|-1un+1||
< HPrJLVUn - rjzv+1“n|| + |‘Prjy+1“n - ’PTILV+1Un+1||
< ”Prlzvun - P7€V+1un“ =+ ”un - un+1||
= ||Prjlvun - Pﬁ;—l“ﬂ” + ||~77{V[xn - jr%—lxﬂJrl”
N N M M M M
S ||7Dn Un — Pn+1un|| + ||*7n Tn — jnJrlelH + ||\7n+1x’ﬂ - jn+1xn+1H
N N M M
< ”Pn Un — Pn-l—lu"” + ||jn Tn — jn+1$n|| + ”xn - xn+1||-
It follows from this and Steps 3, 4 and 5 that ||v, — vn41]] — 0, as n — co. By (3.11),
we obtain from Lemma 2.3 that lim,_, ||vn, — Tv,|| = 0.
Step 10. The weak w-limit set of {z,,}, ww(zy), is a subset of F.
Proof of Step 10. Let zp € wy(xy,) and let {x,, } be a subsequence of {z,} weakly
converging to zg. From Steps 7 and 8, we obtain also that
jylfmxnm — 20,

forall k € {1,..., M}, and

P”]:m u"“’” - ZO’
for all k € {1,..., N}. In particular, u,,, — zo and v,,, — z9. We need to show that
29 € F. First, we prove 29 € Fiz(T). Since lim, .o ||vn — Tv,| = 0 by Step 9, it
follows from uniform continuity of 7' that lim, . ||[vn, — T™v,|| = 0 for all m € N.

So, from v,,, — 2p and Lemma 2.3, we get

zo € Fixz(T).
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Now, we prove z9 € NI, VI(C, A;). For this purpose, let k € {1,..., N} and T}
be the maximal monotone mapping defined by

| Agz+ Ncz, zeC;
Tkm_{ @, z ¢ C.

For any given (z,u) € G(T}), hence u— Az € Noz. Since PFu,, € C, by the definition
of N¢, we have

(z = PFuy,u— Agz) > 0. (3.12)
On the other hand, since Pﬁun = PC(Pﬁflun — )\k’nAkPﬁflun), we have
(z — Pﬁun,Pffun — (Pﬁ‘lun - )\k,nAkP,]f_lun» > 0.
So

k. pk—1
Potn =Py tn A PuUn | g ph-lyy > 0.
k,n

By (3.12) and the a-inverse monotonicity, we have
(2 = Po s 0) 2 (2= Py tn,, Ax2)
> (2 =Pk w,,., A2)

PE up,, — PFlu,
Nom, m MNm m +Ak7)s;1unm>

(z — P,lfun,

- <Z - ,Prlfmunma

Akf”nz
= (z—PF Apz — A, PE )
= (% nmunma k% k nmunm

+{z = PE wp,, AkPE w,, — ALPE M, )

k k—1
anunm - P’r‘bm u”m>
)\k,nm

> (z— Pﬁmunm, AkPﬁmunm — AkP,’f;lunm>

PE uy,, — PFlu,,
)\k;,nm >

—zpand {A; : k=1,...,N} are

_<Z - Prlimunmv

2
—(z2 =Py, un,,,

Since |PXTMx,, — P 1TMa, || — 0, PE u,
Lipschitz continuous, we have

m

ngnoo@ —PE wp,, u) = (2 — zo,u) > 0.
Again since T} is maximal monotone, hence 0 € Tyzy. This shows that zg €
VI(C, Ay). From this, it follows that
20 € NN VI(C, Ay).
Note that by (A2) for given y € C and k € {0,1,..., M — 1}, we have
1

Tk+1,n

(y — T, TF e, — TFe,) > Fa(y, T8 a,,).
Thus
jrlf::lxnm - jrlfmxn

k+1
<y - jn;: L s
Tk+1,mm

™Y > Frga(y, Tpta,,,). (3.13)
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By condition (A4), F;(y,.), Vi, is lower semicontinuous and convex, and thus weakly
semicontinuous. Step 7 and condition liminf,, r;, > 0 imply that

1 7k
jnm xnvn jnrmxnm,

Tk+1,nm

— 0,

in norm. Therefore, letting m — oo in (3.13) yields
Fit1(y, 20) < 1gan+1(y,«7fI1$nm) <0,

for all y € C and k € {0,1,..., M — 1}. Replacing y with y; := ty + (1 — t)zo with
t € (0,1) and using (Al) and (A4), we obtain

0= Frr1(ye, yt) < tFev1(Ye, y) + (1 — ) Fr1(ye, 20) < tFkp1(ye,y)-

Hence Fj1(ty + (1 — t)zg,y) > 0, for all t € (0,1) and y € C. Letting t — 0T
and using (A3), we conclude Fyy1(20,y) >0, for all y € C and k € {0,..., M — 1}.
Therefore

M
20 € () EP(Fy) = EP(G).
k=1
Step 11. The sequences {z,} and {y,} converge strongly to Pr(x).
Proof of Step 11. Let zp € wy(xy,) and let {x,, } be a subsequence of {z,,} weakly
converging to zg. From (3.5) and Step 10, we have

e = Pr()]| < la — 2 < liminf & - @, |
m—0o0

<limsup ||z — 2y, || < || — Pr(x)]|.
m— 00
Hence
i [le = @0, =l — 20l = o = Pr(a)].

Since zg € F and H is a Hilbert space, we obtain
X, — 20 = Pr(x).

Since zg € wy(zy) was arbitrary, we get x, — Pr(z). O

Corollary 3.2 Let C' be a nonempty closed convex subset of a Hilbert space H,
T :C — C a uniformly continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense with sequence {v,}, ¥ ={T; : j =1...N} a finite family
of strictly pseudocontractive mappings with 0 < k < 1 from C into C, G ={F; : j =
1,..., M} a finite family of bifunctions from C' x C into R which satisfy (Al)-(A4),
and F := Fixz(T) N Fiz(vY) N EP(G) nonempty and bounded.

Let {an} be a sequence in [0,1] such that 0 < 6 < a, < 1—k for alln € N,
{kn 3, sequences in [c,d] C (0,1 — k) such that limy, [Agn — Aknt1]| = 0 for every
ke {l,...,N} and {Tj,n}jl\il sequences in (0,00) such that liminf, r;, > 0 and
limy, 7, /7jns1 = 1 for every j € {1,..., M}.

If {x,} is the sequence generated by x1 = x € H and Vn > 1,
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— JFMm Fy gFy
- JTM n " JTz n JT1 nTno

((1 - )\N n)I + )\N nTN) ((1 - Al,n)I + Al,nTl)unv

yn - (1 - an)vn + anT Un,

Cn = {Z cH: |y, — ZHQ < ||xn - Z||2 + en}v

Qn={2€H:{(x,—z,2—1x,) >0},

Tn41 = PC'T,,ﬁQn (SC),
where 0,, = ¢, + YA, and A, = sup{||z, —p||* : p € F} < 00, then the sequences
{z,} and {yn,} converge strongly to Pr(x).
Proof. Put A; = I —T; for every j € {1,...,N}. Then A; is %—inverse—strongly
monotone. We have that Fiz(T}) is the solution set of VI(C, A;); i.e., Fiz(T;) =
VI(C,Aj). Therefore, Fiz(y) = N_,VI(C, Ag) and it suffices to apply Theorem
3.1. O

At this stage, considering Theorem 3.1, we present a numerical example in Hilbert
space 12

Example 3.3 Let H = [ and C = > N [];2,[0,1]. For each (wy,ws,...) € C, we
define T'(wy, wa,...) = (Th(w1), T2(w2), ... ), where for any natural number k,

zikt iftelo ,Qk}
Ti(t) =
0 ift € (gr,1].

It is easy to show that

1
=) <|t—s*+

n mn 1
Tt —Tj's|* < (ZW“ s| + i) S

o
forallt,s € [0,1] and k,n € N. (See also [21, Example 1.6]). Hence, for (wy), (zx) € C
and n € N, we have

177 (wi) = T (20 1* < 1(Twr) — (T ze) |

= Z'Tk wy, — T z|* < Zﬂwk — 2 + 4,m}

= ) ~ I+ g

Therefore, T : C — C'is an asymptotically k-strict pseudocontractive mapping in the
intermediate sense with k =0, v, =0 and ¢, = 4n 7, for all n. It is easy to see that
T is discontinuous at (2, 212 ey 2%, ...). Now, taking «,, = 1, for all n, A = 0, for
k=1,...,N, F =0,forj=1,...M and z; = x = (%,0,0,...), in Theorem 3.1, we
have 9 = 4n 7 Yn = T"0p, uy = Poxyp and v, = uy, for all n. In particular, we
may compute {z,} as follows:

z € Cr, Dy =[? :>I2:P010Q1(1?) =Z;

z€Cy, Dy=1?= 25 = Pe,ng, (x) =

1.1
Y3 = 23( 0,0,...),
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3
Cy={z € llys — 2I1* < g — 21 + )
1 1 3
_ 2, 2 2
_{(ZZ)GZ ‘27_Zl| §||§_Zl|| +43_1}

={(z) €l?: 2 <0/3356717}, D3 =[?
= x4 = Pcyng, () = (0/3356717,0,0,. .. );

1
ys = 57(0/3356717,0,0,.....) = (0/0209795,0,0,...),

Cy={(z) €1?: 2 <0/197018},
Dy ={(z) €1?: 2 <0/3356717}
= x5 = Pc,nq, (r) = (0/197018,0,0,...);

1
ys = 55(0/197018,0,0,....) = (0/0061568,0,0, ....),

Cs = {(z) € 1* : z; <0/1092623},
Ds = {(z) €1*: 2 <0/197018}
= 16 = Poyngs () = (0/1092623,0,0, ... );

1
Yo = 55(0/1092623,0,0,.....) = (0/0017072,0,0,...),

Cs = {(2) € 1% : 21 <0/0588905},
Dg = {(2) €1 : z; <0/1092623}
= 17 = Pcyng, () = (0/0588905,0,0, . .. );

Note that the argument used for computing C4 have been used for computing C5 and
Cs. As we expected, it is easy to see that {x,} tends to 0.

4. WEAK CONVERGENCE

The following is a weak convergence theorem which extends [21, Theorem 3.4].

Theorem 4.1 Let C' be a nonempty closed convex subset of a Hilbert space H,
T :C — C a uniformly continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense with sequence {y,} such that Y~ (yn+cp) < 00, G = {Fj :
j=1,...,M} a finite family of bifunctions from C x C into R which satisfy (A1)-
(A4), {A : k = 1...N} a finite family of a-inverse-strongly monotone mappings
from C into H, and F :=NY_,VI(C, A) N Fiz(T) N EP(G) # .

Let {an} be a sequence in [0,1] such that 0 < § < a, < 1— K =0, {Mentd,
sequences in [c,d] C (0,2a) such that lim, |A\g p—Agnt1| =0 for everyk € {1,...,N}
and {rj,n}jM:l sequences in (0,00) such that liminf, r;, > 0 and lim, r; ,/7jnt1 =1
for every j € {1,... ,M}.

If {x,} is the sequence generated by x1 = x € H and Vn > 1,
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— JFm Fy 1Fy
Up = Jp SR T

Op = Po(I = ANnAN) - .. Po(I — Moy A2)Po(I — Ay Ay ),
Tnt1 = (1 — apn)v, + @y Ty,

then the sequence {x,} converges weakly to an element of F.
Proof. We will apply the notations used in proof of Theorem 3.1.
Step 1. {z,} is bounded and lim,,_,, ||z, — p|| exists for all p € F.
Proof of Step 1. Let p € F. Then

2041 = pl1? = [I(1 = an)(vn — p) + @n(T"v, — p)
= (1 —an)llvn _p”2 + an[|T" vy, _pH2 —an (1 —ay)llvn — TnUnHQ
< (1= an)lln = Pl + an (1 + 70)llom =PI + llim — T 2 + )
—an(1 = ap)llvn = T, |?
=(1—ay)llzn _pH2 + (1 +9n)[lvn —p||2 —ap(l —ap — K)|lvn — TnUnH2 + QnCp
< (1= an)llzn = pl? + an( +v)[on = plI? = 8[Jvn — T v, > + ¢ (4.1)
< (L4 y)llzn = )12 = an(l = an = K)|Jvn = T 0, > + cn
< (Ut m)n = plP = 8o — Tl + e (4.2)
< (Lt y)lzn —pl* +en (43)
By Lemma 2.2, (4.3) and the assumption Y~ (7, + ¢,) < 00, we obtain that

I?

lim ||x, — p|| exists. (4.4)

Hence, {z,} is bounded.
Step 2. lim,, .« || T ¥z, — TFH 2, || =0, Vk € {0,1,...,M — 1}.
Proof of Step 2. For p € F, as in Step 7 of Theorem 3.1, we get
175 @n = pl* < llen = pl1? = 1T5 @0 — T3 el
for all k € {0,1,..., M — 1}. Therefore, by (4.1), we have
[Zn+1 _pH2 < (1 —an)llz, - p||2 + an (1 +yn)llvn — pH2 +cn
< (1= an)lzn = pl* + an(l + ) | T0 a0 — pl* +cn
< (1= an)llw, - pH2 + an (1 + ) {llzn — p||2 - ||j,’fxn - j,]f+1xn||2} +cn
<|l@n — pH2 - 5H~7vlfxn - ijrlxn”Q + Ynllzn _p”2 + Cn.
Since v, — 0 and ¢, — 0, applying (4.4), we have
6”‘77];:1‘” - jjf+1xn||2
< zn = pl? = l#ntr = pI? +nllzn = pI* + e — 0.
So, we get the desired result.
Step 3. lim,, .« [|PFu, — PETlu,| =0, Vk € {0,1,..., N — 1}.
Proof of Step 3. For p € F and k € {0,1,...,N — 1}, like that in Step 8 of Theorem
3.1, we get

PR s = pll? < llzn = pl* + e(d — 20) | Ak1PRun — Apsap]®.
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From this and (4.1), we have
Zn+1 —p||2 < (1 —an)llz, — p”2 + an (1 +yn)llvn — p||2 +cn
< (1= o)z, _p||2 +an(1+ 7%)||P£+1un - p”2 +cn (45)
< (= an)llzn = pl* + an (L + ) {lzn —plI? + e(d = 20) | Apr1 Prun — Appl*} +en
= ||z = p* + ¢(d = 20)an || A1 Prun — Akl + vnllzn — ol + cn.
So,
c(2a — d)ou || Agp1Piuy — Aggap|)?
< [lzs _pH2 = |Znt1 _pH2 + YullTs _pH2 +cn— 0.
Since 0 < § < a, <1 — Kk — 6§, we obtain
| Ak 1PEun — Agiapl — 0 (n—o0).  (46)
Again, like that in Step 8 of Theorem 3.1, we have
”Ps—i_l“n _pH2 < llzn —p||2 - ||7D7’:“n - PS—HUTLHQ
+2)\k+17n<7)»sun - Pyl:+1un7 Ak—i—lpyliun - Ak+1p>~
Then, from this and (4.5), we have
21 = pl* < (1= an)llzn = pI* + an (L + 7 ) IP un —pl* +
< (1—an)lz, *p”z + an (1 4+ ){llzn *sz - H,Pfiun - Pﬁ+1un”2
+2>\k+1,n (Pﬁun - Pﬁ“un, Ak+177,’§un — Ak+1p>} +cn
< len = pl1? = 81 Prun — Prtun|® + ynllzn — pll?
+2A k41,0 (1 — ’Yn)lllpsun - 'Prlf_‘—lunH ||Ak+1’P1’fun — Ap1p|l + cns
which implies that
S| Phun — Potunl® < llzn = plI* = l2nt1 — p|®
Fyallzn = pI* + 22 k11,0l Prtin — Pr || Ars1 Pun — Aggapll + cp-
Hence it follows from ¢,, — 0, 7, — 0, Step 1 and (4.6) that ||P*u, — P*+1u,| — 0.
Step 4. limy, o0 || 20 — Tny1|| = 0.
Proof of Step 4. It is easy to see from (4.2) that
52an - TnUn”2 < X+ )|z — p”2 —llzn41 — 10”2 + Cn,
which implies that
lim |lv, —T"v,|| =0. (4.7)
n—oo
Therefore,
|Tnt1 — vl = anllvn — T"vp|| — 0, asn — oo, (4.8)
From Steps 2 and 3 we see that ||z, — u,| — 0 and [Ju, — v,| — 0, as n — oco0. So,
from this and (4.8), we obtain
[Zn41 = Znll < ||Tnt1 — vall + [vn — wnl + lun — 2n| — 0,
as m — 00.
Step 5. limy, o0 ||vn, — Tvp || = 0.

Proof of Step 5. 1t is easy to see that the assertions of Steps 4 and 5 of Theorem 3.1
hold in our assumptions. From this fact and ||z, — 2,+1]| — 0, by a proof like that in
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Step 9 of Theorem 3.1, we can get ||vn,+1 — vp| — 0, as n — oco. By (4.7), we obtain
from Lemma 2.3 that lim,_. ||v, — Tv,| = 0.
Step 6. {x,} converges weakly to an element of F.
Proof of Step 6. Applying Steps 2, 3 and 5, by a proof similar to Step 10 of Theorem
3.1, we can show that the weak w-limit set of {z,}, wy (2 ), is a subset of F.

Now, (4.4) and the Opial’s property of Hilbert space imply that w,, () is singleton.
Therefore, x,, — zo for some zy € F. O

Corollary 4.2 Let C be a nonempty closed convex subset of a Hilbert space H,
T :C — C a uniformly continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense with sequence {v,} such that > .~ (o + cn) < 00, ¢ =
{T; : j=1...N} afinite family of strictly pseudocontractive mappings with 0 < k < 1
from C into C, G ={F; : j=1,...,M} a finite family of bifunctions from C x C
into R which satisfy (A1)-(A4), and F = Fix(T) N Fiz(y) N EP(G) # co.

Let {an} be a sequence in [0,1] such that 0 < § < ap, < 1 — K — 08, {Menth,
sequences in [c,d] C (0,1 — k) such that lim, | Ak — Aent1] =0 (1 < k < N) and
{rjn}iL, sequences in (0,00) such that liminf, r;, >0 and lim,, TJ”%H =1 for every
jed{1,....M}.

If {x,} is the sequence generated by x1 =x € H and Vn > 1,

_ 7Fy Fy TF
Uy, = J,,Mn o Jr“ erxm

Un = (1= AN) T+ ANATN) - (1= M) T+ Ao T ),
Tny1 = (]- - an)vn + anTnvnv

then the sequence {x,} converges weakly to an element of F.

Remark 4.3 We may put
Up = Pc(l — )\N,n(l - TN)) e Pc(I — )\Qm([ - TQ))Pc(I - Al,n(I - Tl))un,

in the schemes of Corollaries 3.2 and 4.2, and obtain schemes for families of non-self
strictly pseudocontractive mappings.
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