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Abstract. Let F : Rn × R −→ Rk be a vector-valued polynomial function:

F (x, y) =
(
F1, F2, ..., Fk

)
(x, y), x ∈ Rn, y ∈ R.

Each component Fi of F is a real-valued polynomial function, the degree of y of Fi is degy Fi = si,

and is represented by:

Fi(x, y) =

si∑
j=0

fi,j(x)yj , i = 1, 2, . . . , k,

where fi,j(x) ∈ R[x].

In this paper, for each Fi, we give an irreducible polynomial p
mi
i (x) of mi-power and consider a

real-valued quasi-fixed point problem as the form:

Fi(x, y) = aip
mi
i (x), i = 1, 2, · · · , k.

We aim to find a polynomial function y = y(x), x ∈ Rn to satisfy the following vector-valued

polynomial equation:

(>) F (x, y(x)) =
(
a1pm1

1 (x), a2pm2
2 (x), · · · , anp

mk
k (x)

)
,

where (a1, a2, . . . , ak) ∈ Rk is a constant vector depending on the solution y(x). We will investigate
the solution sets of (>) and containing either (i) of finitely many or (ii) of infinitely many quasi-fixed

(point) solutions. In case of (i), the number of solutions do not exceed

max
1≤i≤k

{si + 2}.

While the case (ii), all solutions are represented as the form

{−fsi−1(x)/sifsi (x) + λpt(x) : for all λ ∈ R}

where t ≤ mi/si for any i, 1 ≤ i ≤ k.
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1. Introduction

This paper is a continuous work of Lai and Chen [3] from real-valued polynomial
function extends to vector one. Part of the results are anounced in Chen and Lai
[4]. The concept and sprit are based on Lenstra [1] and Tung [2]. In [1], Lenstra
considered a real-valued polynomial function F (x, y) : F : R × R −→ R to intend
to find a polynomial function y = y(x) so that it turn to reduce to a fixed point for
F (x, y) as the form:

F (x, y(x)) = x. (1.1)

Recently, Tung [2] extended this fixed point concept to search a polynomial function
y = y(x) such that

F (x, y) = cxm for given m ∈ N, (1.2)

where N is the set of all natural numbers, and c is a constant depending on the solution
y = y(x). Based on the concept of (1.1) and (1.2), Lai and Chen [3] investigated the
real-valued polynomial function y = y(x) with an irreducible polynomial p(x) to
satisfy the equation:

F (x, y) = cpm(x) (1.3)

where x ∈ R in (1.1) is replaced by x ∈ Rn and xm in (1.2) is replaced by a polynomial
pm(x). In the present paper, we consider a quasi-fixed point problem for the vector-
valued polynomial function (c.f. Lai and Chen [3]) as the form:

F (x, y) = (F1, F2, · · · , Fk)(x, y) and

Fi(x, y) =
si∑

j=0

fi,j(x)yj , 1 ≤ i ≤ k,

where the degree of y in Fi is denoted by

degy Fi = si ≥ 1, 1 ≤ i ≤ k.

Thus we consider the vector-valued quasi-fixed point problem as the form:

F (x, y) = (a1p
m1
1 (x), a2p

m2
2 (x), . . . , akpmk

k (x)), (1.4)

where pi(x), 1 ≤ i ≤ k are given irreducible polynomials.
The main purpose of this paper is to establish some conditions so that the equation

(1.4) is solvable. Moreover, as the equation (1.4) is solvable, we will establish the
solution set S of (1.4). It may be either (i) finitely many solutions in which the
number of solutions is bounded, and is actually not exceed the number depending on
the degrees of y in each component Fi:

` = max
1≤i≤k

{si + 2},

or (ii) if the number of all solutions is infinitely many, then the solutions must be of
the types as the form:

{−fsi−1(x)/sifsi
(x) + λpt(x) : λ ∈ R},

where t ≤ mi/si for any i, 1 ≤ i ≤ k.
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2. Preliminary and Some Lemmas

For convenience, let S be the solution set of equation (1.4), and Si the solution
set of i-th component:

Fi(x, y(x)) = aip
mi
i (x),

where the irreducible polynomials pi(x) and mi are given, 1 ≤ i ≤ k.
Let S = {y(x) : y(x) satisfies equation (1.4)} and Si = {y(x) : Fi(x, y(x)) =

aip
mi(x)}. Then it is clear that S =

⋂
1≤i≤k Si.

In this paper, the cardinal number | S | may be either infinitely many or finitely
many, or not solvable. If | S | is infinite, then all solutions in S are represented by a
fixed form. If | S | is finite, we would find the upper bound of cardinal number | S |.
For convenience, we explain some interesting properties of quasi-fixed point solutions
as the following lemmas. At first we describe the relationship of any two quasi-fixed
solutions corresponding to distinct quasi-fixed vectors.

Lemma 2.1. The expression of the difference for two quasi-fixed solutions corre-
sponding to different quasi-fixed vectors is a power of pi(x) up to a constant for some
i ∈ {1, 2, . . . , k}.

Proof. Let y1(x) and y2(x) be two quasi-fixed solutions of F (x, y) with two distinct
quasi-fixed vectors (a1, a2, . . . , ak) and (b1, b2, . . . , bk) in Rk, respectively. Thus, there
exist ai 6= bi for some i, 1 ≤ i ≤ k. Without lose of generality, we may assume a1 6= b1,
and consider the first component as

F1(x, y1(x) = a1p
m1
1 (x)

F1(x, y2(x)) = b1p
m1
1 (x).

Subtracting the above two equations, it yields

F1(x, y1(x))− F1(x, y2(x)) = (a1 − b1)pm1
1 (x). (2.1)

The left hand side of the above equality

= f1,s1(x)[ys1
1 (x) − ys1

2 (x)] + f1,s1−1(x)[ys1−1
1 (x) − ys1−1

2 (x)] + · · · + f1,1(x)[y1(x) − y2(x)]

= [y1(x) − y2(x)][f1,s1(x)Gs1(y1(x), y2(x))] + · · · + [y1(x) − y2(x)][f1,1(x)]

= [y1(x) − y2(x)][f1,s1(x)Gs1(y1(x), y2(x)) + f1,s1−1(x)Gs1−1(y1(x), y2(x)) + · · · + f1,1(x)]

= [y1(x) − y2(x)]Q(x, y1(x), y2(x)), (2.2)

where Gj(y1(x), y2(x)) = yj−1
1 (x) + yj−2

1 (x)y2(x) + · · ·+ yj−1
2 (x) for j = 1, 2, . . . , s1

and Q(x, y1(x), y2(x)) = f1,s1(x)Gs1(y1(x), y2(x)) + f1,s1−1(x)Gs1−1(y1(x), y2(x)) +
· · ·+ f1,1(x).
By (2.1) and (2.2), we see that y1(x) − y2(x) is divisible the term (a1 − b1)pm1(x).
Since a1 6= b1, we get

y1(x)− y2(x) = cpt
1(x) for some c ∈ R and t ≤ m1 in N.

Note that pm1
1 (x) can be pmi

i (x), and each pi(x), i = 2, . . . , k, can be replaced by
p1(x). So each component in equation (1.4) reduced to irreducible polynomial pi(x)
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are of the same type up to a constant vector. � Let a real-valued polynomial function

G(x, y) =
s∑

i=0

gi(x)yi,

be regarded as a component in the vector-valued quasi-fixed problem. If there exists
a polynomial function y(x) ∈ R[x] with a constant a ∈ R such that

G(x, y(x)) = apm(x), (2.3)

then y(x) is a quasi-fixed solution corresponding to a quasi-fixed value a. By Lai and
Chen [3 Theorem 3.2], we have

Theorem 2.2. The following three conditions are equivalent:
(i) The equality (2.3) has at least s + 3 quasi-fixed solutions,
(ii) the polynomial function G(x, y) is expressed by the series

G(x, y) =
s∑

i=0

ci

(
y − y(x)

)i

(p(x))m−it, for some y(x) ∈ R[x], t ∈ N

and ci ∈ R, i = 0, 1, · · · , s.
(iii) the polynomial function G(x, y) in (2.3) has infinitely many quasi-fixed solu-

tions.

Remark. It is remarkable that from Theorem 2.2 (ii), any quasi-fixed solution h(x)
in equation (2.3) is represented by:

h(x) = y(x) + dpt(x), for some d ∈ R and t ∈ N.

3. Characterization for vector polynomial function

Let a vector-valued polynomial function be

F (x, y) = (F1(x, y), F2(x, y), · · · , Fk(x, y))

with Fi(x, y) =
∑si

j=0 fi,j(x)yj , degy Fi = si ≥ 1 for i = 1, 2, . . . , k.

Lemma 3.1. If some component Fi(x, y) of F (x, y) is represented as the form:

Fi(x, y) =
si∑

j=0

cij

(
y − yi(x)

)j

(pi(x))mi−jti

for a real-valued polynomial functions yi(x) with a irreducible polynomial pi(x) and
mi, ti ∈ N for some i = 1, 2, . . . , k, then a quasi-fixed solution y(x) of problem (1.4)
is represented by

y(x) = yi(x) + di(pi(x))ti for some di ∈ R.

Proof. Let y(x) be a quasi-fixed solution of F (x, y) in (1.4). Then y(x) is a quasi-
fixed solution of Fi(x, y), for each i = 1, 2, · · · , k. By assumption, there exists an
integer i ∈ {1, 2, . . . , k} such that

Fi(x, y) =
si∑

j=0

cij

(
y − yi(x)

)j

(pi(x))mi−jti .
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It follows from the Remark in last section, we get y(x) = yi(x) + di(pi(x))ti for some
di ∈ R. �

Note that form of Fi(x, y) in Lemma 3.1 is not seldom. For example, it will be
happened in Theorem 2.2.

By definition of the solution sets S and Si, we have S =
⋂

1≤i≤k Si provided the
cardinal number | S |≥ ℵ0, thus S = Si for any i = 1, 2, . . . , k. If all quasi-fixed
solutions have infinitely many, we will show this result as follows.

Theorem 3.2. Suppose that the cardinal number | S |≥ ℵ0, then S = Si for any
i = 1, 2, . . . , k.

Proof. We claim that Si ⊆ Sj for any i 6= j ∈ {1, 2, . . . , k}.
Since S =

⋂
1≤i≤k Si and the cardinal number | S | is infinite, then the cardinal

number | Si | is also infinite for any i = 1, 2, . . . , k. By Theorem 2.2, we know that
the polynomial function F (x, y) can be expanded to the power series of the form:

Fi(x, y) =
si∑

j=0

cij

(
y − yi(x)

)j

(pi(x))mi−jti ,

for some yi(x) ∈ R[x] and cij ∈ R, j = 0, 1, · · · , si.
Let y(x) and h(x) be two distinct solutions in S. Then by Lemma 3.1, y(x) and h(x)
can be represented by

y(x) = yi(x) + di
ypti

i (x) and h(x) = yi(x) + di
hpti

i (x)

for some di
y, di

h ∈ R, i = 1, 2, · · · , k. Hence

y(x)− h(x) = (di
y − di

h)pti
i (x)

= βip
ti
i (x) where βi = di

y − di
h ∈ R.

Since pti
i (x) for i = 1, 2, . . . , k have no common factor, it follows that

β1p
t1
1 (x) = β2p

t2
2 (x) = · · · = βkptk

k (x).

Since pi(x) is irreducible for each i = 1, 2, . . . , k, the above identities reduce

p1(x) = p2(x) = · · · = pk(x) = p(x), say and t1 = t2 = · · · = tk = t, say. (3.1)

If i 6= j ∈ {1, 2, . . . , k} and y(x) ∈ S implies that y(x) ∈ Si

⋂
Sj , by Lemma 3.1,

y(x) = yi(x) + di
ypti

i (x) and y(x) = yj(x) + dj
yp

tj

j (x)

for some di
y, dj

y ∈ R. Hence

yi(x)− yj(x) = (y(x)− di
ypti

i (x))− (y(x)− dj
yp

tj

j (x))

= (dj
yp

tj

j (x)− di
ypti

i (x))

by (3.1) = (dj
y − di

y)pt(x)

= dijp
t(x) where dij = dj

y − di
y. (3.2)
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If any i 6= j in {1, 2, . . . , k}, and any hi(x) ∈ Si, by Theorem 2.2, we get

hi(x) = yi(x) + di
ypti

i (x)

by (3.1) = yi(x) + di
ypt(x)

by (3.2) = (yj(x) + dijp
t(x)) + di

ypt(x)

by (3.1) = yj(x) + (dij + di
y)pt

j(x) ∈ Sj (by Remark).

This proves Si ⊆ Sj . It is the same for Sj ⊆ Si, thus Si = Sj = S. Hence the proof
is completed. �

This theorem shows that if the quasi-fixed solutions have infinitely many, then
S = Si for i = 1, 2, . . . , k and by the result of Theorem 2.2, we have

Fi(x, y) =
si∑

j=0

cij

(
y − yi(x)

)j

(pi(x))mi−jti .

It follows that pi(x) and ti are independent to the index “ i ” and Fi(x, y) can be
written as the form :

Fi(x, y) =
si∑

j=0

cij

(
y − yi(x)

)j

(p(x))mi−jt.

But a question rises that if | S |≥ max1≤i≤k{si + 3}, we will show that Fi(x, y) has
the expression:

Fi(x, y) =
si∑

j=0

cij

(
y − y(x)

)j

(p(x))mi−jt.

Here y(x), p(x) and t are independent to the index “ i ”. Precisely, we state it as the
following theorem.

Theorem 3.3. Suppose that the number of all quasi-fixed solutions in F (x, y) is at
least max1≤i≤k{si + 3}, then for any i = 1, 2, . . . , k, we have

Fi(x, y) =
si∑

j=0

cij

(
y − y(x)

)j

(p(x))mi−jt for some cij ∈ R, 0 ≤ j ≤ si

in the above expression, the polynomial functions y(x), p(x) ∈ R[x] and t ∈ N are
independent of “ i ”.

Proof. If F (x, y) has max1≤i≤k{si+3} quasi-fixed solutions, then each Fi(x, y) has
max1≤i≤k{si + 3} quasi-fixed solutions, i = 1, 2, . . . , k. By the equivalent relation in
Theorem 2.2, Fi(x, y) has infinitely many quasi-fixed solutions for any i = 1, 2, . . . , k,
and by (3.1), we have

p1(x) = p2(x) = · · · = pk(x) = p(x) and t1 = t2 = · · · = tk = t.

Moreover from Theorem 2.2, we have

Fi(x, y) =
si∑

j=0

cij(y − yi(x))jpmi−jt(x),
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for some yi(x) ∈ R[x], cij ∈ R, j = 0, 1, . . . , si and t ∈ N.
By Lemma 3.1, any quasi-fixed solution y(x) of F (x, y) can be represented by

y(x) = yi(x) + dip
t(x) for some di ∈ R

whence y(x) = yi(x) + dip
t(x) = y1(x) + d1p

t(x). It follows that

yi(x) = y1(x) + (d1 − di)pt(x)

= y1(x) + ρip
t(x) where ρi = d1 − di.

Substituting yi(x) by y1(x) + ρip
t(x) in Fi(x, y), for i = 1, 2, · · · , k, we then obtain

Fi(x, y) =
si∑

j=0

cij(y − yi(x))jpmi−jti

i (x)

=
si∑

j=0

cij(y − y1(x)− ρip
t(x))jpmi−jt(x)

=
si∑

j=0

cij

( j∑
r=0

er(y − y1(x))r(ρip
t(x))j−r

)
pmi−jt(x)

=
si∑

j=0

j∑
r=0

cijerρ
j−r
i (y − y1(x))r(pt(x))j−rpmi−jt(x)

=
si∑

r=0

( r∑
j=0

cijerρ
j−r
i

)
(y − y1(x))rpmi−rt(x)

=
si∑

r=0

dir(y − y1(x))rpmi−rt(x) where dir =
∑r

j=0 cijerρ
j−r
i ,

with r = 1, 2, . . . , si, and the proof is completed. �

4. Main Theorems

If the cardinal number | S |≥ ℵ0, then any quasi-fixed solution will be formated
as the following theorem.

Theorem 4.1. Suppose that | S |≥ ℵ0, then for any quasi-fixed point solution y(x)
in S must be of the form

−fi,si−1(x)
sifi,si(x)

+ λpt(x) where t = (mi − ki)/si,

for any λ ∈ R and i ∈ {1, 2, . . . , k}.

Proof. Since F (x, y) has infinitely many quasi-fixed solutions, each Fi(x, y) has
infinitely many quasi-fixed solutions for i = 1, 2, . . . , k. By Theorem 2.2 and Theorem
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3.2, the polynomial function Fi(x, y) can be represented by

Fi(x, y) = fi,si(x)ysi + fi,si−1(x)ysi−1 + · · ·+ fi,0(x)

=
si∑

j=0

cij

(
y − yi(x)

)j

(p(x))mi−jt

for some ci,j ∈ R, and t ≤ mi/si. Comparing both sides of the coefficient of ysi and
ysi−1 in the above expression for Fi(x, y), we get

fi,si
(x) = cisi

pri(x) where ri = mi − sit ∈ N,

and fi,si−1(x) = −sici,sip
mi−sit(x)yi(x) + ci,si−1p

mi−(si−1)t(x).

It follows that

yi(x) =
fi,si−1(x)− ci,si−1p

mi−(si−1)t(x)
−sici,sip

mi−st(x)

= − fi,si−1(x)
sici,sip

mi−st(x)
− ci,si−1p

mi−(si−1)t(x)
−sici,sip

mi−st(x)

= −fi,si−1(x)
sifi,si(x)

− ci,si−1

sici,si

pt(x)

= −fi,si−1(x)
sifi,si(x)

− λip
t(x) where λi = ci,si−1/sici,si

. (4.1)

By Theorem 3.1, any quasi-fixed solution y(x) in S can be represented by

y(x) = yi(x) + dip
t(x), for some di ∈ R

by (4.1) = −fi,si−1(x)
sifi,si

(x)
− dip

t(x) + λip
t(x)

= −fi,si−1(x)
sifi,si

(x)
+ λpt(x) where λ = −di + λi.

This completes the proof. �
Next we are curious if the cardinal number | S |6= ∞, then how about the upper

bound of the number | S |? The result will be given in the following theorem.

Theorem 4.2. Suppose that the number of all quasi-fixed solutions for F (x, y) is
finite. Then the number of all quasi-fixed solutions is at most max1≤i≤k{si + 2}.

Proof. Suppose on the contrary that the number of all quasi-fixed solutions were
at least max1≤i≤k{si + 3}. By Theorem 3.3, for each i, 1 ≤ i ≤ k, the component
function Fi(x, y) can be represented by

Fi(x, y) =
si∑

j=0

cij(y − y(x))jpmi−jt(x)

for some y(x) ∈ R[x], cij ∈ R, j = 0, 1, . . . , si and t ∈ N.
Now consider y = y(x) + λpt(x) for λ ∈ R, we want to show that for any λ ∈ R, y is
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also a quasi-fixed solution of F (x, y). Thus for each i, 1 ≤ i ≤ k,

Fi(x, y(x) + λpt(x)) =
si∑

j=0

cij(λpt(x))jpmi−jt(x)

= (
si∑

j=0

cijλ
j)pmi(x).

That is to say, y(x) + λpt(x) is a quasi-fixed solution of Fi(x, y), 1 ≤ i ≤ k. For
arbitrary λ ∈ R, it follows that y(x) + λpt(x) is also a quasi-fixed solution of F (x, y).
This means that the number of all quasi-fixed solutions for F (x, y) is infinitely many
(in fact, ](R)). This is a contradiction, and the theorem is proved. �

The following example shows that not any vector polynomial function is solvable !
Example 1. Let x = (x1, x2) and

F (x, y) =
(
(x1 + x2)y2, (x1 + x2)(y + 1)

)
.

Suppose that p1(x) = x1, p2(x) = x2, m1 = 1, m2 = 1. Then

F (x, y) =
(
a1p

m1
1 (x), a2p

m2
2 (x)

)
is not solvable for y = y(x).
Proof. If there exists an quasi-fixed solution y(x) of F (x, y), then

(x1 + x2)y2(x) = a1x1

(x1 + x2)
(
y(x) + 1

)
= a2x2.

From the last equation, we have a2 = 0 and y(x) + 1 = 0, this implies y(x) = −1.
Substituting y(x) = −1 to (x1 +x2)y2(x) = a1x1, we have x1 +x2 = a1x1, this means
x2 depends on x1, but it is impossible. This shows that

F (x, y) =
(
a1p

m1
1 (x), a2p

m2
2 (x)

)
is not solvable for y = y(x).

The following example will be shown that if | S |≥ ℵ0, then any y(x) ∈ S can be
obtained by the formula in Theorem 4.1.
Example 2. Let x = (x1, x2), and

F (x, y) = (F1(x, y), F2(x, y))

where

F1(x, y) = f1,2(x)y2 + f1,1(x)y + f1,0(x)

= y2 − (2x1x2 − x1 − x2)y + (x2
1x

2
2 − x2

1x2 − x1x
2
2 + x2

1 + 2x1x2 + x2
2)

F2(x, y) = f1,1(x)y + f1,0(x)
= y − x1x2 + x1 + x2

and assume that p1(x) = p2(x) = x1 + x2, m1 = 2 and m2 = 1. Prove that the
number of all quasi-fixed solutions of

F (x, y) =
(
a1p

m1
1 (x), a2p

m2
2 (x)

)
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is infinitely many and how to represent all quasi-fixed solutions.
Proof. Assume that there exist infinitely many quasi-fixed solutions in F (x, y), by
Theorem 4.1, f1,2(x) = c2p

r1
1 (x) = 1, we have r1 = 0 and t = m1−r1

s1
= 2−0

2 = 1.
Then by Theorem 4.1, any quasi-fixed solution y(x) must be the form

y(x) = −f1,2(x)/s1f1,1(x) + λpt(x) for any λ ∈ R
= (2x1x2 − x1 − x2)/2 + λpt(x)

= (2x1x2 − x1 − x2)/2 + λp(x)

= x1x2 + (λ− 1/2)p(x)

= x1x2 + λ̃p(x), λ̃ = λ− 1/2 is arbitrary

= x1x2 + λ̃(x1 + x2).

Substituting y = y(x) = x1x2 + λ̃(x1 + x2) in F (x, y), we obtain

F (x, y(x)) =
(
(λ̃2 − λ̃ + 1)p2(x), (1− λ̃)p(x)

)
and each λ̃ ∈ R yields a quasi-fixed solution, y(x). So the number of all quasi-fixed
solutions of F (x, y) =

(
a1p

m1
1 (x), a2p

m2
2 (x)

)
has the cardinal ](R) ≥ ℵ0.

For examples of finitely many quasi-fixed solutions we refer [3].
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