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Abstract. In this paper we propose a novel double projection recurrent neural network model for

solving pseudomonotone variational inequalities based on a technique of updating the state variable
and fixed point theorem. This model is stable in the sense of Lyapunov and globally convergent
for problems that satisfy Lipschitz continuity and pseudomonotonicity conditions. The global ex-
ponential stability of the model under the assumptions of strong pseudomonotonicity and Lipschitz
continuity is proved. Numerical simulation to various types of variational inequalities is given to
show the applied significance of the results
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1. Introduction

The variational inequality problem is a general problem formulation that encom-
passes a plethora of mathematical problems, including among others, nonlinear equa-
tions, optimization problems, complementarity problems and fixed point problems
[1]. This problem has had a great impact and influence in the development of many
branches of pure and applied sciences. On the other hand, the fixed-point theory has
played a major role in the development of various numerical algorithms for solving
variational inequalities. Using the projection operator technique, one usually estab-
lishes an equivalence relation between the variational inequalities and the fixed-point
problem, see [1]. This alternative equivalent formulation was used for the first time
by Lions and Stampacchia [2] to study the existence of a solution of the variational
inequalities. A variety of numerical methods, that use the projection for solving vari-
ational inequalities, exist (see, for example, [3-18]). It is well known that in many
engineering applications such as signal processing, image processing, filter design, ro-
bot control, real time solutions are often desired, see [19-20]. Notice that, very often,
these problems may have high dimension and dense structure. Hence, usual numeri-
cal methods may not be efficient in such occasions because of stringent requirements
on computing time. According to this point, in past two decades, applications of
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recurrent neural networks have been widely investigated. Recently, Xia, Wang and
co-authors [21-26] introduced and developed a new type of projection recurrent neural
networks for solving monotone and pseudomonotone variational inequalities.

In this paper we will be concerned with development of a novel efficient algorithm
to approximate the solutions of pseudomonotone variational inequalities. By this
motivation, a technique of updating the state variable is used to suggest the double
projection neural network. This paper is organized as follows. Section 2, provides the
necessary mathematical background, which is used to express the novel neural network
model. The problem formulation and double projection neural network are presented
in Section 3. In Section 4, we discuss the convergence and stability of proposed
neural network for solving pseudomonotone variational inequalities. In Section 5,
we compare the proposed neural network with the existing neural networks that use
for solving pseudomonotone variational inequalities. In Section 6, several examples
are solved numerically to evaluate the effectiveness of this recurrent neural network
model. Section 7, concludes the paper.

2. Preliminaries

This section provides the necessary mathematical background, which is used to
propose the desired neural network and to study its stability and convergence. In
what follows, we assume that Ω is a closed convex subset of Rn, x is a vector in
Rn and for each fixed time t, x(t) ∈ Rn is the state variable for the corresponding
dynamical system.

Lemma 2.1 ([28]) For each x ∈ Rn, there is a unique point y ∈ Ω such that

||x − y|| ≤ ||x − z||, ∀z ∈ Ω.

The point y satisfying the above inequality is called the projection of x on Ω and we
write:

y = PΩ(x) = arg min
z∈Ω

‖ x − z ‖ .

There are some well-known results for the projection operator, and we summarize
them in the following Lemma [28].

Lemma 2.2 For any u, v ∈ Rn and any z ∈ Ω

(i)
〈

(PΩ(u) − u)T , z − PΩ(u)
〉

≥ 0.

(ii)
〈

(PΩ(u) − PΩ(v))T , u − v
〉

≥ 0.
(iii) ||PΩ(u) − PΩ(v)|| ≤ ||u − v||.

(iv) ‖u − z ‖
2
≥ ‖u − PΩ(u) ‖

2
+ ‖ z − PΩ(u) ‖

2
.

Definition 2.1 ([27]) Consider the dynamical system

ẋ(t) = H(x(t)), x(t0) = x0 ∈ Rn (1)

x̄ is called an equilibrium point, critical point or steady state of the dynamical system
if H(x̄) = 0.
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Definition 2.2 ([27]) Let N ⊆ Rn be an open neighborhood of x̄ . A continu-
ously differentiable function ω : Rn → R is said to be a Lyapunov function at any
equilibrium point x̄ over the set N if

{

ω(x) ≥ 0, ω(x) = 0 ⇔ x = x̄,
dω(x(t))

dt
= [∇ω(x(t))]T H(x(t)) ≤ 0, ∀x(t) ∈ N.

Definition 2.3 ([29]) An equilibrium point x̄ is Lyapunov stable if for any x(t0) =
x0 and ε > 0 there exists a δ > 0 such that if ‖x0 − x̄‖ < δ then ||x(t) − x̄|| < ε for
t ≥ t0.

Lemma 2.3 ([27]) An equilibrium point x̄ is Lyapunov stable if there exists a
Lyapunov function over some neighborhood of x̄.

Definition 2.4 ([26]) A function F : Rn → Rn is called Lipschitz continuous with
constant L > 0 on the set Ω if for every pair of points x, y ∈ Ω

‖F (x) − F (y)‖ ≤ L ‖x − y‖ .

Definition 2.5 ([26]) A function F : Rn → Rn is called pseudomonotone on the
set Ω if for every pair of distinct points x, y ∈ Ω

F (x)T (y − x) ≥ 0 ⇒ F (y)T (y − x) ≥ 0,

F is called strictly pseudomonotone on the set Ω if for every pair of distinct points
x, y ∈ Ω

F (x)T (y − x) ≥ 0 ⇒ F (y)T (y − x) > 0,

F is called strongly pseudomonotone on the set Ω if there exists a constant γ > 0
such that for every pair of distinct points x, y ∈ Ω

F (x)T (y − x) ≥ 0 ⇒ F (y)T (y − x) > γ ‖y − x‖2 .

These different types of pseudomonotonicities are easily seen as listed in order from
weak to strong. Moreover the pseudomonotonicity is a generalization of monotonicity.
Clearly, monotonicity implies pseudomonotonicity, strict monotonicity implies strict
pseudo monotonicity, and strong monotonicity implies strong pseudomonotonicity,
but not vice versa ([30]- [15]).

Definition 2.6 ([15]) A function f : Rn → R is called pseudoconvex on the set Ω
if for every pair of distinct points x, y ∈ Ω

∇f(x)T (y − x) ≥ 0 ⇒ f(y) ≥ f(x).

3. Double projection neural network model

In this paper, we are concerned with the following variational inequality problem:
Find x∗ ∈ Ω such that

V I(F, Ω) : F (x∗)T (x − x∗) ≥ 0, ∀x ∈ Ω. (2)

Problem (2) is called a variational inequality problem.

Remark 3.1 For simplicity, from now on, we use x instead of x(t).
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Lemma 3.1 ([28]) x∗ ∈ Ω is a solution of problem (2) if and only if for any α ≥ 0,
x∗ satisfies the relation

x∗ = PΩ(x∗ − αF (x∗)) (3)

i.e. x∗ is a fixed point of the function PΩ(I − αF ) : Ω → Ω, where I(x) = x.

Lemma 3.1 implies that problems (2) and (3) have the same solution. In view of
this relation, we propose the following recurrent neural network model, called double
projection neural network for solving (2):

dx

dt
= −x + PΩ(x − F (PΩ(x − F (x)))). (4)

In this model, a technique of updating state variable is used.

Remark 3.2 ([26]) In general computing the projection of a point onto a
convex set Ω is itself a complex optimization problem. However, if Ω is a
box set or sphere set, the calculation is straightforward. For example, if Ω =
{x ∈ Rn|l ≤ x ≤ u, ∀i = 1, . . . , n}, then

PΩ(xi) =







li, xi < li
xi, li ≤ xi ≤ ui

ui, xi > ui

If Ω = {x ∈ Rn| ‖x − c‖ ≤ r, r > 0} where c ∈ Rn and r ∈ R are two scalars. Then

PΩ(x) =

{

x, ‖x − c‖ ≤ r
c + r x−c

‖x−c‖ , ‖x − c‖ > r

4. Stability and convergence analysis

In this section, we study some basic properties of the dynamical system (4) and
prove its global convergence, Lyapunov stability and exponentially stability.

Theorem 4.1 Assume that F (x) is a locally Lipschitz continuous function in Rn.
Then:
(a) For every initial point x(t0) = x0 ∈ Rn there exists a unique solution x(t) for the
model (4).
(b) When x0 /∈ Ω, the solution x(t) will approach Ω exponentially
(c) When x0 ∈ Ω, x(t) ∈ Ω for t ≥ t0.
Proof. (a): Since is locally Lipschitz continuous, By Lemma 2.2 we can see that
PΩ(x − F (PΩ(x − F (x)))) − x is also locally Lipschitz continuous. According to
the local existence uniqueness theorem of ODEs [29], there exists a unique solution
x(t), t ∈ [t0, τ) for the double projection neural network model (4) with every initial
point.
(b): When x0 /∈ Ω, without loss of generality, we may assume that for every t ≥
t0, x(t) /∈ Ω. Let

Φ(x) = ‖x − PΩ(x)‖
2
.
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Then, Φ(x(t)) is a differentiable function with respect to t [22]. Hence by Lemma 2.2,
we have
dΦ(x(t))/dt = (dΦ(x(t))/dx)(dx/dt) = 2 (x(t) − PΩ(x(t)))

T
(dx/dt)

= 2 (x(t) − PΩ(x(t)))
T

(−x(t) + PΩ(x(t) − F (PΩ(x(t) − F (x(t))))))

= (x(t) − PΩ(x(t)))
T

(PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − PΩ(x(t)))

−2 ‖x(t) − PΩ(x(t))‖
2
≤ −2 ‖x(t) − PΩ(x(t))‖

2
= −2Φ(x(t)).

Thus

‖x(t) − PΩ(x(t))‖ ≤ ‖x(t0) − PΩ(x(t0))‖ exp(t0 − t).

Hence, any solution of model (4) will approach exponentially to Ω.
(c): We next show that when x0 ∈ Ω, x(t) ∈ Ωfor every t ∈ [t0, τ). Otherwise, if there
exist t1 > t2 such that x(t) ∈ Ω for t ∈ [t0, t1] and x(t) /∈ Ω, for t ∈ (t1, t2] , then
Φ(x(t1)) = 0 and Φ(x(t2)) > 0. By mean value theorem [15], we have

Φ(x(t2)) − Φ(x(t1)) =
(

dΦ(x(t̂))
/

dt
)

(t2 − t1) > 0,

for some t̂ = λt1 + (1 − λ)t2, λ ∈ (0, 1). Therefore, dΦ(x(t̂))
/

dt > 0. On the other
hand, from (b) we know that

dΦ(x(t))/dt = 2 (x(t) − PΩ(x(t)))
T

(dx/dt) ≤ 0

This is a contradiction. Thus, x(t) ∈ Ω for every t ∈ [t0, τ).

Remark 4.1 Note that τ is extended to infinity if F (x) satisfies Lipschitz continuity
condition on Rn.

Theorem 4.2 If F (x) is pseudomonotone on Ω and Lipschitz continuous on Rn

with constant 0 ≤ L ≤ 1, then the double projection neural network (4) is stable in
the sense of Lyapunov and is globally convergent to a solution of (2). In particular, if
VI(F, Ω) has a unique solution, the proposed neural network is globally asymptotically
stable
Proof.Let x∗ ∈ Ω be a solution of the problem (2). Since any trajectory x(t) will
exponentially approach Ω, when x0 /∈ Ω, and will remain in Ω forever (see Theorem
4.1), it suffices to show the stability of the proposed neural network model (4) with
x0 ∈ Ω .Then x(t) ∈ Ω for t ≥ t0. In the fourth inequality of Lemma 2.2, let
u = x − F (PΩ(x − F (x))) and z = x∗, then we have

‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖
2
≤ ‖x − F (PΩ(x − F (x))) − x∗‖

2

−‖x − F (PΩ(x − F (x))) − PΩ(x − F (PΩ(x − F (x))))‖
2

= ‖x − x∗‖2 − ‖x − PΩ(x − F (PΩ(x − F (x))))‖2

+2
〈

(x∗ − PΩ(x − F (PΩ(x − F (x)))))T , F (PΩ(x − F (x)))
〉

.

Since F (x) is pseudomonotone, we have

〈F (x∗) , PΩ(x − F (x)) − x∗〉 ≥ 0 ⇒

〈F (PΩ(x − F (x))) , PΩ(x − F (x)) − x∗〉 ≥ 0,

and consequently

〈F (PΩ(x − F (x))), x∗ − PΩ(x − F (PΩ(x − F (x))))〉 =
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〈F (PΩ(x − F (x))), x∗ − PΩ(x − F (x))〉+

〈F (PΩ(x − F (x))), PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))〉

≤ 〈F (PΩ(x − F (x))), PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))〉

Hence
‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖

2

≤ ‖x − x∗‖2 − ‖x − PΩ(x − F (PΩ(x − F (x))))‖2

+2 〈F (PΩ(x − F (x))), PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))〉

= ‖x − x∗‖
2
− ‖x − PΩ(x − F (x))‖

2

−‖PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))‖
2

−2 〈x − PΩ(x − F (x)), PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))〉

+2 〈F (PΩ(x − F (x))), PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))〉

= ‖x − x∗‖
2
− ‖x − PΩ(x − F (x))‖

2

−‖PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))‖
2

+2(PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x)))T .

(x − F (PΩ(x − F (x))) − PΩ(x − F (x)))

By applying Lemma 2.2 and the Cauchy-Schwartz inequality, we observe that
(PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x)))T .

(x − F (PΩ(x − F (x))) − PΩ(x − F (x)))

= 〈PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x)), x − F (x) − PΩ(x − F (x))〉

+ 〈PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x)), F (x) − F (PΩ(x − F (x)))〉

≤ 〈PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x)), F (x) − F (PΩ(x − F (x)))〉

≤ ‖PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x))‖ ‖F (x) − F (PΩ(x − F (x)))‖ .

Thus
‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖

2
≤ ‖x − x∗‖

2
− ‖x − PΩ(x − F (x))‖

2

−‖PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))‖
2

+2L ‖PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x))‖ ‖x − PΩ(x − F (x))‖

≤ ‖x − x∗‖
2
− ‖x − PΩ(x − F (x))‖

2

−‖PΩ(x − F (x)) − PΩ(x − F (PΩ(x − F (x))))‖
2

+L2 ‖x − PΩ(x − F (x))‖2

+ ‖PΩ(x − F (PΩ(x − F (x)))) − PΩ(x − F (x))‖2 .

Therefore,

‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖2 ≤ ‖x − x∗‖2 − (1 − L2) ‖x − PΩ(x − F (x))‖2

Since 0 ≤ L ≤ 1 , it follows that

‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖ ≤ ‖x − x∗‖ .

Consider the function

V (x(t)) =
1

2
‖x(t) − x∗‖

2
, ∀x(t) ∈ Ω.
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Then
dV
dt

= (x(t) − x∗)T dx
dt

= (x(t) − x∗)T (PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − x(t))

= (x(t) − x∗)T (PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − x∗) − ‖x(t) − x∗‖
2

≤ ‖x(t) − x∗‖ ‖PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − x∗‖ − ‖x(t) − x∗‖
2
≤ 0

Hence, the double projection neural network is stable in the sense of Lyapunov. Con-
sider a sequence {x(tn)}∞n=1 ⊆ Ω such that lim

n→∞
x(tn) → ∞ . According to the defi-

nition of V (x(t)), we have lim
n→∞

V (x(tn)) → ∞. Therefore, any level set of V (x(t)) is

bounded. Thus, for any initial point x(t0) ∈ Ω , there exist a convergent subsequence
{x(tk)} such that

lim
k→∞

x(tk) = x̂.

Define the following function

V̂ (x) = ‖x − PΩ(x − F (x))‖
2
.

dV̂ (x(t))
/

dt =
(

dV̂ (x(t))
/

dx
)

(dx/dt)

= 2 (x(t) − PΩ(x(t) − F (x(t))))
T

(dx/dt)

= 2 (x(t) − PΩ(x(t) − F (x(t))))
T

.

(−x(t) + PΩ(x(t) − F (PΩ(x(t) − F (x(t))))))

≤ −2 ‖x − PΩ(x(t) − F (x(t)))‖2

+ (x(t) − PΩ(x(t) − F (x(t))))
T

.

(PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − PΩ(x(t) − F (x(t))))

≤ −2 ‖x − PΩ(x(t))‖2 = −2V̂ (x(t))

Thus

‖x(t) − PΩ(x(t) − F (x(t)))‖ ≤ ‖x(t0) − PΩ(x(t0) − F (x(t0)))‖ exp(t0 − t).

For, convergent subsequence {x(tk)}, we have

‖x(tk) − PΩ(x(tk) − F (x(tk)))‖ ≤ ‖x(t0) − PΩ(x(t0) − F (x(t0)))‖ exp(t0 − tk).

Therefore, when k → ∞ we obtain

‖x̂ − PΩ(x̂ − F (x̂))‖ = 0.

Hence, x̂ is a solution of V I(F, Ω).
Finally, define a new Lyapunov function

V̄ (x(t)) =
1

2
‖x(t) − x̂‖

2
, ∀x(t) ∈ Ω.

It is easy to see that V̄ (x(t)) decreases along the trajectory of V I(F, Ω) and satisfies
V̄ (x̂) = 0 . Therefore for any ε > 0, there exists q > 0 such that, for all t > tq

V̄ (x(t)) =
1

2
‖x(t) − x̂‖

2
≤ V̄ (x(tq)) < ε
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Thus, lim
t→∞

x(t) = x̂. It follows that the double projection neural network (4) is

globally convergent to a solution of V I(F, Ω). In particular, if V I(F, Ω) has a unique
solution, the proposed neural network is globally asymptotically stable.

Theorem 4.3 Let F (x) be strongly pseudomonotone on Ω with constant γ > 0 and
Lipschitz continuous in Rn with constant L > 0, if γ > 2L the double projection neural
network (4) is globally exponentially stable and consequently, globally convergent to a
solution of (2)
Proof. Let x∗ ∈ Ω be a solution of (2). Similar to the argument stated in the
beginning of the proof of Theorem 4.2, it suffices to show the exponential stability of
the proposed neural network model (4) with x0 ∈ Ω.Then, x(t) ∈ Ω for t > t0. By
the definition of V I(F, Ω), we have

〈F (x∗) , PΩ(x − F (PΩ(x − F (x)))) − x∗〉 ≥ 0

Since F (x) is strongly pseudomonotone on Ω, we obtain
〈F (PΩ(x − F (PΩ(x − F (x))))) , PΩ(x − F (PΩ(x − F (x)))) − x∗〉 ≥

γ ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2
. (5)

In the first inequality of the Lemma 2.2, let u = x − F (PΩ(x − F (x))) and z = x∗,
then we have
(PΩ(x − F (PΩ(x − F (x)))) − x + F (PΩ(x − F (x))))T .

(x∗ − PΩ(x − F (PΩ(x − F (x))))) ≥ 0

Adding this inequality with (5) implies

(PΩ(x−F (PΩ(x− F (x)))) − x + F (PΩ(x− F (x))) −F (PΩ(x− F (PΩ(x−F (x))))))T

.(x∗ − PΩ(x − F (PΩ(x − F (x))))) ≥ γ ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖2

Therefore,

(x∗ − x + F (PΩ(x − F (x)))−F (PΩ(x − F (PΩ(x − F (x))))))T .

(x∗ − PΩ(x − F (PΩ(x − F (x))))) ≥ (1 + γ) ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2

By Cauchy-Schwarz inequality, Lipschitz continuity of the operator and the third
inequality in Lemma 2.1, we have

(‖F (PΩ(x − F (x)))−F (x∗)+F (x∗)−F (PΩ(x − F (PΩ(x − F (x)))))‖)

+(‖x∗ − x‖). ‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖

≥ (1 + γ) ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2
,

which implies

(‖x∗ − x‖ + ‖F (PΩ(x − F (x)))−F (x∗)‖

+ ‖F (x∗)−F (PΩ(x − F (PΩ(x − F (x)))))‖). ‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖

≥ (1 + γ) ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2

and thus

(‖x∗ − x‖ + L ‖PΩ(x − F (x))−x∗‖ + L ‖x∗−PΩ(x − F (PΩ(x − F (x))))‖)

‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖ ≥ (1 + γ) ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2
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Now, if we substitute PΩ(x − F (x)) in (2) and if we let u = x − F (x) and z = x∗, in
the first inequality of the Lemma 2.2, by the same process, we obtain,

‖PΩ(x − F (x))−x∗‖ ≤
1 + L

1 + γ − L
‖x∗ − x‖ .

Therefore,
(

‖x∗ − x‖ +
L(1 + L)

1 + γ − L
‖x∗ − x‖ + L ‖x∗−PΩ(x − F (PΩ(x − F (x))))‖

)

.

‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖ ≥ (1 + γ) ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2

So,
(

(
1 + γ + L2

1 + γ − L
) ‖x∗ − x‖ + L ‖x∗−PΩ(x − F (PΩ(x − F (x))))‖

)

.

‖x∗ − PΩ(x − F (PΩ(x − F (x))))‖ ≥ (1 + γ) ‖PΩ(x − F (PΩ(x − F (x)))) − x∗‖
2

By noting that (1 + γ − L) > 0, we have

(
1 + γ + L2

(1 + γ − L)
2 ) ‖x∗ − x‖ ≥ ‖x∗−PΩ(x − F (PΩ(x − F (x))))‖ .

Consider the function

V (x(t)) =
1

2
‖x(t) − x∗‖

2
, ∀x(t) ∈ Ω.

Then

dv

dt
= (x(t) − x∗)T dx

dt
= (x(t) − x∗)T (PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − x(t))

= (x(t) − x∗)T (PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − x∗) − ‖x(t) − x∗‖
2

≤ ‖x(t) − x∗‖ ‖PΩ(x(t) − F (PΩ(x(t) − F (x(t))))) − x∗‖ − ‖x(t) − x∗‖2

≤ (
1 + γ + L2

(1 + γ − L)
2 ) ‖x(t) − x∗‖

2
− ‖x(t) − x∗‖

2
≤ −β ‖x(t) − x∗‖

2
,

where β = (1+γ−L)2−(1+γ+L2)

(1+γ−L)2
> 0. Hence,

‖x(t) − x∗‖ ≤ ‖x0 − x∗‖ e−β(t−t0), ∀t > t0.

The double projection neural network is globally exponentially stable.

Result 1. For Nonlinear Programming With General Constraints
Consider the following optimization problem:

Min f(x) subject to g(x) ≤ 0, h(x) = 0 (6)

where f(x) is continuously differentiable and pseudoconvex and g : Rn → Rm,and
h : Rn → Rr be continuously differentiable vector-valued functions. From now on
we make the assumptions: g and h are convex and linear functions respectively. The
following well-known result reveals the relationship between optimization problems
and variational inequalities.



410 A. MALEK, S. EZAZIPOUR, N. HOSSEINIPOUR-MAHANI

Lemma 4.1 ([28]) Let S be a closed convex subset of Rn and f : Rn → R be
differentiable and pseudoconvex on S. Then x∗ ∈ S satisfies relation ∇f(x∗)T (x −
x∗) ≥ 0, ∀x ∈ S if and only if x∗ is a minimum of f(x) in S.

According to Lemma 4.1, the optimization problem (6) transfers to the following
variational inequality.

〈∇f(x∗) , x − x∗〉 ≥ 0, ∀x ∈ Ω,

where Ω = {x ∈ Rn|g(x) ≤ 0, h(x) = 0}. thus this problem can be solve by proposed
double projection neural network with F (x) = ∇f(x) .

Result 2. Nonlinear Complementarity Problems (NCP)
Consider the following nonlinear complementarity problem :

find a vector x ∈ Rn such that

xT U(x) = 0, U(x) ≥ 0, x ≥ 0. (7)

where U(x) is a differentiable vector valued function from Rn into Rn.

Lemma 4.2 ([26]) x∗ is a solution for NCP if and only if x∗ be a solution of
V I(U, Rn

+).

By Lemma 4.2, nonlinear complementarity problem (7) can be solved by proposed
double projection neural network (4) with F (x) = U(x) and Ω = Rn

+.

5. Comparison

In this section we will compare the proposed model (4) and the projection neural
network model

dx

dt
= λ {−x + PΩ(x − αF (x))} . (8)

That first introduced by Wang and his co-authors [21-27]. The model (8) is developed
by Wang and Hu to solve pseudomonotone variational inequality problems [26]. For
simplicity, we summarize the stability and convergence conditions of two model neural
networks (4) and (8) in the table 1.

When ∇F (x) is asymmetric, the double projection neural network (4) needs only
pseudomonotonicity of F (x) whiles projection neural network (8) needs strongly pseu-
domonotonicity of F (x). Hence, in this case, model (4) is more suitable in applica-
tion. When ∇F (x) is symmetric, the projection neural network (8) is more applicable
since, model (8) needs locally Lipschitz continuous condition rather than Lipschitz
continuous condition in model (4)( See table 1). However double projection has more
computational cost.

6. Numerical examples

In order to demonstrate the effectiveness and performance of the double projection
neural network model (4) in solving pseudomonotone variational inequalities we give
several illustrative examples. All the simulations conducted in Matlab 7.1. The 4th
order of Runge-Kutta technique is used.

Example 1. Consider the following linear variational inequality problem

F (x) = Mx + q
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Table 1. Comparison between two models (4) and (8) for stability
and convergence conditions.

Neural
Network Projection neural network double Projection neural network
Model

Symmetric Asymmetric Symmetric Asymmetric
of ∇F of ∇F of ∇F of ∇F

Stability Strongly
and Pseudo- Pseudo- Pseudo- Pseudo-

Convergence monotonicity monotonicity monotonicity monotonicity
Condition with constant γ

Locally Lipschitz Lipschitz Lipschitz
Lipschitz continuous continuous continuous

continuous on Ω with with constant with constant
constant L 0 ≤ L ≤ 1 0 ≤ L ≤ 1
and γ > 2L

where

M =





0.1 0.1 −0.5
0.1 0.1 0.5
0.5 −0.5 0



 , q =





−1
1

−0.5





and Ω = {x ∈ R3| − 10 ≤ xi ≤ 10}. Obviously F (x) is Lipschitz continuous with
constant L = 0.5 and ∇F (x) is asymmetric.F (x) is monotone and consequently pseu-
domonotone in Rn. It is not strongly pseudomonotone. We solve this problem with
neural network models (4) and (8). All simulation results show that the double pro-
jection neural network (4) is stable and globally convergence to the solution of this
problem, whiles model (8) is not. In Figure 1. and Figure 2. we display the output
trajectories for model (8) with λ = α = 1 and model (4)respectively, using the initial
point x0 = (0.5,−0.48,−2.5)T . Figure 3. and Figure 4. transient behavior of neural
network models (8) and (4) respectively, with initial point x0 = (−10, 10,−10)T for
λ = α = 1.

Example 2. Let us consider the nonlinear variational inequality, V I(F, Ω), with

F (x) =

(

(x2
1 + (x2 − 1)2)(1 + x2)
−x3

1 − x1(x2 − 1)2

)

and Ω = {x ∈ R2| − 10 ≤ xi ≤ 10, i = 1, 2}. This problem has unique solution
x∗ = (0, 1)T . It is easy to see that F (x) is not a monotone map on Ω. However it
is not easy to verify that it is pseudomonotone on Ω. In general, it is very difficult
task to check the pseudomonotonicity of a mapping in practice. In such occasions,
researchers use the Monte Carlo approach [26]. By this approach we are confident
that F (x) is pseudomonotone on Ω (one million point is tested). Clearly ∇F (x)is
asymmetric. We solve this problem with neural network models (4) and (8). All
simulation results show that the double projection neural network (4) is stable and
globally convergence to the solution of this problem, whiles model (8) is not. For
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Figure 1. Transient behavior of the neural network models (8) for
the Example 1 with x0 = (0.5,−0.48,−2.5)
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Figure 2. Transient behavior of the neural network models (4) for
the Example 1 with x0 = (0.5,−0.48,−2.5)

instance Figure 5. and Figure 6. display the output trajectories of (a) model (8) with
and (b) model (4) using initial point x0 = (−1, 2)T .

Example 3. ([26]) Consider the following two-dimensional V I where

F (x) =

(

0.5x1x2 − 2x2 − 107

−4x1 + 0.1x2
2 − 107

)

and Ω =
{

x ∈ R2|(x1 − 2)2 + (x2 − 2)2 ≤ 1
}

. It is easy to see that F (x) is not a
monotone map on Ω. F (x) is strongly pseudomonotone on Ω with constant γ = 11,
and it is Lipschitz continuous with constant L = 5 [26]. Thus, the condition in theorem
4.3 is satisfied. Then we use the neural network model (4) to solve aforementioned
example. Also, we solve this problem with model (8) for comparison. Figure 7. and
Figure 8. show the trajectories of model (4) and model (8)respectively, with the initial
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Figure 3. Transient behavior of the neural network models (8) for
the Example 1 with x0 = (−10, 10,−10)
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Figure 4. Transient behavior of the neural network models (4) for
the Example 1 with x0 = (−10, 10,−10)

point x0 = (0, 4)T Figure 9. shows the trajectories of the model (4) with six different
initial points p1 = (0, 0)T , p2 = (4, 0)T , p3 = (4, 4)T , p4 = (0, 4)T , p5 = (1, 2)T and
p6 = (2, 1)T among which the last two points are located in Ω and the others are
not. In this problem both models give the same attitude in converging to the correct
solution.

Example 4. ([26]) We now use the double projection neural network to solve a
pseudoconvex optimization problem. Consider the following fractional programming
problem

min f(x) =
xT Qx + aT x + a0x

bT x + b0
,

subject to x ∈ X =
{

x ∈ Rn|bT x + b0 > 0
}
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Figure 5. Transient behavior of the neural network model (8) for
the Example 2, using the initial point x0 = (−1, 2)T with λ = α = 1
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Figure 6. Transient behavior of the neural network model (4) for
the Example 2, using the initial point x0 = (−1, 2)T with λ = α = 1

where

Q =









5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5









, a =









1
−2
−2
1









, b =









2
1
1
0









, a0 = −2, b0 = 4.

It is easy to verify that Q is symmetric and positive definite in R4 and consequently
f is pseudoconvex on X =

{

x ∈ Rn|bT x + b0 > 0
}

. We minimize f over Ω = {x ∈

R4|−10 ≤ xi ≤ 10, i = 1, . . . , 4} ⊂ X by using neural network model (4) with F (x) =
∇f(x). This problem has a unique solution x∗ = (1, 1, 1, 1)T ∈ Ω. All simulations
show that double projection neural network model (4) is globally convergent to the
unique optimum solution. For instance, Figure 10. shows the trajectories of model (4)
with five random initial points.
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Figure 7. Transient behavior of the neural network model (4) for
the Example 3, using the initial point x0 = (0, 4)T with λ = α = 1
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Figure 8. Transient behavior of the neural network model (8) for
the Example 3, using the initial point x0 = (0, 4)T with λ = α = 1

Example 5. ([30]) Let us consider the following nonlinear complementarity prob-
lem with

U(x) =













x1 + x2x3x4x5/50
x2 + x1x3x4x5/50 − 3
x3 + x1x2x4x5/50 − 1

x4 + x1x2x3x5/50 + 0.5
x5 + x1x2x3x4/50













This problem has a unique solution x∗ = (0, 3, 1, 0, 0)T . All simulations show that
double projection neural network model (4) is globally convergent to the unique opti-
mum solution. For instance, Figure 11. shows the trajectories of model (4) with the
initial pointx0 = (1,−1, 2,−2, 5).
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Figure 9. Transient behavior of the double projection neural net-
work model (4) with six different initial points in Example 3
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Figure 10. Transient behavior of the double projection neural net-
work model (4) with five random initial points in Example 4.

7. Conclusions

In this paper, a novel double projection recurrent neural network model for solving
pseudomonotone variational inequalities and related problems is proposed. In the
case of pseudomonotoncity condition, we proved that the proposed neural network is
globally convergent, stable in the sense of Lyapunov and in the case of strongly pseu-
domonotonicity condition and other conditions; we proved that the double projection
neural network is globally exponentially stable. Moreover, the simulation results have
demonstrated the global convergence behavior and characteristics of the proposed
neural network for solving different types of variational inequality problems.
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Figure 11. Transient behavior of the double projection neural net-
work model (4) with the initial point x0 = (1,−1, 2,−2, 5) in Exam-
ple 5.
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