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Abstract. In this paper, we introduce an iterative sequence for finding a common element of the set
of fixed points of a nonspreading mapping, the set of solutions of an equilibrium problem and the set
of solutions of the variational inequality problem for a monotone and Lipschitz-continuous mapping.
We show that the sequence converges weakly to a common element of the above three sets.
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1. INTRODUCTION

Let C be a closed convex subset of a real Hilbert space H. Let f be a bifunction
of C x C into R, where R is the set of real numbers. The equilibrium problem for
f:CxC —Risto find z € C such that

f(z,y) >0forall y € C. (1.1)

The set of solutions (1.1) is denoted by EP(f). A mapping A of C into H is called
monotone if (Au — Av,u —v) > 0 for all u,v € C. The variational inequality problem
is to find u € C such that (Au,v —u) > 0 for all v € C. The set of solutions of the
variational inequality problem is denoted by VI(C, A).

A mapping A of C into H is called a-inverse-strongly monotone if there exists a
positive real number a such that (Au — Av,u —v) > a||Au — Av||? for all u,v € C. Tt
is obvious that any a-inverse-strongly monotone mapping A is monotone and Lipschitz
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continuous; see, for example, [13]. A mapping S of C into itself is called nonexpansive
it ||Su — Sv|| < |Ju — v for all u,v € C. A mapping S of C into itself is called
nonspreading (see [3, 4]) if
2||Su — Sv||2 < [|Su —v||? + ||Sv — u||?, for all u,v € C.

We denote by F(S) the set of fixed points of S. Recently, in the case when S is a
nonexpansive mapping, Nadezhkina and Takahashi [5] introduced an iterative process
for finding a common element of the set F'(S) and the set VI(C, A) for a monotone
and Lipschitz-continuous mapping. On the other hand, Tada and Takahashi [9, 10]
and Takahashi and Takahashi [11] obtained weak and strong convergence theorems
for finding a common element of the set EP(f) and the set F(S) in a Hilbert space.
In this paper, we prove weak convergence theorems for finding a common element of
the set EP(f), the set VI(C, A) for a monotone and Lipschitz-continuous mapping
and the set F'(S) of a nonspreading mapping in a Hilbert space.

2. PRELIMINARIES

In this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product (-, -) and norm ||-||. z, — «
implies that {z,} converges strongly to x. z, — x means that {z,} converges weakly
to x. In a real Hilbert space H, we have
Az + (1= Nyl* = Alz[> + (1 = N)lyl? = A1 = )|z - y]?
for all z,y € H and X € R; see [12]. Let C be a closed convex subset of H. Then, for
every point « € H, there exists a unique nearest point in C, denoted by Pgx, such
that ||z — Poz| < ||z — gy for all y € C. Pc is called the metric projection of H onto
C. We know that Pg is a nonexpansive mapping of H onto C. It is also known that
P¢ is characterized by the following properties: Pox € C,
(x — Pox,Pcx —y) >0 (2.1)
and
lz = yl* = llz = Pez||* + [ly — Pozl|? (2.2)
for all z € H,y € C. Let A be a monotone mapping of C' into H. In the context of
the variational inequality problem, this implies
ueVI(C,A) & u= Pc(u— AAu)
for all A > 0. It is also known that H satisfies the Opial condition [6]; i.e., for any
sequence {z,} with z,, — z, the inequality
liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo
holds for every y € H with y # . We also know that H has the Kadec-Klee property,
that is, , — « and ||z,| — ||z|| imply x,, — z. In fact, from
Iz — 22 = znll® — 2(zn, 2) + [l2]1%,
we get that a Hilbert space has the Kadec.Klee property. An operator A : H — 2
is said to be monotone if (x1 — z2,y1 — y2) > 0 whenever y; € Az; and yo € Axs.
Let A be a monotone, k-Lipschitz-continuous mapping of C into H and let Ngov be
the normal cone to C' at v € C; i.e., Nov={w € H : (v —u,w) > 0,Yu € C}.
Define
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{Av + Now, ifv e C,
Tv =
0, ifvégcC.

Then, T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [7].

For solving the equilibrium problem for a bifunction f : C' x C' — R, let us assume
that f satisfies the following conditions:

(A1) f(z,z) =0 for all x € C,

(A2) f is monotone, i.e., f(z,y)+ f(y,z) <0 for all z,y € C;

(A3) for cach .y, € C lim (62 + (1~ 1)) < (2, y);
(A4)

A4) for each z € C,y — f(x,y) is convex and lower semicontinuous.

We know the following lemmas.

Lemma 2.1. The following equality holds in a Hilbert space H: For u,v € H,
lu = vlI* = [Jull? = [Jol|* = 2(u — v, v).
Lemma 2.2. [1] Let C' be a nonempty closed convexr subset of H and let F be a

bifunction of C' x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there
exists z € C' such that

1
f(Z,y)+;<y—z,z—a:) >0, forallyeC.

Lemma 2.3. [2] Assume that f : C x C — R satisfies (A1)-(A4). Forr > 0 and
x € H, define a mapping T, : H — C' as follows:
To(w)={2€C: flz,y) + 7y —22—-2) >0, ¥y € C}

for all z € H. Then, the following hold:
1. T, is single-valued and firmly nonexpansive, i.e.,

|Toe — Toyl)? < (Tox — Toy,x —y), for any @,y € H;
2. F(T,) = EP(f) ;
3. EP(f) is closed and convex.

Lemma 2.4. [8] Let H be a real Hilbert space, let {a,} be a sequence of real numbers
such that 0 < a < a, < b < 1 foralln € {0,1,2,...} and let {v,} and {w,} be
sequences in H. Suppose that there exists ¢ > 0 such that

limsup ||v,|| < ¢, limsup ||w,] < ¢ and lim |apv, + (1 — an)w,|| = ¢
n—o0 n—o00 n—oo
Then lim |lv, —w,|| = 0.
n—oo

Lemma 2.5. [13] Let C be a nonempty closed convex subset of H. Let {x,} be a
sequence in H. Suppose that

||.’,En+1 - y” S Hl'n - y||7 fOT all Yy € C and ne {17273a }

Then {Pcxy,} converges strongly to some zg € C.
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3. MAIN RESULTS
In this section, we prove weak convergence theorems.

Theorem 3.1. Let C' be a closed convex subset of a Hilbert space H. Let f be a
bifunction from C x C to R satisfying (A1)-(A4) and let A be a monotone k-Lipschitz
continuous mapping of C into H and let S be a nonspreading mapping of C into itself
such that F(S)NVI(C,A)N EP(f) # 0. Let {x,} be a sequence in C generated by
r1=x € C and

f(umy) + %<y_unaun _$n> >0, VyeC,

Yn = PC(un - )\nAun);
Tpt1 = STy + (1 - an)PC(un - AnAyn)a

1
whereO<a§)\n§b<E,O<c§an§d<1and0<r§rn. Then
{zn} converges weakly to an element p € F(S)NVI(C,A) N EP(f), where p =

Jim Ppes)nvie,anep(s)Tn:

Proof. Put v, = Po(un, — A\ Ayy) for every n € N.
Let z* € F(S)NVI(C,A)N EP(f). Then z* = Sz* = Po(a* — N\, Ax*) =T, z*.
From (2.2), we have
[|vn — x*”Z < MJun — AnAyn — x*”Z = lun — AnAyn — val|
= Hun - x*HQ - ||)‘nAyn||2 - 2<un — MAy, — 2%, /\nAyn>
— lun — Un||2 + ”/\nAyn||2 + 2(un — A AYn — Vny An Ayn)
= llun — 2|1 = llun — vall* + 2(2* — vn, An Ayn)
= [lun — 33*”2 = [lun — Un||2 + 27 (AYn, 2* — vp)
= |lun — x*||2 — [lun — Un||2 + 20, ((Ayy, — Az™ 2" — yp)
+ (Az", 2" — yn) + (AYn, Yn — Vi)
< lun — x*HQ = [lun — UHHQ + 220 (AYn;s Yn — Vi)
= llun = &1 = lun = yull® = 2(un = Y, yn = vn) = [y — vall?
+ 22 (AYn, Yn — Vn)
= Jlun — 21 = llun = yull* = 1yn — val®

+ 2<U'n - )\nAyn —Yn,Un — yn>

From (2.1) and v, € C, we have
<un - )\nAyn — Yn,Un — yn>
= <un — MAu, — Yn,Un — yn> + <)‘nAun - )\nAynavn - yn>
< <>\nAun - AnAyn7fUn - yn>
< Akllun = ynllllon — yull-
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Hence, we have
lon = 2|1* < Jlun = 212 = lJun — yall* = lyn — val®
+ 2Xnkllun = ynllllve = ynl
< lun = 2|2 = lJun = yall* = llyn — val®
+ AR un =yl + llvn — yall?
= [lun — 2| + A0A* = 1)llun — yall*.
So, we have
s — 27 = llan (S — %) + (1 = a) (v, — )|
< anl[Szn — 2|2 + (1 = an)jvn — 2°2
< ap |z — 2¥)? + (1 — a)|jun — z*||?
+ (1= an) A0k = 1)lun — ya?
= apllzn — 2% + (1 — an) | Ty, 20 — Tr2™|?
+ (1= an) A0k = 1)lun — ya?
< apllzn —2*? + (1 — ap)||en —
+ (1= an) A0k = 1)lun — ya?
= Jlen — 2|7 + (1 = an) A = 1) [Jun — yalf?

< lon — 2%

*||2

Hence {||z, — *||} is bounded and nonincreasing. So, lim |z, — "] exists.
n—oo

From (3.1), we obtain also

o 2 < k2 k2
lun = all* = g Ssa gy (o =@ = llomss =2 IP),
and
||yn - UnHz = ”PC(un - )‘nAun) - PC(un - )‘nAyn)HQ

< up, — A Auy, — (uy — )\nAyn)H2
= A Ayn — ApAuy, ||?
SN2 yn — un?.

Then lim ||u, —yn|| =0 and lim |y, —v,|| = 0.

Consider

[un — ac*||2 =Ty, 20 — TT7L$*||2
<{(Ty, xn— Ty x* &, — ")
= —(up — ", 2" —x,)

1

2

Then [lun — 2*||* < [lon — 2*|* = [lon — un*.

(lln = 22 + lam — 2" = ll2n — unll?)-
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We have
Jnss = 1% < anllen — 12 + (1 =)o — o
< ap|lz, — :U*||2 + (1 — ap)||un — x*HQ

< anllan ="+ (1= an)llzn — 27 = (1 = an)llzn — un]*.

1
So, we have ||z, — u,|* < (Jlzn — 2*||? = ||[&ng1 — =*||?), which implies that
n
lim ||z, — uy|| = 0. Since ||Sv, — z*|| < ||vn — 2*|| < |Jzn — 2*||, we have that
n—oo
limsup ||Sv, — 2*|| < lim ||z, — 2%
n—oo n— 00
Further, we have
lim |lon(Szp —2%) + (1 — ap) (v — 2¥)|| = Um ||@pyr — 2%
n—oo n—oo
By Lemma 2.4 , we obtain lim ||Sz, — v,|| = 0. From ||Sz, — z,| < ||Szn — val| +
n—oo
[vn = ynll + lyn — unll + llun — zn ||, we get nlggo [Szn — 2y = 0.

As {z,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, — p for
some p € C. Then v,, — p Sv,, — p. Next, to show p € F(S), consider

2)|Svn, — Spl* < ||Svn, = plI* + [lvn, — Spl?
= ”Svm _p”2 + ”U’M - Sxm||2 + 2<UM - SUM’SUM - Sp>
+ [[Svn, — Sp||*.

Then ||anz - Sp”2 < ”Sxm _P||2 + ”an - Sxm 2 + 2<$m - Sl’nnsxm - Sp>
Suppose Sp # p, From Opial’s theorem [6] and lim | Sz, — 2,|| = 0, we obtain

lim inf Sz, — p|*
< liiniiglf |S2n, — Spl|?
< liiIE(iEf(HSxm —plI? + |zn, — Sop,||? + 2(xp; — S2p,, S0, — SP))
= liminf || Sz, — p||*.
i—00

This is a contradiction. Hence Sp = p.
Next, to show p € VI(C, A),
let

Av + New, if v € C,
Tv = )
0, ifvégC.

Then, T is maximal monotone and 0 € Tv if and only if v € VI(C, A).
Let (v,w) € G(T). Then,

we have w € Tv = Av + Ngv and hence w — Av € Neow.

So, we have (v —u,w — Av) > 0 for all u € C.

On the other hand, from v, = Po(u, — A\ Ay,) and v € C, we have

UnUn 4y sg,

(U, — ApAYn — O, vy, — ) > 0, and hence, (v — vy, By
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Therefore, from w — Av € Nov and v, € C, we have

(V= U, w) > (v — vy, Av)

Up,; — Un,

> (v — vy, AV) — (U — Uy, ———— + Ayp,)
An;
= (v —vp,;, Av — Avy,) + (v — vy, AVp, — AYn,)
Un; — Un;
<U U”i? )\nl >
> (0= 0n;, Avn, = Ay} = (0= v, Z—),
n;
Since z,;, — p, lim |lv, — x| =0, lim ||v, —u,| =0, lim |y, —v,|| =0 and A is
n—oo n—oo n—oo

Lipschitz continuous. So we obtain (v — p,w) > 0. Since T is maximal monotone, we
have p € T~10 and hence p € VI(C, A).
Let us show p € EP(f).

1
Since f(unl,y)—i-—( — Up,, Up, — Tp,) >0 forall y € C.

From (A2), we also have

1
T<y — Un;y Un; — xnb> > f(y?um)
and hence
Up; — Tp,
<y - un-n 7> 2 f(y>un1)
T,
Uy, — T,
From  lim lun — 2] = 0, we get u,, — p. Since ——" — 0, it follows by (A4)

that0>f(y p) forally € C. For t with 0 <t <1 andyEC let y; =ty + (1 — t)p.
Since y,p € C, we have y; € C and hence f(y:,p) < 0. So, from (Al) and (A4) we
have

0=f(eye) <tf(ye,y) + (1 =) f(ye,p) < f (Y, y)
and hence 0 < f(y;,y). From (A3), we have 0 < f(p,y) for all y € C and hence
p € EP(f). Thus p € F(S) N VI(C, A) N EP(F).
Let {x,,} be another subsequence of {x,} such that z,, — p*.
Then p* € F(S)NVI(C,A)N EP(f). Assume p* # p. Then we have

lim ||z, — p|| = liminf ||z, — p]|
n—oo 100
< liminf ||z, — p*|
71— 00
n—oo
J—00
< lim ||z, —p|
J—00
n—o0

This is a contradiction. Thus p = p* and z, — p € F(S)NVI(C, A) N EP(f).
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Put p, = Pr(s)avi(c.anep(s)@n. We show p = Tim p,.
From p, = Pr(s)nvi(c,a)nep(f)Tn and p € F(S)NVI(C,A) N EP(f), we have

<p — PnyPn — xn> 2 0.
By Lemma 2.5, {p,, } converges strongly to some pg € F(S)NVI(C, A)NEP(f). Then
we have (p — po,po — p) > 0 and hence p = po. This completes the proof. O

Next, we prove another weak convergence theorem which is different from Theorem
3.1.

Theorem 3.2. Let C be a closed convex subset of a Hilbert space H. Let f be a
bifunction from C x C to R satisfying (A1)-(A4) and let A be a monotone and k-
Lipschitz continuous mapping of C into H and let S be a monspreading mapping of
C into itself such that F(S)NVI(C,A)NEP(f) # 0. Let {z,} be a sequence in C
generated by x1 = x € C and

f(unay) + %<y*unaun *xn> >0, vy eC,

Yn = PC(un - A’nf4un)a
Tptl = QpZy + (1 - an)*gPC(Un - )\nAyn)a

1
whereO<a§)\n§b<E,O<c§an§d<1and0<r§rn. Then
{zn} converges weakly to an element p € F(S)NVI(C,A) N EP(f), where p =
Jim Prs)nvie,anep(f)@n-

Proof. Put v, = Po(u, — A\ Ayy,) for every n € N. Let z* € F(S)NVI(C,A) N
EP(f). Then z* = Sz* = Po(a* — A\, Az*) =T, z*.
As in the proof of Theorem 3.1, we have that
on = 22 < flun — 22 + (A2K2 = 1), — a2
Thus
i1 — 12 = lan(zn — 2%) + (1 = a)(Sv, — )2
< anllzn — 2*|P + (1 = an)[[Sv, — 2|
< apl|lzn — 2¥)? + (1 — a)|jvn — z*||?
< anllzn = 2*[P + (1 - an)Jup — 27|
+ (1= an) ARk = 1)lun — ya?
= anllen — 2" + (1 = an) | Ty, 20 — T, 2|2
+ (1= an) ARk = 1)lun — ya?
< anllzn — 2*[P + (1 - ag) 2 — 27|
+ (1= an) ARk = 1)lun — ya?
= [len — 2|7 + (1 = an) A = 1) [Jun — yull? (3.2)
<l — 2|,

Hence {||z,, — «*||} is bounded and nonincreasing. So, lim ||z, — z*| exists.
n—oo
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From (3.2), we obtain also

1
_ 2 < K12 %12
Hu’ﬂ yn” - (]_ — Oén)(]. - )\%k2)<”m" T ” ”mn+1 € H )’
and
1yn — Un||2 = ||Pc(un — AnAuy) — Po(un — )‘nAyn)HQ
< Nup, — ApAuy, — (uy — )\nAyn)H2
= A Ayn — ApAuy, ||?
< N2 yn — un?.
Then lim ||up, — yn|| =0 and lim ||y, — v,|| = 0.
n—oo n—oo
Consider

[[tn — x*||2 =T}, xn — Trnx*HQ
S <Trnxn - Trnx*axn - $*>
= —(up — 2", 2" — )
1

= 5 (llun — 2P+ lan = 2 = [z — unl?).
Then [, — 22 < [l — 2|2 — e — a2
We have

[Znt1 = 2*|° < anllen — 2*)° + (1 — ap)llo, — 2*[|
< aplln — 2*? + (1 — an)lju, — z*|?
< apllen — P + (1 = )z, — 2|
— (1= an)|zn — unH2

*||2

= |z, — = _(1_0‘n)||$n_un”2-

So, we have ||z, — un* < (lwn = 2*[* = znss — 2™[1?),

“a,
which implies that lim ||z, — u,| = 0.
n—oo

Since [|Svn, — 27| < [lvn — 27| < [|lwn — 2],
we have limsup ||Sv, — 2*|| < lm |z, —2*].
n—oo

n—oo

Further, we have

lim |lag(zn —2%) + (1 — ay)(Sv, —2%)|| = Um ||@n 11 — 27|
n—o0 n—oo
By Lemma 2.4 , we obtain lim |\Sv, — [ = 0. From ||Sv,, — v, | < [[Sve — 2| +
n—oo
[2n = unll + llun = yull + 1y = vall, we get Tim [[Sv, — v, = 0.

As {z,} is bounded, there exists a subsequence {zn,} of {z,} such that x,,, — p for
some p € C. Then v,, — p and Sv,, — p.
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Next, to show p € F(5),
consider

210, = SplI? < 1vs, — pI? + o, — Sp?
= ||Svn, — pl|* + ||vn, — Svn,
+ HSU’IM - SpH2.

2_ 2(vp, — Svn,, Sv,, — Sp)

Then [Svn, — Sp|2 < S0, — P2 + 00, — Svu, I — 2(0n, — Sva,, Svn, - Sp).
Suppose Sp # p, From Opial condition and lim ||Sv, — v,|| = 0, we obtain
n—oo
lim inf[| Sv,, — pl|?
11— 00
< liminf || Sv,, — Sp|?
11— 00
< hmlnf(HSvm _p||2 + ||U'flz - Svni ||2 - 2<U7Lz - S’Un” Svnqz - Sp>)
11— 00
= liminf || Sv,, — p||*.
11— 00

This is a contradiction. Hence Sp = p. We can now follow the proof of Theorem 3.1.01

4. APPLICATIONS
Using Theorems 3.1 and 3.2, we prove four theorems in a real Hilbert space.

Corollary 4.1. Let C be a closed convex subset of a Hilbert space H. Let A be a
monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspread-
ing mapping of C into itself such that F(S)NVI(C,A) # 0. Let {x,} be a sequence
in C generated by

1 =x € C,

Yn = PC(wn - )\nAwn)7

Tn+1 = ansxn + (1 - an)PC(xn - )\nAyn)z

1
where 0 < a < A\, <b< T 0<c<a,<d<1l Then {z,} converges weakly to
p € F(S)NVI(C,A), where p= lim Pp(s)nvi(c,a)Zn-

Proof. Putting f(x,y) = 0 for all z,y € C and r, = 1 in Theorem 3.1, we obtain
the desired result. (]

Corollary 4.2. Let C be a closed convexr subset of a Hilbert space H. Let A be a
monotone k-Lipschitz continuous mapping of C into H and let S be a nonspreading
mapping of C into itself such that F(S)NVI(C,A) N EP(f) # 0. Let {z,} be a
sequence in C generated by

x1=x €C,
Yn = PC(xn - )‘nAxn>7
Tntl = Qpdp + (1 - O‘n)SPC(xn - /\nAyn)v
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1
where 0 < a < A\, < b < T 0<c<a,<d<1l Then {z,} converges weakly to
p € F(S)NVI(C,A), where p= lim Pps)nvi(c,a)Tn-

Proof. Putting f(x,y) = 0 for all z,y € C and r, = 1 in Theorem 3.2, we obtain
the desired result. O

Corollary 4.3. Let C be a closed convex subset of a Hilbert space H. Let f be a
bifunction from C x C to R satisfying (A1)-(A4) and let S be a nonspreading mapping
of C into itself such that F(S)NEP(f) # 0. Let {z,} be a sequence in C generated
by

1=z € C,
Tny1 = OénS.’En + (]- - an)Trnxna

where 0 < ¢ < ap < d < 1and 0 < r < r,. Then {z,} converges weakly to
p € F(S)NEP(f), where p = HILH;O Pp(s\nEP(f)Tn-

Proof. Putting A =0 in Theorem 3.1, we obtain the desired result. U

Corollary 4.4. Let C be a closed convex subset of a Hilbert space H. Let f be a
bifunction from C x C to R satisfying (A1)-(A4) and let S be a nonspreading mapping
of C into itself such that F(S)NEP(f) # 0. Let {z,} be a sequence in C generated
by

1=z € C,
Tpt1 = QpZp + (1 — @p) STy, @0,

where 0 < ¢ < ap, < d < 1and 0 < r < r,. Then {z,} converges weakly to
p € F(S)NEP(f), where p= lim Pr(s)npp(s)n-

Proof. Putting A =0 in Theorem 3.2, we obtain the desired result. O
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