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1. Introduction

The following theorem was given by Maia in 1968 (see [4]):

Theorem 1.1. Let X be a nonempty subset, d and ρ be two metrics on X and
f : X → X be a mapping. Suppose that:

(i) ρ(x, y) ≤ d(x, y), for all x, y ∈ X;
(ii) (X, ρ) is a complete metric space;

(iii) f : (X, ρ) → (X, ρ) is continuous;
(iv) f : (X, d) → (X, d) is an α-contraction, i.e., there exists α ∈ [0, 1[ such that

d(f(x), f(y)) ≤ α · d(x, y), for all x, y ∈ X.
Then

(1) Ff = {x∗};
(2) (fn(x0))n∈N converges in (X, ρ) to x∗, for all x0 ∈ X.

In applications we usually consider a variant of Maia’s Theorem given by I.A. Rus
in [10] (see also [11]). More precisely, we have:

Remark 1.1. Theorem 1.1 remains true if condition (i) is replaced by
(i′) there exists c > 0 such that ρ(f(x), f(y)) ≤ c · d(x, y), for all x, y ∈ X;

For other Maia type results see [11], [10], [6], [7], [8]. Fixed point theorems in
Kasahara spaces are natural generalizations of Maia type theorems.

We recall first the notion of L-space, introduced by M. Fréchet, see [1].
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Definition 1.1. Let X be a nonempty set. Let

s(X) :=
{
(xn)n∈N | xn ∈ X, n ∈ N

}
.

Let c(X) be a subset of s(x) and Lim : c(X) → X be an operator. By definition
the triple (X, c(X), Lim) is called an L-space (denoted by (X,→)) if the following
conditions are satisfied:

(i) if xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) if (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences (xni

)i∈N
of (xn)n∈N we have that (xni)i∈N ∈ c(X) and

Lim(xni
)i∈N = x.

By following S. Kasahara (see [3]) and M.G. Maia (see [4]), the notion of Kasahara
space was introduced by I.A. Rus in [13] as follows:

Definition 1.2. Let (X,→) be an L-space and d : X×X → R+ be a functional. The
triple (X,→, d) is a Kasahara space if and only if the following compatibility condition
between → and d holds:

xn ∈ X,
∑
n∈N

d(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→).

The purpose of this paper is to introduce the concept of Kasahara space with
respect to an operator and to prove in this setting some fixed point theorems. As
applications, integral and differential equations are considered.

2. Fixed point theorems in Kasahara spaces with respect to an
operator

Let (X,→) be an L-space. Let f : X → X be an operator. Then we denote by
f0 := 1X , f1 = f , fn+1 = f ◦ fn for all n ∈ N, the iterates of f .

Let x ∈ X. The sequence (xn)n∈N ⊂ X, defined by xn := fn(x) for all n ∈ N is
called the sequence of successive approximations for f starting from x. In the sequel,
we shall denote this sequence by (fn(x))n∈N.

The notion of Kasahara space with respect to an operator is introduced as follows.

Definition 2.1. Let (X,→) be an L-space, d : X × X → R+ be a functional and
f : X → X be an operator. The triple (X,→, d) is a Kasahara space with respect to
the operator f if and only if∑

n∈N
d(fn(x), fn+1(x)) < +∞, for all x ∈ X

implies that

(fn(x))n∈N is convergent in (X,→), for all x ∈ X.

Recall first a very useful tool for proving the uniqueness of a fixed point in a
Kasahara space (see S. Kasahara [3], I.A. Rus [13]).

Lemma 2.1. (Kasahara’s lemma) Let (X,→, d) be a Kasahara space. Then:

x, y ∈ X, d(x, y) = d(y, x) = 0 =⇒ x = y.
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Notice that, in a Kasahara space with respect to an operator the above implication
need not to be satisfied. Notice also that a Kasahara space is a Kasahara space with
respect to an operator, but the reverse implication is false.

Example 2.1. Let X be a nonempty set, f : X → X be an operator and d, ρ :
X ×X → R+ be two functionals. We suppose:

(i) (X, ρ) is a complete metric space;
(ii) there exists c > 0 such that ρ(f(x), f(y)) ≤ cd(x, y), for all x, y ∈ X.

Then (X,
ρ→, d) is a Kasahara space with respect to f .

Indeed, let x ∈ X be such that
∑
n∈N

d(fn(x), fn+1(x)) < +∞. Then, for n ∈ N and

p ∈ N∗, we can write

ρ(fn(x), fn+p(x)) ≤
n+p−2∑
k=n−1

ρ(fk+1(x), fk+2(x)) ≤ c

n+p−2∑
k=n−1

d(fk(x), fk+1(x)) → 0

as n → +∞. Thus, since (X, ρ) is a complete metric space, we get that the sequence
(fn(x))n∈N is convergent in (X, ρ). This completes the proof.

Example 2.2. Let X = C(Ω) := {x : Ω → R | x is a continuous function }, where
Ω ⊆ Rm is a bounded domain.

Let
ρ−→ be the convergence structure induced by ρ : C(Ω)× C(Ω) → R+, where

ρ(x, y) := ‖x− y‖∞ := sup
t∈Ω

|x(t)− y(t)|, for all x, y ∈ C(Ω).

Let d : C(Ω)× C(Ω) → R+ be the functional defined by

d(x, y) := ‖x− y‖L2(Ω) :=
( ∫

Ω

|x(t)− y(t)|2dt

) 1
2

, for all x, y ∈ C(Ω).

We consider the operator f : C(Ω) → C(Ω), defined by

f(x)(t) :=
∫

Ω

K(t, s, x(s))ds

where K ∈ C(Ω× Ω× R).
We assume that there exists L ∈ C(Ω× Ω) such that

|K(t, s, u)−K(t, s, v)| ≤ L(t, s)|u− v|,

for all t, s ∈ Ω and u, v ∈ R.

Then the triple (X,
ρ→, d), i.e.,

(
C(Ω),

‖·‖∞−→ , ‖·‖L2(Ω)

)
is a Kasahara space with

respect to the operator f .

Indeed, since

ρ(f(x), f(y)) ≤ sup
t∈Ω

( ∫
Ω

L(t, s)2ds

) 1
2

· d(x, y),

we are in the conditions of Example 2.1 and the conclusion follows.
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Now we will present some remarks concerning operators on Kasahara spaces or
Kasahara spaces with respect to an operator.

Definition 2.2. Let (X,→, d) be a Kasahara space and f : X → X be an operator.
Then, by definition:

(i) f is a Picard operator if and only if f is Picard in (X,→), i.e., Ff = {x∗}
and fn(x) → x∗ as n →∞, for all x ∈ X;

(ii) f is a weakly Picard operator if and only if f is weakly Picard in (X,→), i.e.,
fn(x) → x∗(x) ∈ Ff as n →∞, for all x ∈ X;

(iii) if f is a weakly Picard operator, then we define the operator

f∞ : X → X by f∞(x) := Lim(fn(x))n∈N;

(iv) f is with closed graph if and only if f has closed graph in (X,→), i.e.,

xn → x∗ and f(xn) → y∗ ⇒ f(x∗) = y∗;

(v) f is continuous if and only if f is continuous in (X,→);
(vi) f is k-Lipschitz if and only if f is k-Lipschitz in (X, d);
(vii) f is k-contraction if and only if f is k-contraction in (X, d).

For other considerations on Picard operators and weakly Picard operators see I.A.
Rus [12], [11], I.A. Rus, A. Petruşel and M.A. Şerban [14].

Theorem 2.1. Let X be a nonempty set and f : X → X be an operator. Suppose
that (X,→, d) is a Kasahara space with respect to f . We assume that:

(i) f : (X,→) → (X,→) has closed graph;
(ii) (ii) f : (X, d) → (X, d) is an α-contraction, i.e., there exists α ∈ [0, 1[ such

that d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X;
(iii) d(x, y) = d(y, x) = 0 ⇒ x = y.

Then

(1) Ff = Ffn = {x∗} for all n ∈ N∗ and d(x∗, x∗) = 0.
(2) fn(x) → x∗ as n →∞, for all x ∈ X, i.e., f is a Picard operator.
(3) We have:

(3a) d(fn(x), x∗) R→ 0 as n →∞, for all x ∈ X;
(3b) d(x∗, fn(x)) R→ 0, as n →∞, for all x ∈ X.

(4) If d is a quasimetric (i.e., d(x, y) = d(y, x) = 0 ⇔ x = y for all x, y ∈ X and
d satisfies the triangle inequality), then:
(4a) d(x, x∗) ≤ 1

1−αd(x, f(x)), for all x ∈ X;
(4b) d(x∗, x) ≤ 1

1−αd(f(x), x), for all x ∈ X;
(4c) d(fn(x), x∗) ≤ αn

1−αd(x, f(x)), for all x ∈ X and all n ∈ N;
(4d) d(x∗, fn(x)) ≤ αn

1−αd(f(x), x), for all x ∈ X and all n ∈ N;

(4e) if (zn)n∈N ⊂ X is such that d(zn, f(zn)) R→ 0 as n →∞ then d(zn, x∗) R→
0 as n →∞, i.e., the fixed point problem for the operator f is well-posed
with respect to d;
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(4f ) if (zn)n∈N ⊂ X is such that d(zn+1, f(zn)) R→ 0 as n → ∞ then

d(zn+1, f
n+1(z)) R→ 0 as n → ∞, for all z ∈ X, i.e., the operator f

has the limit shadowing property with respect to d;
(4g) If g : X → X is an operator such that

d(f(x), g(x)) ≤ η, for all x ∈ X,

then
d(x∗, y∗) ≤ η

1− α
, for all y∗ ∈ Fg.

Proof. (1) & (2). Let x ∈ X and (fn(x))n∈N be the sequence of successive approxi-
mations of f starting from x.

By (ii) and by induction after n ∈ N∗ we have that

d(fn(x), fn+1(x)) ≤ αnd(x, f(x)). (2.1)

It follows that∑
n∈N

d(fn(x), fn+1(x)) ≤
∑
n∈N

αnd(x, f(x)) =
1

1− α
d(x, f(x)) < ∞.

Since (X,→, d) is a Kasahara space with respect to the operator f , we get that the
sequence (fn(x))n∈N is convergent in (X,→). Hence, there exists an element x∗ ∈ X
such that fn(x) → x∗ as n →∞.

By (i) we obtain that x∗ ∈ Ff . Since x∗ = f(x∗) = f(f(x∗)) = . . . = fn(x∗) we
also conclude that x∗ ∈ Ffn .

Next, we show the uniqueness of the fixed point x∗.
Let y∗ ∈ X be another fixed point for the operator f such that x∗ 6= y∗. Then

d(x∗, y∗) = d(fn(x∗), fn(y∗)) ≤ αd(fn−1(x∗), fn−1(y∗))

≤ . . . ≤ αnd(x∗, y∗) R→ 0 as n →∞. (2.2)

Similarly, we get that d(y∗, x∗) = 0. By (iii), we conclude that x∗ = y∗. Hence f is a
Picard operator.

Finally, if x∗ ∈ Ff then we can show that d(x∗, x∗) = 0.
Indeed, by (2.2), we have

d(x∗, x∗) ≤ αnd(x∗, x∗) R→ 0 as n →∞.

(3a). Let x ∈ X. Then by (ii) we have

d(fn(x), x∗) = d(fn(x), fn(x∗)) ≤ αd(fn−1(x), fn−1(x∗))

≤ . . . ≤ αnd(x, x∗) R→ 0 as n →∞,

so (3a) holds. By a similar approach we obtain (3b).
(4a). Let x ∈ X. Since the functional d satisfies the triangle inequality, we have

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f(x∗)) ≤ d(x, f(x)) + αd(x, x∗) and hence

d(x, x∗) ≤ 1
1− α

d(x, f(x)), for all x ∈ X,

so (4a) holds. Similarly we get that (4b) holds.
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(4c). Using the property (4a), we have for each n ∈ N the following estimation

d(fn(x), x∗) ≤ 1
1− α

d(fn(x), fn+1(x)), for all x ∈ X (2.3)

By (2.3) and (2.1) we obtain

d(fn(x), x∗) ≤ αn

1− α
d(x, f(x)), for all x ∈ X,

so (4c) holds. By a similar procedure we obtain (4d).
We prove next (4e). Let (zn)n∈N ⊂ X such that d(zn, f(zn)) R→ 0 as n → ∞. By

(4a) we have

d(zn, x∗) ≤ 1
1− α

d(zn, f(zn)) R→ 0 as n →∞

so (4e) holds.
(4f ). Let z ∈ X and (zn)n∈N ⊂ X such that d(zn+1, f(zn)) R→ 0 as n →∞. Since

x∗ ∈ Ff , by (ii) and (3b) we have that

d(x∗, fn+1(z)) = d(f(x∗), fn+1(z)) ≤ αd(x∗, fn(z)) R→ 0 as n →∞. (2.4)

We need to prove that d(zn+1, x
∗) R→ 0 as n →∞.

We have

d(zn+1, x
∗) ≤ d(zn+1, f(zn)) + d(f(zn), x∗) ≤ d(zn+1, f(zn)) + αd(zn, x∗)

≤ d(zn+1, f(zn)) + αd(zn, f(zn−1)) + α2d(zn−1, x
∗)

≤ d(zn+1, f(zn)) + αd(zn, f(zn−1)) + . . . + αn+1d(z0, x
∗).

From a Cauchy lemma (see the references in [11], [12] or [15]) we have that

d(zn+1, x
∗) R→ 0 as n →∞. (2.5)

By (2.4) and (2.5), we obtain

d(zn+1, f
n+1(z)) ≤ d(zn+1, x

∗) + d(x∗, fn+1(z)) R→ 0 as n →∞.

Finally, we show (4g). Let y∗ ∈ Fg. By (4b) we have that

d(x∗, y∗) ≤ 1
1− α

d(f(y∗), y∗) =
1

1− α
d(f(y∗), g(y∗)) ≤ η

1− α
.

�

Theorem 2.2. Let X be a nonempty set and f : X → X be an operator. Suppose
that (X,→, d) is a Kasahara space with respect to f . We assume that:

(i) f : (X,→) → (X,→) has closed graph;
(ii) f : (X, d) → (X, d) is an α-graphic contraction, i.e., there exists α ∈ [0, 1[

such that d(f(x), f2(x)) ≤ αd(x, f(x)), for all x ∈ X.
Then the following statements hold:

(1) Ff 6= ∅.
(2) fn(x) → f∞(x) ∈ Ff as n →∞, for all x ∈ X, i.e., f : (X,→) → (X,→) is

a weakly Picard operator.
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(3) d(x∗, x∗) = 0, for all x∗ ∈ Ff .
(4) if d satisfies the triangle inequality and d is continuous with respect to →,

then
(4a) d(x, f∞(x)) ≤ 1

1−αd(x, f(x)), for all x ∈ X,

(4b) Let g : X → X be an operator. If there exists c > 0 such that

d(x, g∞(x)) ≤ c · d(x, g(x)), for all x ∈ X (2.6)

and for each x ∈ X, there exists η > 0 such that

max{d(g(x), f(x)), d(f(x), g(x))} ≤ η, (2.7)

then

Hd(Ff , Fg) ≤ max
{

1
1− α

, c

}
η,

where Hd stands for the Pompeiu-Hausdorff functional generated by d
(see [2]).

Proof. (1) & (2). Let x ∈ X and consider the sequence (fn(x))n∈N of successive
approximations for f starting from x. Since f is an α-graphic contraction, we deduce
that

d(fn(x), fn+1(x)) ≤ αd(fn−1(x), fn(x)) ≤ . . . ≤ αnd(x, f(x)), for all n ∈ N.

By the proof of Theorem 2.1 we get that (fn(x))n∈N is convergent in (X,→). By (i)
it follows that its limit is a fixed point of f . So Ff 6= ∅.

(3). Let x∗ ∈ Ff . Then by (ii) we have

d(x∗, x∗) = d(fn(x∗), fn+1(x∗)) ≤ αd(fn−1(x∗), fn(x∗))

≤ α2d(fn−2(x∗), fn−1(x∗)) ≤ . . . ≤ αnd(x∗, f(x∗)) R→ 0 as n →∞.

(4). Let x ∈ X. Then

d(x, f∞(x)) ≤ d(x, fn(x)) + d(fn(x), f∞(x))

≤ d(x, f(x)) + d(f(x), f2(x)) + . . . + d(fn−1(x), fn(x))

+ d(fn(x), f∞(x))

≤ (1 + α + . . . + αn−1)d(x, f(x)) + d(fn(x), f∞(x))

≤ 1
1− α

d(x, f(x)) + d(fn(x), f∞(x)), for all n ∈ N.

By letting n →∞ and by using (3), we obtain

d(x, f∞(x)) ≤ 1
1− α

d(x, f(x)), for each x ∈ X,

so (4a) holds.
We show next (4b).
Let x ∈ Ff and y ∈ Fg. Since g satisfies (2.6) and (2.7), we have

d(x, g∞(x)) ≤ c · d(x, g(x)) = c · d(f(x), g(x)) ≤ cη.
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Since g∞(x) ∈ Fg we have

inf
y∈Fg

d(x, y) ≤ d(x, g∞(x)) ≤ cη

and by taking the supremum over x ∈ Ff , we obtain

sup
x∈Ff

inf
y∈Fg

d(x, y) ≤ cη. (2.8)

On the other hand, since f satisfies (4a), we have

d(y, f∞(y)) ≤ 1
1− α

d(y, f(y)) =
1

1− α
d(g(y), f(y)) ≤ η

1− α
.

Since f∞(y) ∈ Ff we have

inf
x∈Ff

d(y, x) ≤ d(y, f∞(y)) ≤ η

1− α

and by taking the supremum over y ∈ Fg, we obtain

sup
y∈Fg

inf
x∈Ff

d(y, x) ≤ η

1− α
. (2.9)

By (2.8) and (2.9) we get

Hd(Ff , Fg) := max
{

sup
x∈Ff

inf
y∈Fg

d(x, y), sup
y∈Fg

inf
x∈Ff

d(y, x)
}
≤ max

{
1

1− α
, c

}
η.

�

3. Existence and uniqueness for integral equations and boundary
value problems

We will present now some applications of the abstract results given in Section 2.

Theorem 3.1. Let Ω ⊂ Rn be a bounded domain, K ∈ C(Ω×Ω×R) and g ∈ C(Ω).
We suppose that:

(i) K(t, s, ·) : R → R is increasing, for all t, s ∈ Ω.
(ii) there exists L ∈ C(Ω× Ω) such that

|K(t, s, u)−K(t, s, v)| ≤ L(t, s)|u− v|,

for all t, s ∈ Ω and u, v ∈ R.

(iii)
∫

Ω×Ω

L(t, s)2dsdt < 1.

Then the integral equation

x(t) =
∫

Ω

K(t, s, x(s))ds + g(t), t ∈ Ω (3.1)

has a unique solution x∗ ∈ C(Ω).
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Proof. Let X = C(Ω) and →:=
‖·‖∞−→ be the convergence induced by ‖·‖∞ on X, where

‖x‖∞ = sup
t∈Ω

|x(t)|, for all x ∈ C(Ω). Let d : X ×X → R+ be defined by

d(x, y) = ‖x− y‖L2(Ω) =
( ∫

Ω

|x(t)− y(t)|2dt

) 1
2

, for all x, y ∈ X.

We consider the operator A : X → X, x 7→ Ax, defined by

Ax(t) =
∫

Ω

K(t, s, x(s))ds + g(t), for all t ∈ Ω.

Then the integral equation (3.1) is equivalent with the fixed point problem x = Ax.

Notice that, since A is a continuous operator on (X,
‖·‖∞−→), we get that A has closed

graph in (X,
‖·‖∞−→).

On the other hand, A is a contraction in (X, d). Indeed, by the definition of d we
have

d(Ax, Ay) =
( ∫

Ω

|Ax(t)−Ay(t)|2dt

) 1
2

=
( ∫

Ω

∣∣∣∣ ∫
Ω

[
K(t, s, x(s))−K(t, s, y(s))

]
ds

∣∣∣∣2dt

) 1
2

.

Using Hölder’s inequality, we get∣∣∣∣ ∫
Ω

[
K(t, s, x(s))−K(t, s, y(s))

]
ds

∣∣∣∣ ≤ ∫
Ω

∣∣K(t, s, x(s))−K(t, s, y(s))
∣∣ds

≤
∫

Ω

L(t, s)|x(s)− y(s)|ds
Hölder
≤

( ∫
Ω

L(t, s)2ds

) 1
2
( ∫

Ω

|x(s)− y(s)|2ds

) 1
2

.

Hence, for all x, y ∈ X we have

d(Ax, Ay) ≤
( ∫

Ω

( ∫
Ω

L(t, s)2ds

)
d(x, y)2dt

) 1
2

=
( ∫

Ω

∫
Ω

L(t, s)2dsdt

) 1
2

d(x, y)

and by (iii), we get that A is a contraction in (X, d).

Thus, the triple (C(Ω),
‖·‖∞−→ , d) is a Kasahara space with respect to the operator A

(see also Example 2.2). Applying Theorem 2.1 the conclusion follows. �

We consider next the following boundary value problem
y′′(t) = f(t, y(t)), for all t ∈ [a, b]
a1y(a) + a2y(b) + a3y

′(a) + a4y
′(b) = 0

b1y(a) + b2y(b) + b3y
′(a) + b4y

′(b) = 0
(3.2)

where ai, bi ∈ R, i = 1, 4 and f : [a, b]× R → R is a continuous function.
We consider also the following linear mappings:
(1) L : C2([a, b]) → C([a, b]), L(y) = y′′(t);
(2) l1 : C2([a, b]) → R, l1(y) = a1y(a) + a2y(b) + a3y

′(a) + a4y
′(b)

(3) l2 : C2([a, b]) → R, l2(y) = b1y(a) + b2y(b) + b3y
′(a) + b4y

′(b)
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Then the boundary value problem (3.2) can be written as follows:

L(y) = f(·, y), l1(y) = 0, l2(y) = 0. (3.3)

We recall that the Green’s function associated to the boundary value problem (3.3)
is the mapping

G : [a, b]× [a, b] → R; (t, s) 7→ G(t, s)
which satisfies the following conditions:

(i) G ∈ C([a, b]× [a, b]);
(ii) For any s ∈ [a, b], G(·, s) ∈ C2([a, s[∪]s, b]) and

∂

∂t
G(s + 0, s)− ∂

∂t
G(s− 0, s) = − 1

p(s)
,

where p ∈ C([a, b]) and p(s) 6= 0 for any s ∈ [a, b];
(iii) G(·, s) is a solution for L(y) = 0 on [a, b] \ {s} and satisfies the boundary

conditions l1(y) = l2(y) = 0.
We have the following result.

Theorem 3.2. Let f : [a, b] × R → R be a continuous function and consider the
boundary value problem (3.3). We assume that:

(i) there exists Lf > 0 such that

|f(s, u)− f(s, v)| ≤ Lf |u− v|,
for all s ∈ [a, b] and u, v ∈ R;

(ii)
∫ b

a

∫ b

a

G(t, s)2dsdt < 1, where G is the Green’s function associated to the

boundary value problem (3.3).
If the homogeneous boundary value problem{

L(y) = 0
l1(y) = l2(y) = 0

(3.4)

admits only the trivial solution y ≡ 0, then the boundary value problem (3.3) has a
unique solution in C([a, b]).

Proof. Since the problem (3.4) admits only the trivial solution y ≡ 0, there exists a
unique Green function G, associated to the problem (3.3). Moreover, (see for example
P. Pavel and I.A. Rus [5], p.160) the boundary value problem (3.3) is equivalent with
the Fredholm type integral equation

y(t) = −
∫ b

a

G(t, s)f(s, y(s))ds, for all t ∈ [a, b]. (3.5)

Let X = C([a, b]), →:=
‖·‖∞−→ be the convergence structure on X, where ‖x‖∞ =

sup
t∈[a,b]

|x(t)|, for all x ∈ C([a, b]). Let d : X ×X → R+ be defined by

d(x, y) = ‖x− y‖L2([a,b]) =
( ∫ b

a

|x(t)− y(t)|2dt

) 1
2

, for all x, y ∈ X.
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We consider the operator A : X → X, x 7→ Ax, defined by

Ax(t) = −
∫ b

a

G(t, s)f(s, x(s))ds, for all t ∈ [a, b].

Then the integral equation (3.5) is equivalent with the fixed point problem y = Ay.

Notice that, since A is a continuous operator on (X,
‖·‖∞−→), we have that A has

closed graph in (X,
‖·‖∞−→).

On the other hand, A is a contraction in (X, d). Indeed, by the definition of d we
have

d(Ax, Ay) =
( ∫ b

a

|Ax(t)−Ay(t)|2dt

) 1
2

=
( ∫ b

a

∣∣∣∣ ∫ b

a

G(t, s)
[
f(s, x(s))− f(s, y(s))

]
ds

∣∣∣∣2dt

) 1
2

.

Using Hölder’s inequality, we get∣∣∣∣ ∫ b

a

G(t, s)
[
f(s, x(s))− f(s, y(s))

]
ds

∣∣∣∣
≤

∫ b

a

G(t, s)
∣∣f(s, x(s))− f(s, y(s))

∣∣ds ≤
∫ b

a

G(t, s)Lf |x(s)− y(s)|ds

Hölder
≤ Lf

( ∫ b

a

G(t, s)2ds

) 1
2
( ∫ b

a

|x(s)− y(s)|2ds

) 1
2

.

Hence, for all x, y ∈ X we have

d(Ax, Ay) ≤
( ∫ b

a

L2
f

( ∫ b

a

G(t, s)2ds

)
d(x, y)2dt

) 1
2

= Lf

( ∫ b

a

∫ b

a

G(t, s)2dsdt

) 1
2

d(x, y). (3.6)

and by (ii), we get that A is a contraction in (X, d).

The triple (C([a, b]),
‖·‖∞−→ , d) is a Kasahara space with respect to the operator A

(see Example 2.2 and take Ω = [a, b]). By Theorem 2.1 the conclusion follows. �

Let us consider now the following particular form of a boundary value problem.{
y′′(t) = f(t, y(t)), for all t ∈ [a, b]
y(a) = y(b) = 0

(3.7)

In this case, the boundary value problem (3.7) is equivalent with the Fredholm type
integral equation (3.5) where the Green’s function G : [a, b]× [a, b] → R is defined by

G(t, s) =

{
(b−t)(s−a)

b−a , s ≤ t
(b−s)(t−a)

b−a , s > t
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Notice that the Green function G is symmetric, continuous, positive on [a, b]2 and

G(t, s) ≤ b− a

4
, for all t, s ∈ [a, b]. (3.8)

By Theorem 3.2 we get the following result.

Theorem 3.3. Let f : [a, b]× R → R be a continuous function. We assume that:
(i) there exists Lf > 0 such that

|f(s, u)− f(s, v)| ≤ Lf |u− v|, for all s ∈ [a, b], and u, v ∈ R.

(ii) Lf
(b−a)2

4 < 1.
Then, the boundary value problem (3.7) has a unique solution in C([a, b]).
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