QUASI-FIXED POLYNOMIAL FOR VECTOR-VALUED POLYNOMIAL FUNCTIONS ON $\mathbb{R}^{n} \times \mathbb{R}$

HANG-CHIN LAI* AND YI-CHOU CHEN**
${ }^{*}$ Chung Yuan Christian University and National Tsing Hua University, Taiwan E-mail: hclai@cycu.edu.tw, laihc@mx.nthu.edu.tw
**National Army Academy and Chung Yuan Christian University, Taiwan
E-mail: g9101103@cycu.edu.tw

Abstract. Let $F: \mathbb{R}^{n} \times \mathbb{R} \longrightarrow \mathbb{R}^{k}$ be a vector-valued polynomial function:

$$
F(\bar{x}, y)=\left(F_{1}, F_{2}, \ldots, F_{k}\right)(\bar{x}, y), \quad \bar{x} \in \mathbb{R}^{n}, \quad y \in \mathbb{R}
$$

Each component F_{i} of F is a real-valued polynomial function, the degree of y of F_{i} is $\operatorname{deg}_{y} F_{i}=s_{i}$, and is represented by:

$$
F_{i}(\bar{x}, y)=\sum_{j=0}^{s_{i}} f_{i, j}(\bar{x}) y^{j}, \quad i=1,2, \ldots, k
$$

where $f_{i, j}(\bar{x}) \in \mathbb{R}[\bar{x}]$.
In this paper, for each F_{i}, we give an irreducible polynomial $p_{i}^{m_{i}}(\bar{x})$ of m_{i}-power and consider a real-valued quasi-fixed point problem as the form:

$$
F_{i}(\bar{x}, y)=a_{i} p_{i}^{m_{i}}(\bar{x}), \quad i=1,2, \cdots, k
$$

We aim to find a polynomial function $y=y(\bar{x}), \bar{x} \in \mathbb{R}^{n}$ to satisfy the following vector-valued polynomial equation:
where $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$ is a constant vector depending on the solution $y(\bar{x})$. We will investigate the solution sets of ($\%$) and containing either (i) of finitely many or (ii) of infinitely many quasi-fixed (point) solutions. In case of (i), the number of solutions do not exceed

$$
\max _{1 \leq i \leq k}\left\{s_{i}+2\right\}
$$

While the case (ii), all solutions are represented as the form

$$
\left\{-f_{s_{i}-1}(\bar{x}) / s_{i} f_{s_{i}}(\bar{x})+\lambda p^{t}(\bar{x}): \text { for all } \lambda \in \mathbb{R}\right\}
$$

where $t \leq m_{i} / s_{i}$ for any $i, 1 \leq i \leq k$.
Key Words and Phrases: Quasi-fixed point (solution), quasi-fixed (constant) vector. 2010 Mathematics Subject Classification: $47 \mathrm{H} 10,26 \mathrm{C} 05,47 \mathrm{H} 14,47 \mathrm{H} 30,47 \mathrm{H} 99$.

[^0]
References

[1] A.K. Lenstra, Factoring multivariate polynomials over algebraic number fields, SIAM J. Comput., 16(1987), 591-598.
[2] S.P. Tung, Near solutions of polynomial equations, Acta Arith., 123(2006), 163-181.
[3] H.C. Lai and Y.C. Chen, A quasi-fixed polynomial problem for polynomial function, J. Nolinear Convex Anal., 11(2010), No.1, 101-114.
[4] Y.C. Chen, and H.C. Lai, Quasi-fixed polynomial solutions of real-valued polynomial equations, Proceedings of the 9th International Conference on Fixed Point Theory and its Applications (July 16-22 2009, Changhua, Taiwan) (L-J. Lin, A. Petruşel, H.-K. Xu.-Eds.),Yokohama Publishers, 2010, 27-37.

Received: January 12, 2010; Accepted: October 29, 2010.

[^0]: * Corresponding author; This research was partially supported by the National Science Council of Taiwan (NSC 99-2115-M-033-005)
 **The author was partially supported by the National Science Council of Taiwan (NSC 100-2115-M-539-001).

