WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

S. DHOMPONGSA*, W. TAKAHASHI** AND H. YINGTAWEESITTIKUL***

*Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: sompongd@chiangmai.ac.th

**Department of Mathematical and Computing Sciences Tokyo Institute of Technology, Ohokayama, Meguro-ku Tokyo 152-8552, Japan. E-mail: wataru@is.titech.ac.jp

***Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: g4825119@cm.edu

Abstract. In this paper, we introduce an iterative sequence for finding a common element of the set of fixed points of a nonspreading mapping, the set of solutions of an equilibrium problem and the set of solutions of the variational inequality problem for a monotone and Lipschitz-continuous mapping. We show that the sequence converges weakly to a common element of the above three sets.

Key Words and Phrases: Nonspreading mappings, monotone, Lipschitz-continuous mappings, variational inequalities, fixed points.

2010 Mathematics Subject Classification: 47H05, 47H09, 47H20.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H. Let f be a bifunction of $C \times C$ into \mathbb{R} , where \mathbb{R} is the set of real numbers. The equilibrium problem for $f: C \times C \to \mathbb{R}$ is to find $x \in C$ such that

$$f(x,y) \ge 0 \text{ for all } y \in C.$$
 (1.1)

The set of solutions (1.1) is denoted by EP(f). A mapping A of C into H is called monotone if $\langle Au - Av, u - v \rangle \geq 0$ for all $u, v \in C$. The variational inequality problem is to find $u \in C$ such that $\langle Au, v - u \rangle \geq 0$ for all $v \in C$. The set of solutions of the variational inequality problem is denoted by VI(C, A).

A mapping A of C into H is called α -inverse-strongly monotone if there exists a positive real number α such that $\langle Au - Av, u - v \rangle \geq \alpha \|Au - Av\|^2$ for all $u, v \in C$. It is obvious that any α -inverse-strongly monotone mapping A is monotone and Lipschitz

^{*}Corresponding author.

continuous; see, for example, [13]. A mapping S of C into itself is called nonexpansive if $||Su - Sv|| \le ||u - v||$ for all $u, v \in C$. A mapping S of C into itself is called nonspreading (see [3, 4]) if

$$2||Su - Sv||^2 \le ||Su - v||^2 + ||Sv - u||^2$$
, for all $u, v \in C$.

We denote by F(S) the set of fixed points of S. Recently, in the case when S is a nonexpansive mapping, Nadezhkina and Takahashi [5] introduced an iterative process for finding a common element of the set F(S) and the set VI(C,A) for a monotone and Lipschitz-continuous mapping. On the other hand, Tada and Takahashi [9, 10] and Takahashi and Takahashi [11] obtained weak and strong convergence theorems for finding a common element of the set EP(f) and the set F(S) in a Hilbert space. In this paper, we prove weak convergence theorems for finding a common element of the set EP(f), the set VI(C,A) for a monotone and Lipschitz-continuous mapping and the set F(S) of a nonspreading mapping in a Hilbert space.

2. Preliminaries

In this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. $x_n \to x$ implies that $\{x_n\}$ converges strongly to x. $x_n \rightharpoonup x$ means that $\{x_n\}$ converges weakly to x. In a real Hilbert space H, we have

$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda (1-\lambda)\|x - y\|^2$$

for all $x, y \in H$ and $\lambda \in \mathbb{R}$; see [12]. Let C be a closed convex subset of H. Then, for every point $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that $||x - P_C x|| \le ||x - y||$ for all $y \in C$. P_C is called the metric projection of H onto C. We know that P_C is a nonexpansive mapping of H onto C. It is also known that P_C is characterized by the following properties: $P_C x \in C$,

$$\langle x - P_C x, P_C x - y \rangle \ge 0 \tag{2.1}$$

and

$$||x - y||^2 \ge ||x - P_C x||^2 + ||y - P_C x||^2$$
(2.2)

for all $x \in H, y \in C$. Let A be a monotone mapping of C into H. In the context of the variational inequality problem, this implies

$$u \in VI(C, A) \Leftrightarrow u = P_C(u - \lambda Au)$$

for all $\lambda > 0$. It is also known that H satisfies the Opial condition [6]; i.e., for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

 $\liminf_{n\to\infty}\|x_n-x\|<\liminf_{n\to\infty}\|x_n-y\|$ holds for every $y\in H$ with $y\neq x$. We also know that H has the Kadec-Klee property, that is, $x_n \rightharpoonup x$ and $||x_n|| \rightarrow ||x||$ imply $x_n \rightarrow x$. In fact, from $||x_n - x||^2 = ||x_n||^2 - 2\langle x_n, x \rangle + ||x||^2$,

$$||x_n - x||^2 = ||x_n||^2 - 2\langle x_n, x \rangle + ||x||^2$$
.

we get that a Hilbert space has the Kadec. Klee property. An operator $A: H \to 2^H$ is said to be monotone if $\langle x_1 - x_2, y_1 - y_2 \rangle \geq 0$ whenever $y_1 \in Ax_1$ and $y_2 \in Ax_2$. Let A be a monotone, k-Lipschitz-continuous mapping of C into H and let $N_C v$ be the normal cone to C at $v \in C$; i.e., $N_C v = \{w \in H : \langle v - u, w \rangle \ge 0, \forall u \in C\}$. Define

$$Tv = \begin{cases} Av + N_C v, & \text{if } v \in C, \\ \emptyset, & \text{if } v \notin C. \end{cases}$$

Then, T is maximal monotone and $0 \in Tv$ if and only if $v \in VI(C, A)$; see [7]. For solving the equilibrium problem for a bifunction $f: C \times C \to \mathbb{R}$, let us assume that f satisfies the following conditions:

- (A1) f(x,x) = 0 for all $x \in C$:
- (A2) f is monotone, i.e., $f(x,y)+f(y,x)\leq 0$ for all $x,y\in C$; (A3) for each $x,y,z\in C$, $\lim_{t\downarrow 0}f(tz+(1-t)x,y)\leq f(x,y)$;
- (A4) for each $x \in C, y \mapsto f(x, y)$ is convex and lower semicontinuous.

We know the following lemmas.

Lemma 2.1. The following equality holds in a Hilbert space $H: For u, v \in H$,

$$||u - v||^2 = ||u||^2 - ||v||^2 - 2\langle u - v, v \rangle.$$

Lemma 2.2. [1] Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into R satisfying (A1)-(A4). Let r > 0 and $x \in H$. Then, there exists $z \in C$ such that

$$f(z,y) + \frac{1}{r}\langle y - z, z - x \rangle \ge 0$$
, for all $y \in C$.

Lemma 2.3. [2] Assume that $f: C \times C \to R$ satisfies (A1)-(A4). For r > 0 and $x \in H$, define a mapping $T_r: H \to C$ as follows:

$$T_r(x) = \{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \ \forall y \in C \}$$

for all $z \in H$. Then, the following hold:

1. T_r is single-valued and firmly nonexpansive, i.e.,

$$||T_r x - T_r y||^2 \le \langle T_r x - T_r y, x - y \rangle$$
, for any $x, y \in H$;

- 2. $F(T_r) = EP(f)$;
- 3. EP(f) is closed and convex.

Lemma 2.4. [8] Let H be a real Hilbert space, let $\{\alpha_n\}$ be a sequence of real numbers such that $0 < a \le \alpha_n \le b < 1$ for all $n \in \{0,1,2,\ldots\}$ and let $\{v_n\}$ and $\{w_n\}$ be sequences in H. Suppose that there exists $c \geq 0$ such that

$$\limsup_{n \to \infty} \|v_n\| \le c, \limsup_{n \to \infty} \|w_n\| \le c \text{ and } \lim_{n \to \infty} \|\alpha_n v_n + (1 - \alpha_n) w_n\| = c.$$

Then $\lim_{n\to\infty} ||v_n - w_n|| = 0$.

Lemma 2.5. [13] Let C be a nonempty closed convex subset of H. Let $\{x_n\}$ be a sequence in H. Suppose that

$$||x_{n+1} - y|| \le ||x_n - y||$$
, for all $y \in C$ and $n \in \{1, 2, 3, ...\}$.

Then $\{P_Cx_n\}$ converges strongly to some $z_0 \in C$.

3. Main results

In this section, we prove weak convergence theorems.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let A be a monotone k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap VI(C,A) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C generated by $x_1 = x \in C$ and

$$\begin{cases} f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \ \forall y \in C, \\ y_n = P_C(u_n - \lambda_n A u_n), \\ x_{n+1} = \alpha_n S x_n + (1 - \alpha_n) P_C(u_n - \lambda_n A y_n), \end{cases}$$

where $0 < a \le \lambda_n \le b < \frac{1}{k}$, $0 < c \le \alpha_n \le d < 1$ and $0 < r \le r_n$. Then $\{x_n\}$ converges weakly to an element $p \in F(S) \cap VI(C,A) \cap EP(f)$, where $p = \lim_{n \to \infty} P_{F(S) \cap VI(C,A) \cap EP(f)} x_n$.

Proof. Put $v_n = P_C(u_n - \lambda_n A y_n)$ for every $n \in \mathbb{N}$. Let $x^* \in F(S) \cap VI(C, A) \cap EP(f)$. Then $x^* = Sx^* = P_C(x^* - \lambda_n A x^*) = T_{r_n} x^*$. From (2.2), we have

$$||v_{n} - x^{*}||^{2} \leq ||u_{n} - \lambda_{n}Ay_{n} - x^{*}||^{2} - ||u_{n} - \lambda_{n}Ay_{n} - v_{n}||$$

$$= ||u_{n} - x^{*}||^{2} - ||\lambda_{n}Ay_{n}||^{2} - 2\langle u_{n} - \lambda_{n}Ay_{n} - x^{*}, \lambda_{n}Ay_{n}\rangle$$

$$- ||u_{n} - v_{n}||^{2} + ||\lambda_{n}Ay_{n}||^{2} + 2\langle u_{n} - \lambda_{n}Ay_{n} - v_{n}, \lambda_{n}Ay_{n}\rangle$$

$$= ||u_{n} - x^{*}||^{2} - ||u_{n} - v_{n}||^{2} + 2\langle x^{*} - v_{n}, \lambda_{n}Ay_{n}\rangle$$

$$= ||u_{n} - x^{*}||^{2} - ||u_{n} - v_{n}||^{2} + 2\lambda_{n}\langle Ay_{n}, x^{*} - v_{n}\rangle$$

$$= ||u_{n} - x^{*}||^{2} - ||u_{n} - v_{n}||^{2} + 2\lambda_{n}\langle Ay_{n} - Ax^{*}, x^{*} - y_{n}\rangle$$

$$+ \langle Ax^{*}, x^{*} - y_{n}\rangle + \langle Ay_{n}, y_{n} - v_{n}\rangle)$$

$$\leq ||u_{n} - x^{*}||^{2} - ||u_{n} - v_{n}||^{2} + 2\lambda_{n}\langle Ay_{n}, y_{n} - v_{n}\rangle$$

$$= ||u_{n} - x^{*}||^{2} - ||u_{n} - y_{n}||^{2} - 2\langle u_{n} - y_{n}, y_{n} - v_{n}\rangle - ||y_{n} - v_{n}||^{2}$$

$$+ 2\lambda_{n}\langle Ay_{n}, y_{n} - v_{n}\rangle$$

$$= ||u_{n} - x^{*}||^{2} - ||u_{n} - y_{n}||^{2} - ||y_{n} - v_{n}||^{2}$$

$$+ 2\langle u_{n} - \lambda_{n}Ay_{n} - y_{n}, v_{n} - y_{n}\rangle.$$

From (2.1) and $v_n \in C$, we have

$$\langle u_n - \lambda_n A y_n - y_n, v_n - y_n \rangle$$

$$= \langle u_n - \lambda_n A u_n - y_n, v_n - y_n \rangle + \langle \lambda_n A u_n - \lambda_n A y_n, v_n - y_n \rangle$$

$$\leq \langle \lambda_n A u_n - \lambda_n A y_n, v_n - y_n \rangle$$

$$\leq \lambda_n k ||u_n - y_n|| ||v_n - y_n||.$$

Hence, we have

$$||v_n - x^*||^2 \le ||u_n - x^*||^2 - ||u_n - y_n||^2 - ||y_n - v_n||^2$$

$$+ 2\lambda_n k ||u_n - y_n|| ||v_n - y_n||$$

$$\le ||u_n - x^*||^2 - ||u_n - y_n||^2 - ||y_n - v_n||^2$$

$$+ \lambda_n^2 k^2 ||u_n - y_n||^2 + ||v_n - y_n||^2$$

$$= ||u_n - x^*||^2 + (\lambda_n^2 k^2 - 1) ||u_n - y_n||^2.$$

So, we have

$$||x_{n+1} - x^*||^2 = ||\alpha_n (Sx_n - x^*) + (1 - \alpha_n)(v_n - x^*)||^2$$

$$\leq \alpha_n ||Sx_n - x^*||^2 + (1 - \alpha_n)||v_n - x^*||^2$$

$$\leq \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||u_n - x^*||^2$$

$$+ (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$= \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||T_{r_n} x_n - T_{r_n} x^*||^2$$

$$+ (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$\leq \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||x_n - x^*||^2$$

$$+ (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$= ||x_n - x^*||^2 + (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$\leq ||x_n - x^*||^2.$$
(3.1)

Hence $\{\|x_n - x^*\|\}$ is bounded and nonincreasing. So, $\lim_{n \to \infty} \|x_n - x^*\|$ exists. From (3.1), we obtain also

$$||u_n - y_n||^2 \le \frac{1}{(1 - \alpha_n)(1 - \lambda_n^2 k^2)} (||x_n - x^*||^2 - ||x_{n+1} - x^*||^2),$$

and

$$||y_n - v_n||^2 = ||P_C(u_n - \lambda_n A u_n) - P_C(u_n - \lambda_n A y_n)||^2$$

$$\leq ||u_n - \lambda_n A u_n - (u_n - \lambda_n A y_n)||^2$$

$$= ||\lambda_n A y_n - \lambda_n A u_n||^2$$

$$\leq \lambda_n^2 k^2 ||y_n - u_n||^2.$$

Then $\lim_{n\to\infty} ||u_n - y_n|| = 0$ and $\lim_{n\to\infty} ||y_n - v_n|| = 0$. Consider

$$||u_n - x^*||^2 = ||T_{r_n} x_n - T_{r_n} x^*||^2$$

$$\leq \langle T_{r_n} x_n - T_{r_n} x^*, x_n - x^* \rangle$$

$$= -\langle u_n - x^*, x^* - x_n \rangle$$

$$= \frac{1}{2} (||u_n - x^*||^2 + ||x_n - x^*||^2 - ||x_n - u_n||^2).$$

Then $||u_n - x^*||^2 \le ||x_n - x^*||^2 - ||x_n - u_n||^2$.

We have

$$||x_{n+1} - x^*||^2 \le \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n) ||v_n - x^*||^2$$

$$\le \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n) ||u_n - x^*||^2$$

$$\le \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n) ||x_n - x^*||^2 - (1 - \alpha_n) ||x_n - u_n||^2.$$

So, we have $||x_n - u_n||^2 \le \frac{1}{1 - \alpha_n} (||x_n - x^*||^2 - ||x_{n+1} - x^*||^2)$, which implies that $\lim_{n \to \infty} ||x_n - u_n|| = 0$. Since $||Sv_n - x^*|| \le ||v_n - x^*|| \le ||x_n - x^*||$, we have that $\lim_{n \to \infty} \sup ||Sv_n - x^*|| \le \lim_{n \to \infty} ||x_n - x^*||$.

Further, we have

$$\lim_{n \to \infty} \|\alpha_n (Sx_n - x^*) + (1 - \alpha_n)(v_n - x^*)\| = \lim_{n \to \infty} \|x_{n+1} - x^*\|.$$

By Lemma 2.4 , we obtain $\lim_{n\to\infty} \|Sx_n-v_n\|=0$. From $\|Sx_n-x_n\|\leq \|Sx_n-v_n\|+\|v_n-y_n\|+\|y_n-u_n\|+\|u_n-x_n\|$, we get $\lim_{n\to\infty} \|Sx_n-x_n\|=0$.

As $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup p$ for some $p \in C$. Then $v_{n_i} \rightharpoonup p$ $Sv_{n_i} \rightharpoonup p$. Next, to show $p \in F(S)$, consider

$$2\|Sv_{n_{i}} - Sp\|^{2} \leq \|Sv_{n_{i}} - p\|^{2} + \|v_{n_{i}} - Sp\|^{2}$$

$$= \|Sv_{n_{i}} - p\|^{2} + \|v_{n_{i}} - Sx_{n_{i}}\|^{2} + 2\langle v_{n_{i}} - Sv_{n_{i}}, Sv_{n_{i}} - Sp\rangle$$

$$+ \|Sv_{n_{i}} - Sp\|^{2}.$$

Then $||Sx_{n_i} - Sp||^2 \le ||Sx_{n_i} - p||^2 + ||x_{n_i} - Sx_{n_i}||^2 + 2\langle x_{n_i} - Sx_{n_i}, Sx_{n_i} - Sp\rangle$. Suppose $Sp \ne p$, From Opial's theorem [6] and $\lim_{n\to\infty} ||Sx_n - x_n|| = 0$, we obtain

$$\liminf_{i \to \infty} ||Sx_{n_i} - p||^2
< \liminf_{i \to \infty} ||Sx_{n_i} - Sp||^2
\le \liminf_{i \to \infty} (||Sx_{n_i} - p||^2 + ||x_{n_i} - Sx_{n_i}||^2 + 2\langle x_{n_i} - Sx_{n_i}, Sx_{n_i} - Sp\rangle)
= \lim_{i \to \infty} ||Sx_{n_i} - p||^2.$$

This is a contradiction. Hence Sp = p. Next, to show $p \in VI(C, A)$,

let.

$$Tv = \begin{cases} Av + N_C v, & \text{if } v \in C, \\ \emptyset, & \text{if } v \notin C. \end{cases}$$

Then, T is maximal monotone and $0 \in Tv$ if and only if $v \in VI(C, A)$.

Let $(v, w) \in G(T)$. Then,

we have $w \in Tv = Av + N_Cv$ and hence $w - Av \in N_Cv$.

So, we have $\langle v - u, w - Av \rangle \ge 0$ for all $u \in C$.

On the other hand, from $v_n = P_C(u_n - \lambda_n A y_n)$ and $v \in C$, we have

$$\langle u_n - \lambda_n A y_n - v_n, v_n - v \rangle \ge 0$$
, and hence, $\langle v - v_n, \frac{v_n - u_n}{\lambda_n} + A y_n \rangle \ge 0$.

Therefore, from $w - Av \in N_C v$ and $v_n \in C$, we have

$$\begin{split} \langle v-v_{n_i},w\rangle &\geq \langle v-v_{n_i},Av\rangle \\ &\geq \langle v-v_{n_i},Av\rangle - \langle v-v_{n_i},\frac{v_{n_i}-u_{n_i}}{\lambda_{n_i}} + Ay_{n_i}\rangle \\ &= \langle v-v_{n_i},Av-Av_{n_i}\rangle + \langle v-v_{n_i},Av_{n_i}-Ay_{n_i}\rangle \\ &- \langle v-v_{n_i},\frac{v_{n_i}-u_{n_i}}{\lambda_{n_i}}\rangle \\ &\geq \langle v-v_{n_i},Av_{n_i}-Ay_{n_i}\rangle - \langle v-v_{n_i},\frac{v_{n_i}-u_{n_i}}{\lambda_{n_i}}\rangle. \end{split}$$

Since $x_{n_i} \rightharpoonup p$, $\lim_{n \to \infty} \|v_n - x_n\| = 0$, $\lim_{n \to \infty} \|v_n - u_n\| = 0$, $\lim_{n \to \infty} \|y_n - v_n\| = 0$ and A is Lipschitz continuous. So we obtain $\langle v - p, w \rangle \ge 0$. Since T is maximal monotone, we have $p \in T^{-1}0$ and hence $p \in VI(C, A)$.

Let us show $p \in EP(f)$.

Since
$$f(u_{n_i}, y) + \frac{1}{r_{n_i}} \langle y - u_{n_i}, u_{n_i} - x_{n_i} \rangle \ge 0$$
 for all $y \in C$.

From (A2), we also have

$$\frac{1}{r_{n_i}} \langle y - u_{n_i}, u_{n_i} - x_{n_i} \rangle \ge f(y, u_{n_i})$$

and hence

$$\langle y - u_{n_i}, \frac{u_{n_i} - x_{n_i}}{r_{n_i}} \rangle \ge f(y, u_{n_i}).$$

From $\lim_{n\to\infty} \|u_n-x_n\|=0$, we get $u_{n_i}\rightharpoonup p$. Since $\frac{u_{n_i}-x_{n_i}}{r_{n_i}}\to 0$, it follows by (A4) that $0\geq f(y,p)$ for all $y\in C$. For t with $0< t\leq 1$ and $y\in C$, let $y_t=ty+(1-t)p$. Since $y,p\in C$, we have $y_t\in C$ and hence $f(y_t,p)\leq 0$. So, from (A1) and (A4) we have

$$0 = f(y_t, y_t) \le tf(y_t, y) + (1 - t)f(y_t, p) \le tf(y_t, y)$$

and hence $0 \le f(y_t, y)$. From (A3), we have $0 \le f(p, y)$ for all $y \in C$ and hence $p \in EP(f)$. Thus $p \in F(S) \cap VI(C, A) \cap EP(f)$.

Let $\{x_{n_j}\}$ be another subsequence of $\{x_n\}$ such that $x_{n_j} \rightharpoonup p^*$.

Then $p^* \in F(S) \cap VI(C,A) \cap EP(f)$. Assume $p^* \neq p$. Then we have

$$\lim_{n \to \infty} ||x_n - p|| = \liminf_{i \to \infty} ||x_{n_i} - p||$$

$$< \liminf_{i \to \infty} ||x_{n_i} - p^*||$$

$$= \lim_{n \to \infty} ||x_n - p^*||$$

$$= \lim_{j \to \infty} ||x_{n_j} - p^*||$$

$$< \lim_{j \to \infty} ||x_{n_j} - p||$$

$$= \lim_{n \to \infty} ||x_n - p||.$$

This is a contradiction. Thus $p = p^*$ and $x_n \rightharpoonup p \in F(S) \cap VI(C,A) \cap EP(f)$.

Put $p_n = P_{F(S) \cap VI(C,A) \cap EP(f)} x_n$. We show $p = \lim_{n \to \infty} p_n$. From $p_n = P_{F(S) \cap VI(C,A) \cap EP(f)} x_n$ and $p \in F(S) \cap VI(C,A) \cap EP(f)$, we have $\langle p - p_n, p_n - x_n \rangle \geq 0$.

By Lemma 2.5, $\{p_n\}$ converges strongly to some $p_0 \in F(S) \cap VI(C, A) \cap EP(f)$. Then we have $\langle p - p_0, p_0 - p \rangle \geq 0$ and hence $p = p_0$. This completes the proof.

Next, we prove another weak convergence theorem which is different from Theorem 3.1.

Theorem 3.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap VI(C,A) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C generated by $x_1 = x \in C$ and

$$\begin{cases} f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \ \forall y \in C, \\ y_n = P_C(u_n - \lambda_n A u_n), \\ x_{n+1} = \alpha_n x_n + (1 - \alpha_n) SP_C(u_n - \lambda_n A y_n), \end{cases}$$

where $0 < a \le \lambda_n \le b < \frac{1}{k}$, $0 < c \le \alpha_n \le d < 1$ and $0 < r \le r_n$. Then $\{x_n\}$ converges weakly to an element $p \in F(S) \cap VI(C,A) \cap EP(f)$, where $p = \lim_{n \to \infty} P_{F(S) \cap VI(C,A) \cap EP(f)} x_n$.

Proof. Put $v_n = P_C(u_n - \lambda_n A y_n)$ for every $n \in \mathbb{N}$. Let $x^* \in F(S) \cap VI(C, A) \cap EP(f)$. Then $x^* = Sx^* = P_C(x^* - \lambda_n A x^*) = T_{r_n} x^*$. As in the proof of Theorem 3.1, we have that

$$||v_n - x^*||^2 \le ||u_n - x^*||^2 + (\lambda_n^2 k^2 - 1)||u_n - y_n||^2.$$

Thus

$$||x_{n+1} - x^*||^2 = ||\alpha_n(x_n - x^*) + (1 - \alpha_n)(Sv_n - x^*)||^2$$

$$\leq \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||Sv_n - x^*||^2$$

$$\leq \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||v_n - x^*||^2$$

$$\leq \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||u_n - x^*||^2$$

$$+ (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$= \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||T_{r_n} x_n - T_{r_n} x^*||^2$$

$$+ (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$\leq \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n)||x_n - x^*||^2$$

$$+ (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$= ||x_n - x^*||^2 + (1 - \alpha_n)(\lambda_n^2 k^2 - 1)||u_n - y_n||^2$$

$$\leq ||x_n - x^*||^2.$$
(3.2)

Hence $\{\|x_n - x^*\|\}$ is bounded and nonincreasing. So, $\lim_{n \to \infty} \|x_n - x^*\|$ exists.

From (3.2), we obtain also

$$||u_n - y_n||^2 \le \frac{1}{(1 - \alpha_n)(1 - \lambda_n^2 k^2)} (||x_n - x^*||^2 - ||x_{n+1} - x^*||^2),$$

and

$$||y_n - v_n||^2 = ||P_C(u_n - \lambda_n A u_n) - P_C(u_n - \lambda_n A y_n)||^2$$

$$\leq ||u_n - \lambda_n A u_n - (u_n - \lambda_n A y_n)||^2$$

$$= ||\lambda_n A y_n - \lambda_n A u_n||^2$$

$$< \lambda_n^2 k^2 ||y_n - u_n||^2.$$

Then $\lim_{n\to\infty} ||u_n - y_n|| = 0$ and $\lim_{n\to\infty} ||y_n - v_n|| = 0$. Consider

$$||u_n - x^*||^2 = ||T_{r_n} x_n - T_{r_n} x^*||^2$$

$$\leq \langle T_{r_n} x_n - T_{r_n} x^*, x_n - x^* \rangle$$

$$= -\langle u_n - x^*, x^* - x_n \rangle$$

$$= \frac{1}{2} (||u_n - x^*||^2 + ||x_n - x^*||^2 - ||x_n - u_n||^2).$$

Then $||u_n - x^*||^2 \le ||x_n - x^*||^2 - ||x_n - u_n||^2$. We have

$$||x_{n+1} - x^*||^2 \le \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n) ||v_n - x^*||^2$$

$$\le \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n) ||u_n - x^*||^2$$

$$\le \alpha_n ||x_n - x^*||^2 + (1 - \alpha_n) ||x_n - x^*||^2$$

$$- (1 - \alpha_n) ||x_n - u_n||^2$$

$$= ||x_n - x^*||^2 - (1 - \alpha_n) ||x_n - u_n||^2.$$

So, we have $||x_n - u_n||^2 \le \frac{1}{1 - \alpha_n} (||x_n - x^*||^2 - ||x_{n+1} - x^*||^2)$, which implies that $\lim_{n \to \infty} ||x_n - u_n|| = 0$. Since $||Sv_n - x^*|| \le ||v_n - x^*|| \le ||x_n - x^*||$, we have $\limsup_{n \to \infty} ||Sv_n - x^*|| \le \lim_{n \to \infty} ||x_n - x^*||$.

Further, we have

$$\lim_{n \to \infty} \|\alpha_n(x_n - x^*) + (1 - \alpha_n)(Sv_n - x^*)\| = \lim_{n \to \infty} \|x_{n+1} - x^*\|.$$

By Lemma 2.4 , we obtain $\lim_{n\to\infty} \|Sv_n - x_n\| = 0$. From $\|Sv_n - v_n\| \le \|Sv_n - x_n\| + \|x_n - u_n\| + \|u_n - y_n\| + \|y_n - v_n\|$, we get $\lim_{n\to\infty} \|Sv_n - v_n\| = 0$.

As $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup p$ for some $p \in C$. Then $v_{n_i} \rightharpoonup p$ and $Sv_{n_i} \rightharpoonup p$.

Next, to show $p \in F(S)$, consider

$$\begin{split} 2\|Sv_{n_i} - Sp\|^2 &\leq \|Sv_{n_i} - p\|^2 + \|v_{n_i} - Sp\|^2 \\ &= \|Sv_{n_i} - p\|^2 + \|v_{n_i} - Sv_{n_i}\|^2 - 2\langle v_{n_i} - Sv_{n_i}, Sv_{n_i} - Sp\rangle \\ &+ \|Sv_{n_i} - Sp\|^2. \end{split}$$

Then $||Sv_{n_i} - Sp||^2 \le ||Sv_{n_i} - p||^2 + ||v_{n_i} - Sv_{n_i}||^2 - 2\langle v_{n_i} - Sv_{n_i}, Sv_{n_i} - Sp\rangle$. Suppose $Sp \ne p$, From Opial condition and $\lim_{n\to\infty} ||Sv_n - v_n|| = 0$, we obtain

$$\begin{aligned} & \liminf_{i \to \infty} \|Sv_{n_i} - p\|^2 \\ & < \liminf_{i \to \infty} \|Sv_{n_i} - Sp\|^2 \\ & \le \liminf_{i \to \infty} (\|Sv_{n_i} - p\|^2 + \|v_{n_i} - Sv_{n_i}\|^2 - 2\langle v_{n_i} - Sv_{n_i}, Sv_{n_i} - Sp\rangle) \\ & = \lim_{i \to \infty} \inf \|Sv_{n_i} - p\|^2. \end{aligned}$$

This is a contradiction. Hence Sp = p. We can now follow the proof of Theorem 3.1. \square

4. Applications

Using Theorems 3.1 and 3.2, we prove four theorems in a real Hilbert space.

Corollary 4.1. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap VI(C,A) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C generated by

$$\begin{cases} x_1 = x \in C, \\ y_n = P_C(x_n - \lambda_n A x_n), \\ x_{n+1} = \alpha_n S x_n + (1 - \alpha_n) P_C(x_n - \lambda_n A y_n), \end{cases}$$

where $0 < a \le \lambda_n \le b < \frac{1}{k}$, $0 < c \le \alpha_n \le d < 1$. Then $\{x_n\}$ converges weakly to $p \in F(S) \cap VI(C,A)$, where $p = \lim_{n \to \infty} P_{F(S) \cap VI(C,A)}x_n$.

Proof. Putting f(x,y) = 0 for all $x,y \in C$ and $r_n = 1$ in Theorem 3.1, we obtain the desired result.

Corollary 4.2. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap VI(C,A) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C generated by

$$\begin{cases} x_1 = x \in C, \\ y_n = P_C(x_n - \lambda_n A x_n), \\ x_{n+1} = \alpha_n x_n + (1 - \alpha_n) S P_C(x_n - \lambda_n A y_n), \end{cases}$$

where $0 < a \le \lambda_n \le b < \frac{1}{k}$, $0 < c \le \alpha_n \le d < 1$. Then $\{x_n\}$ converges weakly to $p \in F(S) \cap VI(C,A)$, where $p = \lim_{n \to \infty} P_{F(S) \cap VI(C,A)} x_n$.

Proof. Putting f(x,y) = 0 for all $x,y \in C$ and $r_n = 1$ in Theorem 3.2, we obtain the desired result.

Corollary 4.3. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself such that $F(S) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C generated by

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n S x_n + (1 - \alpha_n) T_{r_n} x_n, \end{cases}$$

where $0 < c \le \alpha_n \le d < 1$ and $0 < r \le r_n$. Then $\{x_n\}$ converges weakly to $p \in F(S) \cap EP(f)$, where $p = \lim_{n \to \infty} P_{F(S) \cap EP(f)} x_n$.

Proof. Putting A=0 in Theorem 3.1, we obtain the desired result.

Corollary 4.4. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself such that $F(S) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C generated by

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n x_n + (1 - \alpha_n) ST_{r_n} x_n, \end{cases}$$

where $0 < c \le \alpha_n \le d < 1$ and $0 < r \le r_n$. Then $\{x_n\}$ converges weakly to $p \in F(S) \cap EP(f)$, where $p = \lim_{n \to \infty} P_{F(S) \cap EP(f)} x_n$.

Proof. Putting A = 0 in Theorem 3.2, we obtain the desired result.

Acknowledgement The authors would like to thank the Thailand Research Fund (grant BRG4780016) and the Development and Promotion of Science and Technology Talent Project (DPST) for their support.

References

- [1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
- [2] P.L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
- [3] F. Kosaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim., 19(2008), 824-835.
- [4] F. Kosaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), 91(2008), 166-177.
- [5] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient Method for Nonexpansive mappings and Monotone Mappings, J. Optim. Theory Appl., 128(2006), 191-201.
- [6] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
- [7] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149(1970), 75-88.

- [8] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43(1991), 153-159.
- [9] A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: Nonlinear Analysis and Convex Analysis, (W. Takahashi and T. Tanaka-Eds.), Yokohama Publishers, Yokohama, 2007, 609-617.
- [10] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and equilibrium problem, J. Optim. Theory Appl., 133(2007), 359-370.
- [11] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331(2007), 506-515.
- [12] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- [13] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118(2003), 417-428.

Received: March 4, 2010; Accepted: June 11, 2010.