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Abstract. We study two algorithms for approximating fixed points of nonexpansive mappings in
Banach spaces. One of them is implicit and the other is explicit. We prove strong convergence

theorems for both of them.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space (E, ‖ · ‖).
Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

Nonlinear fixed point theory continues to be an important and active research area.
In particular, iterative methods for finding fixed points of nonexpansive mappings have
been investigated intensively. In this paper we study two algorithms for approximating
fixed points of nonexpansive mappings in Banach spaces. The first one is implicit and
the second is explicit. In Hilbert space these algorithms have recently been studied
in [11]. Similar algorithms in Banach spaces have been studied in [8]. We establish
strong convergence theorems for both algorithms under weaker assumptions. In the
next section we recall a few preliminary results. Our main results, Theorems 3.1, 3.3
and 3.4 below, are stated and proved in Section 3.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a Banach space E. We assume
that C is a nonexpansive retract of E. That is, we assume that there exists a retraction
RC of E onto C which is a nonexpansive mapping. See [2] and [3] for information
regarding nonexpanisve retracts in Banach spaces.
Let E∗ be the dual space of E. The duality mapping J from E into the family of
nonempty, weak∗-compact and convex subsets of E∗ is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 and ‖x∗‖ = ‖x‖} for each x ∈ E.
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The mapping J is single-valued if and only if E is smooth. If E has a uniformly
convex dual (equivalently, if E is uniformly smooth), then we have for all x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉+ max{‖x‖, 1}‖y‖b(‖y‖),

where b : (0,∞) → [0,∞) is an increasing and continuous function, defined by

b(t) = sup{(‖x + ty‖2 − ‖x‖2)/t− 2〈y, J(x)〉 : ‖x‖ ≤ 1, ‖y‖ ≤ 1},

which satisfies limt→0+ b(t) = 0. See [4, page 90] for more details.
If E is smooth, the duality mapping J is said to be weakly sequentially continuous
at zero if xn ⇀ 0 in E implies that {J(xn)} converges weak∗ to 0 in E∗. The duality
mapping of each `p space, 1 < p < ∞, has this property.
In order to prove our main results, we also need the following lemmas.

Lemma 2.1. [1] (Demiclosedness Principle) Let C be a nonempty, closed and convex
subset of a uniformly convex Banach space E, and let T : C → E be a nonexpansive
mapping. Then I−T is demiclosed at 0, i. e., if {xn} ⊂ C, xn ⇀ x and xn−Txn → 0,
then x = Tx.

Lemma 2.2. [9] Let {xn} and {zn} be two bounded sequences in a Banach space
E and let {βn} be a sequence in [0, 1] which satisfies 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose that xn+1 = (1 − βn)xn + βnzn, for all n ≥ 0 and
that lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.3. [10] Assume {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − γn)an + γnδn, n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a
sequence in R such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 |δnγn| < ∞.

Then limn→∞ an = 0.

3. Main Results

Let C be a nonempty, closed and convex subset of a real Banach E. Assume that
C is a nonexpansive retract of E and let RC : E → C be a nonexpansive retraction
of E onto C. Let T : C → C be a nonexpansive mapping. We use Fix(T ) to denote
the set of fixed points of T . For each t ∈ [0, 1), consider the mapping Tt : E → C,
defined by Ttx := TRC(tx), x ∈ E. It is easy to check that ‖Ttx− Tty‖ ≤ t‖x− y‖,
so that Tt is a strict contraction. By the Banach contraction principle, there exists a
unique fixed point xt of Tt in E, that is, a point xt such that

xt = TRC(txt). (1)

Theorem 3.1. Let E be a real uniformly convex Banach space with a uniformly
convex dual and a duality mapping J which is weakly sequentially continuous at zero.
Let C be a nonexpansive retract of E and let T : C → C be a nonexpansive mapping
with Fix(T ) 6= ∅. Let the net {xt : 0 ≤ t < 1} be generated by (1). Then, as t → 1−,
the net {xt} converges strongly to a fixed point of T .
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Proof. First, we show that {xt} is bounded. Take u ∈ Fix(T ). From (1), we
have ‖xt − u‖ = ‖TRC(txt) − TRCu‖ ≤ ‖txt − u‖ = ‖t(xt − u) + (t − 1)u‖ ≤
t‖xt − u‖+ (1− t)‖u‖, that is, ‖xt − u‖ ≤ ‖u‖. Hence {xt} is indeed bounded.

Again from (1), we obtain

‖xt − Txt‖ = ‖TRC(txt)− TRCxt‖ ≤ (1− t)‖xt‖ → 0 as t → 1−. (2)

Next, let {tn} ⊂ (0, 1) be a sequence such that tn → 1− as n →∞, and put xn := xtn
.

From (1), we have
‖xn − Txn‖ → 0. (3)

From (2), we get

‖xt − u‖2 = ‖TRC(txt)− TRCu‖2 ≤ ‖txt − u‖2

= ‖xt − u− (1− t)xt‖2

≤ ‖xt − u‖2 − 2(1− t)〈xt, J(xt − u)〉
+max{‖xt − u‖, 1}(1− t)‖xt‖b((1− t)‖xt‖)

≤ ‖xt − u‖2 − 2(1− t)〈xt − u, J(xt − u)〉 − 2(1− t)〈u, J(xt − u)〉
+(1− t)b((1− t)M)M,

where M := supt∈(0,1){max{‖xt − u‖, 1}‖xt‖}.
Hence

‖xt − u‖2 ≤ 〈u, J(u− xt)〉+
M

2
b((1− t)M). (4)

In particular,

‖xn − u‖2 ≤ 〈u, J(u− xn)〉+
M

2
b((1− tn)M), u ∈ Fix(T ). (5)

Since E is reflexive and {xn} is bounded, it has weak subsequential limits. We claim
that each such limit is, in fact, a strong one. To see this we may assume, without any
loss of generality, that {xn} itself converges weakly to a point x∗ ∈ C. In view of (3),
we can use Lemma 2.1 to get x∗ ∈ Fix(T ). Therefore we can substitute x∗ for u in
(5) to get

‖xn − x∗‖2 ≤ 〈x∗, J(x∗ − xn)〉+
M

2
b((1− tn)M).

Hence the weak convergence of {xn} to x∗ implies that xn → x∗ strongly, as claimed.
To show that the entire net {xt} converges to x∗, assume xsn → x̃ ∈ Fix(T ), where
sn → 1−. Put yn := xsn . Substituting t := sn and u = x∗ in (4), we get

‖yn − x∗‖2 ≤ 〈x∗, J(x∗ − yn)〉+
M

2
b((1− sn)M).

Therefore
‖x̃− x∗‖2 ≤ 〈x∗, J(x∗ − x̃)〉. (6)

Interchanging x∗ and x̃, we obtain

‖x∗ − x̃‖2 ≤ 〈x̃, J(x̃− x∗)〉. (7)

Adding up (6) and (7), we see that 2‖x∗− x̃‖2 ≤ ‖x∗− x̃‖2, which implies that x̃ = x∗.
This completes the proof of Theorem 3.1. �
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A similar theorem has recently been proved in [8] under stronger assumptions on
J and b. Another way to achieve the strong convergence of the curve {xt : 0 ≤ t < 1}
defined by (1) to a fixed point of T , without assuming that the duality mapping is
weakly sequentially continuous at zero, is to use the following theorem.

Theorem 3.2. [5]. Let K be a closed and convex subset of a uniformly smooth
Banach space E, and let S : K → K be a nonexpansive mapping. For x ∈ K and
t ∈ [0, 1), let Gtx be the unique fixed point of the strict contraction gx : K → K
defined by gxy := (1− t)x + tSy for y ∈ K. In other words,

Gtx = (1− t)x + tSGtx, x ∈ K.

If S has a fixed point, then for each x ∈ K, the strong limt→1− Gtx exists and is a
fixed point of S.

Theorem 3.3. Let E be a real uniformly smooth Banach space, C a convex nonex-
pansive retract of E, and T : C → C a nonexpansive mapping with Fix(T ) 6= ∅. For
each t ∈ (0, 1), let the net {xt} be defined by (1). Then, as t → 1−, the net {xt}
converges strongly to a fixed point of T .

Proof. We apply Theorem 3.2 with S := TRC : E → C. Pick x = 0, and denote

zt = Gt0 = tSzt. (8)

It is clear that Fix(T ) = Fix(S). Therefore we may invoke Theorem 3.2 to conclude
that {zt} converges strongly as t → 1− to a fixed point x∗ ∈ C of T . Note that by
setting xt = 1

t zt, we obtain (1) from (8). Since the strong convergence of {zt} to x∗

also implies the strong convergence of {xt} to x∗, this completes the proof of Theorem
3.3. �

So far we have considered the implicit continuous scheme defined by (1). Now we
turn to an analogous explicit discrete method.

Theorem 3.4. Let E be a real uniformly smooth Banach space. Let C be a convex
nonexpansive retract of E, and let T : C → C be a nonexpansive mapping with
Fix(T ) 6= ∅. Let {αn}∞n=0 and {βn}∞n=0 be two real sequences in (0, 1). Given an
arbitrary x0 ∈ C, let the sequence {xn} be generated iteratively by{

yn = RC [(1− αn)xn],
xn+1 = (1− βn)xn + βnTyn, n ≥ 0.

(9)

Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} generated by (9) converges strongly to a fixed point of T .
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Proof. First, we prove that the sequence {xn} is bounded. Take u ∈ Fix(T ).
From (9), we have

‖xn+1 − u‖ = ‖(1− βn)(xn − u) + βn(Tyn − u)‖
≤ (1− βn)‖xn − u‖+ βn‖yn − u‖
≤ (1− βn)‖xn − u‖+ βn[(1− αn)‖xn − u‖+ αn‖u‖]
= (1− αnβn)‖xn − u‖+ αnβn‖u‖
≤ max{‖xn − u‖, ‖u‖}.

Hence {xn} is bounded and so is {Txn}. Set zn = Tyn, n ≥ 0. It follows that

‖zn+1 − zn‖ = ‖Tyn+1 − Tyn‖
≤ ‖yn+1 − yn‖
≤ ‖(1− αn+1)xn+1 − (1− αn)xn‖
≤ ‖xn+1 − xn‖+ αn+1‖xn+1‖+ αn‖xn‖.

Hence lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. This inequality, when combined
with Lemma 2.2, implies that limn→∞ ‖zn − xn‖ = 0.
Therefore limn→∞ ‖xn+1 − xn‖ = limn→∞ βn‖xn − zn‖ = 0. Now we observe that

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖+ (1− βn)‖xn − Txn‖+ βn‖Tyn − Txn‖
≤ ‖xn − xn+1‖+ (1− βn)‖xn − Txn‖+ βn‖yn − xn‖
≤ ‖xn − xn+1‖+ (1− βn)‖xn − Txn‖+ αn‖xn‖.

That is, ‖xn − Txn‖ ≤ 1
βn
{‖xn+1 − xn‖ + αn‖xn‖} → 0. Let the net {xt} be de-

fined by (1). By Theorem 3.3, we know that xt → x∗ as t → 1−. We assert that
lim supn→∞〈x∗, J(x∗ − xn)〉 ≤ 0. Indeed,

‖xt − xn‖2 = ‖xt − Txn + Txn − xn‖2

≤ ‖xt − Txn‖2 + 2〈Txn − xn, J(xt − Txn)〉
+max{1, ‖xt − Txn‖}‖Txn − xn‖b(‖Txn − xn‖)

≤ ‖xt − Txn‖2 + M‖Txn − xn‖
≤ ‖(xt − xn)− (1− t)xt‖2 + M‖Txn − xn‖
≤ ‖xt − xn‖2 − 2(1− t)〈xt, J(xt − xn)〉

+max{1, ‖xt − xn‖}(1− t)‖xt‖b((1− t)‖xt‖) + M‖Txn − xn‖
≤ ‖xt − xn‖2 − 2(1− t)〈xt, J(xt − xn)〉

+(1− t)Mb((1− t)M) + M‖Txn − xn‖,

where M := supt∈(0,1),n≥0{2‖xt − Txn‖ + max{1, ‖xt − Txn‖}b(‖Txn −
xn‖),max{1, ‖xt − xn‖}‖xt‖}.

It follows that

〈xt, J(xt − xn)〉 ≤ M

2
b((1− t)M) +

M

2(1− t)
‖Txn − xn‖
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and therefore lim supt→1− lim supn→∞〈xt, J(xt − xn)〉 ≤ 0. Next, we consider

lim sup
n→∞

〈x∗, J(x∗ − xn)〉 ≤ lim sup
n→∞

〈xt, J(xt − xn)〉

+ lim sup
n→∞

〈x∗ − xt, J(xt − xn)〉+ lim sup
n→∞

〈x∗, J(x∗ − xn)− J(xt − xn)〉.

Taking lim supt→1− on both sides, and using the fact that the duality mapping is
uniformly continuous on bounded sets [6], we obtain lim supn→∞〈x∗, J(x∗−xn)〉 ≤ 0,
as asserted.
Finally, we show that xn → x∗. From (9), we have

‖xn+1 − x∗‖2 ≤ (1− βn)‖xn − x∗‖2 + βn‖yn − x∗‖2

≤ (1− βn)‖xn − x∗‖2 + βn[(1− αn)‖xn − x∗‖2 − 2αn(1− αn)〈x∗, J(xn − x∗)〉
+max{1, (1− αn)‖xn − x∗‖}αn‖x∗‖b(αn‖x∗‖)]

≤ (1− αnβn)‖xn − x∗‖2 + αnβn[2(1− αn)〈x∗, J(x∗ − xn)〉+ M ′b(αnM ′)],
where M ′ := supn≥0{max{1, (1− αn)‖xn − x∗‖}‖x∗‖}.
It is not difficult to check that all the assumptions of Lemma 2.3 are satisfied. There-
fore xn → x∗. This completes the proof of Theorem 3.4. �
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