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Abstract. In this paper, we introduce a system of general generalized equilibrium problems and pro-
pose an iterative scheme for finding the approximate solutions of a generalized equilibrium problem,
a system of general generalized equilibrium problems and a fixed point problem of a nonexpansive
mapping in a Hilbert space. We establish a strong convergence theorem for a sequence generated by
our proposed iterative scheme to a common solution of these three problems. Utilizing this result, we
prove three new strong convergence theorems for sequences generated by iterative schemes for fixed
point problems, variational inequalities, equilibrium problems and systems of general generalized
equilibrium problems.
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1. INTRODUCTION

Let H be a real Hilbert space whose inner product and norm are denoted by (.,.)
and || - ||, respectively. Let C be a nonempty closed convex subset of H and S : C — C
be a mapping. We denote by F(S) the set of all fixed points of S.
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Very recently, Takahashi and Takahashi [15] introduced and considered the follow-
ing generalized equilibrium problem: Find Z € C such that

F(z,y) + (AZ,y — %) >0, VyeC, (1.1)

where F': C' x C' — R is a bifunction and A : C' — H is a nonlinear mapping. The
set of solutions of generalized equilibrium problem is denoted by E P, that is,

EP={ze€C:F(z,y)+(Az,y—2) >0, VyeC}.

Whenever A = 0, generalized equilibrium problem reduces to the equilibrium prob-
lem of finding & € C' such that

F(z,y) >0, VyeC. (1.1a)

In this case, EP is denoted by EP(F).
Whenever F' = 0, problem (1.1) reduces to the classical variational inequality,
denoted by VI(A, C), which is to find an Z € C such that

(Az,y—7) >0, VyeC. (1.1b)

In this case, EP is denoted by VI(C,A), that is, the set of all solutions of
VI(A,C). The solution methods for computing the approximate solutions of vari-
ational inequalities have been widely studied in the literature; See, for example,
[4, 3, 10, 11, 12, 13, 14, 16, 24] and the references therein. The problem (1.1) is
an unified frame of several problems, namely, optimization problems, saddle point
problems, complementarity problems, fixed point problems, variational inequalities,
minimax problems, Nash equilibrium problem in noncooperative games, etc; See, for
example, [20, 21].

In the recent past, much attention has been paid by several researchers to study
the iterative methods for finding an element of EP(F) N F(S); See, for example,
[7, 8, 18, 19, 23, 26] and references therein. Moudafi [22] introduced an iterative
method for finding an element of EP N F(S), where A : C — H is an inverse-strongly
monotone mapping and proved a weak convergence theorem. Motivated by Moudafi
[22], Takahashi and Takahashi [15] introduced another iterative method for finding
an element of EP N F(S), where A : C — H is also an inverse-strongly monotone
mapping and then obtained a strong convergence theorem.

On the other hand, let C' be a nonempty closed convex subset of a real Hilbert
space H. Let G1,G5 : C x C' — R be two bifunctions and By, By : C — H be two
nonlinear mappings. Consider the following problem of finding (Z,y) € C x C such
that

_ - _ P _ (1.2)
G2(,y) + (BaZy —4) + - ( — T,y — ) 20, Vy e C.
It is called general system of generalized equilibrium problems where uy > 0 and py > 0
are two constants.

Special Cases. (1) If G; = Go = F and By = By = A, then problem (1.2) reduces

to the following problem of finding (z,y) € C' x C such that

{ F(z,2) + (Ag, 2 — &) + (T — g,2 —7) > 0, Yz € C,

F(g,y) + (AZ,y = §) + - (§ — 2,y = §) 2 0, ¥y € C.

{ Gi(z,2) + (B1j,x — &) + (T — §,x — ) > 0, Ve € C,

(1.3)
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It is called a new system of generalized equilibrium problems where pq > 0 and py > 0
are two constants.

(2) If Gy, = Gy = F, By = By = A, and T = g, then problem (1.2) reduces to
problem (1.1).

(3) If G; = G5 =0, then problem (1.2) reduces to the following general system of
variational inequalities: Find (z, ) € C x C such that

(1.4)

(mB1g+Z—g,x—7) >0, Vo € C,
<MQB25+Z7*579*§> 207 vyeca

where p1 > 0 and po > 0 are two constants. This problem is introduced and con-
sidered by Ceng et. al. [16]. They proposed a relaxed extragradient method for
finding the solutions of problem (1.4), and derived a strong convergence theorem for
problem (1.4). The problem (1.4) was introduced and studied by Ansari and Yao
[25] for an infinite number of inequalities. They proved the existence of a solution of
such problem. They also considered a more general system of generalized variational
inequalities and proved the existence of its solution. By using such existence result
for a solution, they provided the existence of a solution of Nash equilibrium problem
for nondifferentiable and nonconvex functions.

(4) If By = By = A in (1.4), then problem (1.4) reduces to the following new
system of variational inequalities:

{ (WpAj+z — g, 2 —x) >0, Vr € C,

(AT +5—Z,y—5) >0, VyeC, (1.5)

which is considered and studied by Verma [3].

(5) If £ = g in (1.5), then problem (1.5) reduces to the classical variational in-
equality (1.1b).

Inspired by the work of Takahashi and Takahashi [15] and Ceng et. al. [16], we
introduce a modified iterative method for problem (1.1), problem (1.2) and fixed point
problem for S, where A, By, By : C' — H are inverse-strongly monotone mappings. We
establish a strong convergence theorem for a sequence generated by proposed iterative
scheme to a solution of problem (1.2). Utilizing this theorem, we derived three new
strong convergence results for (i) problem (1.1a), problem (1.2) and the fixed point
problem of S; (ii) problem (1.1b), problem (1.2) and the fixed point problem of S; and
(iii) problem (1.1), problem (1.2) and the fixed point problem of S, where A=1—-T
and T : C' — C'is a strictly pseudocontractive mapping and I is the identity mapping
on C.

2. PRELIMINARIES

Throughout the paper, unless otherwise specified, C' is a nonempty closed convex
subset of a real Hilbert space H. We write x,, — x to indicate that the sequence {z,}
converges weakly to z. If {x,,} converges strongly to x, we denote it by x,, — x. For
every point & € H, there exists a unique nearest point of C', denoted by Pgx, such
that ||z — Poz| < ||z—yl] for ally € C. The operator Po : H — C'is called the metric
projection of H onto C. It is well known that P¢ is a firmly nonexpansive mapping



296 L.-C. CENG, Q.H. ANSARI, S. SCHAIBLE AND J.-C. YAO

of H onto C, that is, (x — y, Pcx — Pcy) > ||Pox — Poy||?, Vx,y € H. Recall that,
Pox is characterized, for all z € H and y € C, by the following properties:

Pox € C, (x — Pox,y — Pox) <0 and ||z —y||* > ||z — Pox||* + | Pox — y|?, (2.1)
For further detail, we refer to Goebel and Kirk [2].

A mapping S : C — C is called nonezpansive if ||Sz — Sy|| < ||z —y||, Vz,y € C.

It is well known that the set F(S) of fixed points of S is closed and convex if the
mapping S is nonexpansive. Further, if C' is bounded, closed and convex, then F(S) is
nonempty. A mapping A : C — H is called inverse-strongly monotone if there exists
a > 0 such that (x —y, Ar — Ay) > o||Az — Ay||?, Vzx,y € C. It is well known that
A = T- S is inverse-strongly monotone with constant % if S: C — (' is nonexpansive
and [ is the identity mapping on C; See, for example, [9] for further details.

We need the following propositions and lemmas for the proof of our main result.
Lemma 2.1. Let T': C' — H be a firmly nonexpansive mapping. Then,

Iz —y) = (Te = Ty)|* < |z = y|* = [Tz = Tyl|?, Va,yeC.

Let F': C' x C' — R be a bifunction.

Condition A.

(Al) F(z,z) =0 for all z € C;

(A2) F is monotone, that is, F'(z,y) + F(y,z) <0 for all z,y € C;

(A3) tlir(r)l+ F(tz+ (1 —=t)z,y) < F(x,y) for all z,y,z € C;

(A4) For each fixed x € C, y — F(z,y) is a convex and lower semicontinuous
function.

Lemma 2.2. [Lemma 2.2 in [15]] Let F : C x C — R be a bifunction such that
Condition A holds. Then, for any r > 0 and © € H, there exists z € C such that

1

Furthermore, if TFx ={z € C: F(z,y) + +(y — 2,2 —x) > 0, Vy € C}, then,
(1) TF is a single-valued map;
(2) TF is firmly nonexpansive, that is,
HTTF'I_TTFZJHQS<TrFx_TrFyax_y>v V%?JEH;
(3) F(IF) = EP(F);
(4) EP(F) is closed and conver.

Lemma 2.3. [Lemma 2.3 in [15]] Let F' and 7'’z be the same as in Lemma 2.2.
Then,

s—t

HTSFJ:—TtFxH2 < <T5Fx—TtFx,TSFx—x>, Vs,t >0 and Vz € H.

Proposition 2.1. Let G1,G5 : C x C — R be two bifunctions such that Condition
A holds. Then (Z,y) € C x C is a solution of problem (1.2) if and only if T is a fixed
point of the mapping I' : C — C defined by

[(z) = Tﬁl [T,% (x — poBax) — M1B1T,i2 (z — peBox)] and §j = T,iz (T — p2Bs).
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Corollary 2.1. [Lemma 2.1 in [16]] The point (Z,5) € C x C is a solution of
problem (1.4) if and only if T is a fized point of the mapping G : C — C defined by

G(x) = Po [Po(x — paBox) — pin B1 Po (v — paBox)] and § = Po(Z — poBaT).

Proposition 2.2. [6] Let {x,} and {y,} be two bounded sequences in a Banach
space X and let {3,} be a sequence in [0,1] such that 0 < liminf 8, < limsup g, < 1.

n—oo

Suppose that xpr1 = (1 — Bn)yn + Bnxn for all integers n > 0 and
limsup ([[yn+1 = ynll = [l2n41 = 2al) <0. Then, lim [y, —zn[| = 0.

n—oo

Lemma 2.4. [Lemma 2.1 in [10]] Let {v,} C (0,1) and {6,} be sequences such
that the following conditions hold:

(1) Z'Yn = o0y

5 oo
(ii) limsup — <0 or Z [0,] < o0.
n—oo Yn el

Assume that {a,} is a sequence of nonnegative real numbers such that
Ap41 S (]- - ’Yn)an + 577,7 n Z 1.
Then lim a, = 0.
n—oo

Lemma 2.5. (Demi-closedness Principle, see [2]) Let T : C' — C be a nonezpansive
mapping. If T has a fized point, then I — T is demi-closed, that is, whenever {x,}
is a sequence in C' converging weakly to some x € C, and the sequence {(I — T)x,}
converges strongly to some vy, it follows that (I — T)x = y, where I is the identity
mapping on H.

Lemma 2.6. In a real Hilbert space H, the following inequality holds:

lz+y|? < [lz)|* + 2(y, 2 +y), Va,y € H.

3. MAIN RESULTS

We present an iterative scheme to find the approximate solutions of (1.2). We

prove the strong convergence of a sequence generated by our iterative scheme to a
solution of (1.2).

Theorem 3.1. Let F,G1,G2 : C'x C — R be three bifunctions such that Condition
A holds. Let the mappings A, B1,Bs : C — H be inverse-strongly monotone with
constants «, [1, P2, respectively, and let S : C' — C be a nonexpansive mapping
such that F(S)N EPNU # 0, where U is the set of all fixed points of the mapping
I':C — C defined as T'(x) = TS T2 (x — paBox) — py ByTS? (# — paBox)]. Let
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u€ C, x1 € C and let {x,} C C be a sequence generated by the following iterative
scheme:
Zp = Tf (n, — AMpAxy),
Y = T [TG2 (2 — paBozy) — 1 BATS? (20 — p2Bazy)] (3.1)
Tnt1 = Bnn + (1 — Bn)S[anu+ (1 — an)yn], VneN,

where p1 € (0,261), pe € (0,262), and {an} C [0,1], {Bn} C [0,1], {A\n} C [0,2¢]
satisfy the following conditions 0 < ¢ < B, < d < 1, 0<a< A <b<2a,
lim (A, — Apy1) =0, lim «, =0 and Zan = 00.

n=1
Then, {x,} converges strongly to T = Pps)nppnou and (T,7) is a solution of

problem (1.2), where §j = T#G; (T — p2BaT).
Proof. Let z € F(S) N EP NU be an arbitrary point. Since z = TY (z — X\, Az2),
A is a-inverse-strongly monotone and 0 < A, < 2«, we have, for any n € N,

zn—2l12 = |TF (20 — AnAzy) = TE (2 = MA2)||” < (@0 — AnAwn) — (2 — A A2)|?

= [(#n — 2) — Mn(Azp — A2)|]> = |20 — 2]|2 = 220 (20 — 2, Az — A2) + A2 || Ay, — Az||?
< Nlzn—z|?—2X\na|| Az, — Az||P4H02 || Az — A2|)? = |2 — 2]+ (A —20) || A,y — Az |2
< fon — 2. (32)

Also, since z = Tﬁl [TMG;Z(Z — p12Ba2) —ulBng"(z—ugBﬂ)}, B; and Bsy are
inverse-strongly monotone with constant (37 and s, respectively, 0 < p; < 24; and
0 < po < 20,, we have, for any n € N,

lyn — 2lI> = ||T9 [TS2(2n — p2Bazn) — 1 B1T52 (2n MszZn)]
~TG [T (2 — ppBaz) — i ByTS? (2 — paB22)] ||
< H [TGZ (zn — 2 Bazy) — ulBng (zn — Mngzn)}
[TG2 (z — puaBoz) — ulBlTE;(z — o Boz ] ||

H2

H [TG (2n — poBazyn) — TMGZ (z — p2Bs2))

— U1 [BlTIIL2 (Zn — ‘LLQBQZn) BlTG2 (Z — MQBQZ):I H2
HTG2 (zn — 2 Bazy) — TE; (z — uaBaz) || ,
+p(pa = 261)|| BTS2 (20 — p2Bazn) — BITGQ(Z — paBaz)||

HTG2 — 1o Bozy) — TG2 (2 — poBo2) ||

H2 H2

Thus,

lyn =27 < W20 = paB2zn) = (2 = p2Baz)||” = |20 — 2) — p2(Bzzn — B22)|”
< llzn = 2I17 + n2(pz — 262) | Bezn — Boz|® < ||z — 21|
(3.3)
Let t,, = apu + (1 — ay)yn, then by using (3.2) and (3.3), we obtain

l[tn = 2l = llam (v = 2) + (1 = an)(Yn — 2)I| < anllu = 2| + (1 — an)llyn — 2|

S apllu =zl + (1 —an)llzn — 2l < anflu = 2[ + (1 = an) |20 — 2]
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So, we have

[1Bn(zn — 2) + (1 = Bn) (St — 2]

Bullen — 2|l + (1 = Bo) [t — 2|

Bullwn — 2l + (1 = Bn) (anllu — 2] + (1 — an)|zn — 2]])
(1= an(1 = Bn))llen — 2(| + an(l = By)llu — 2]|.

[€nt1 = 2||

AN IA

Letting K = max{||x; — z||, ||u — z||}, we have ||z, — z|| < K for all n € N.
Indeed, it is obvious that ||z1 — z|| < K. Suppose that ||z — z|| < K for some
k € N. Then, we have

ok —zll < (1= aw(l = Bp))ller — 2] + ar(l = B)llu— 2|
< (]. — Oék(]. — ﬂk))K + ak(l - ﬂk)K =K.

By induction, we obtain ||z, — z|| < K for all n € N. So, {z,,} is bounded. Hence,

{Az.}, {yn}, {zn}, {tn} and {St,} are also bounded. Let u, = T%? (2, — p2Bazn).
Then, we obtain

tngt — tn = anp1u+ (1 = i) yng1 — (anu + (1 — an)yn)
= (any1 = an)u+ (1= apg )T (unsr — pr Brugsr) — (1= an) T (un, — i Bruy,)
= (ang1 — an)u+ (1= ang1) [T (ungr — pa Brunyr) — T (un — i Biuy)]
+(ap — an_H)Tfll (un, — 1 Biug). (3.4)

2
TS (uns1 — p1Brtns1) — TS (un — p1Bruy) ||
2
< Munt1 — parBrupg) — (un — H131Un2)||
= [|(uns1 — un) = 1 (Biun 1 — Brug)||

< tngr — un | + g1 (1 — 2681) || Bittngr — Biug |
< Hun+1 - un||2

= H’Ifi2 (Zn+1 — M2322n+1) — ng (Zn — /JgBQZ}JHz (35>
< [(zn1 — p2Bozng1) — (2n — p2Bazy) |
= [|(zn41 = 2n) — p2(Bazni1 — Bazn)||”
< zng1 — 2nll? + p2(pz — 262) || Bazns1 — Bazal|”
< Hzn-&-l - Zn”Qa
[(@n41 — A1 A4Tn41) — (Tn — AnAzy)||
= ||Tnt1 — Tn — A1 (ATpy1 — Azp) + Ay — A1) Az || (3.6)

g1 = Tn — A1 (ATpg1 — Azy)|| + [Anp1 — Al Az, |
< @ng1 = 2l + A1 — Anl | Az,
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and

znst — 2zl = ‘ T (@ns1 — Aas1Azasr) = TE (2, — AnAxn)H

- T§L+1 (x”"‘l - )‘"+1Axn+1) - T)l\c,:LJrl (xn - )\nAxn)
+TF (0 — AAwy) = TY (2 — An Ay
<

‘ T)€L+1 (x”JFl - )‘"+1Axn+1) - T){ilJrl (xn - )‘nAxn)

+ TS, (@n — AnAzyn) = TE (zn — AnAzy) (3.7)
S ||(xn+1 - An-l—l‘Axn—i-l) - (an - )\nAxn)”

+ Tf:LJrl(acn — A\pAzy,) — Tf (2, — M Azy,)

< znt1 = ol + [Ant1 = Anl || Az ||

+ Tﬂﬂ(wn — A\ Axy,) — Tfl (Tn, — M Azy,)

From (3.4)—(3.7), it follows that

[tnt1 = tall < lans1 — an|[Jul] + ||T;ﬁ1 (Unt1 = p1Bruny1) — Tﬁl(un - HlBlun)H
+ |04n - an+1| HT,il (un - /J/lBlun)H
<lant1 — anl [lull + 201 — 20l + lan — ania] HT;ﬁl (un — MlBlun)H
<lapt1 — anl lul] + |Znt1 — ol + Ans1 — Anll|Azn |
+lony1 — O‘nH‘T;ﬁl (un — p1Bruy ||

+ HT){ZH(xn — MAzx,) — Tfn (Tn — ApAzxy,)

Therefore, we have:
[Stns1 = Stull < lltn+1 — tall < ot — anlllull + [Zn1 = Zall + [Ant1 = Anl | Azn || +
lans1 — ol TS (un — 1 Bruy) | + HT{ (0 — AnAzn) = TF (2 — )\nAmn)H.

n+1

Since {z,} is bounded, B; and By are Lipschitz continuous, and Tfl 1 and T;% are
firmly nonexpansive, we conclude that {u,} is bounded and so is {T5* (un —p11 B1un)}.
It follows from Lemma 2.3 that limsup,,_, . (||Stnt1 — Stall — [|Zn+1 — 2ul]) < 0.
From Lemma 2.1, we get

1St — 2a| — 0. (3.8)

Consequently, we obtain lim, o [|[Tnt1 — @n|| = limy,— oo (1 — Bn)||Stn — zu|| = 0.
Using (3.2) and (3.3), we get

[18n(zn — 2) + (1 — B)(Sty — Z)||2

[Znt1 — 212

< Bullwn — Z||2 + (1= Bn)||Stn — Z||2

< Ballzn — z||2 + (1= Ba)lltn — Z||2

= Bullen — 2[> + (1 = Ba)lan(u — 2) + (1 — an)(yn — 2)||?

< Bullzn — 3”2 + (1 = Bn)(anllu — ZH2 + (1 = an)|lyn — Z||2) (3.9)
< Ballzn = 2|1 + (1 = Bo)(anllu — 2[> + (1 = an) |20 — 2[7)
< Ballzn — 2l + (1 = Bo)an[lu — 2[1* + (1 = an)(|lzn — 2|12

A0 (An — 20) || Az, — Az|2)]
< lzn = 2[2 + (1 = Bo)an lu — 22
+(1 = B,)(1 = an) (A — 20) || Az, — Az]|?
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and hence
(1-d)(1 - an)a2a —b)|| Az, — Az|?
< (1= 8)1 — an)An(2a — \y)|| Az, — Az|?
< lon = 2l = [2ns1 — 22 + (1 fu)ean u — 2|2
= (zn = 2l = [|znt1 = 2l (|0 = 2| + [[2n1 = 2[]) + (1 = B [lu — 2|?
< lzn = zpral[(lzn = 2l + lznr = 2[) + (1 = Ba)an[u — z[*.

Since 0 < ¢ < B, <d <1, ap, — 0 and ||z, — Zpy1|| — 0, we have
Az, — Az|| — 0. (3.10)
Using Lemma 2.2 and (3.3), we obtain

= |T/€L (2n — MnAzy) =T (2 — )\nAz)H2

< A{(xp, — MAxy,) — (2 — MA2), 2, — 2)

= 5([(zn = AnAzn) = (2 = M A2) [P + ||z — 2]

(Tn, — M Azy) — (2 — M A2) — (2 — 2)||?)

[2n = 2l2 + [lzn = 2|7 = [(@n = 2n) = An(Azn — A2)]?)

3(lzn = 2012 + |lzn = 2l = 20 = 2all* + 2An (20 — 20, Az — Az2)
—A\2|| Az, — Az||?).

12n = 2II?

So, we have
ll2n— 2|12 < |20 —2]1> = ||Zn — 20 |? +2Xn (20 — 2, Ay — Az) = A2 || Az, — Az||2. (3.11)
From (3.3), (3.9) and (3.11), we have

”xn-‘rl - Z||2 = Hﬂn('xn - Z) + (1 - ﬁn)(‘gtn - Z)||2
< Ballen = 2[* + (1 = Ba)(anflu — 2[* + (1 — an)|lyn — 2[*)
< Bullzn — 2| + (1 = Ba)(enllu — 22 + (1 = an) |20 — 2[?)
< Bnllzn — ZH2 + apllu - Z||2 + (1= Bn)llzn — ZHZ
< Bnllzn — ZH2 + apllu - Z||2 + (1 = Bn)(||zn — Z||2 — lzn - Zn||2
+20 (T, — 2, Az, — AZ) — N2 || Az, — Az]?)
<len = 2[? + anllu — 2)1> = (1 = By)[Jzn — 2a|?
+2(1 = Bo)Mnllxn — znl||| Az, — Az||

and hence

(1= d)|z, - Zn||2 < (1= Bn)lzn - Zn||2
< lzn = 2[1* = [#nt1 — 2[1* + anllu — 2|
+2(1 = Bo)Mnllxn — znl|l| Az, — Az||
< lm = o1 l(om — ol + [n 11 — 2]) + enlfis = 2]
+2(1 = Bu)Anllzn — 2nl| | Az — Az]|.

Since ||z, — p+1|| — 0 and «,, — 0, by using (3.10), we obtain
|z = 2zn| — 0. (3.12)
Since t, = apu + (1 — ap)yn, we have t, — y, = a,(u — y,) and hence

[tn = ynll = anllu = ynll — 0. (3.13)



302 L.-C. CENG, Q.H. ANSARI, S. SCHAIBLE AND J.-C. YAO

On the other hand, by putting u* = Tlf’}(z — p2Bsyz), we observe that

[Znt1 =217 = [1Ba(zn — 2) + (1= Ba)(Sty — 2)|1?
< Bullwn — Z||2 + (1= Ba)lltn — Z||2
< Bullwn = 21> + (1 = Bp)lan|u = 2[1* + (1 = a) lyn — 2]°]
< Bullwn — 2”2 +(1- ﬁn)”T;ﬁl (un — p1Brun) — T;ﬁl (u*— UlBIU*)”2
+a|ju — 2|2
< Bullwn — 2> + (1 = Bu)l(un — pa Brug) — (w* — pa Biu®)|?
+an|u - 2|?
< Bullwn = 224+ (1 = Ba)[llun = w*[|>+ p1 (1 — 261) [ Brug — Biu*|)?]
+an|u - 2|?
= Bullzn — 2”2 +(1- ﬂn)[HT;?; (2n — p2Bazy) — TE;’ (z — :U2B2Z)||2
Fp(p1 = 2680) [ Bruy — Bru*|?] + ag[lu — 2|2
< Bullwn — 22 + (1 = Bu)lll(zn — p2Bazp) — (2 — paBoz)|?
+pn(p1 = 260) [ Brug — Biu*[|*] + o f|lu — [
< Bullwn = 211 + (1 = Bu)lllzn — 211> + p2(u2 — 262)|| B2zy — Bazl|?
+pn(p1 = 260) [ Brug — Biu*[|*] + o f|lu — [
< Ballzn — 2l + (1 = Bo)lllwn — 2[1* + p2(p2 — 262)[| B2z — Baz|?
+pn(p1 = 261) [ Brug — Biu*[|*] + o flu — [
= |lzn — Z||2 + (1 = Bn)lpa(p2 — 262) || B2zn — B22||2
+pn(p1 = 260) [ Brug — Biu*[|*] + o flu — 22,
(3.14)
and hence

(1 —d) [pn1(261 — )| Biuy — Biu*||* + p2(262 — p2)|| Bazn — Baz|?]

< (1= Bn) [11(261 — )| Biug — Biu*||* + pa(pz — 262) || B2zn — Baz||]

< N — 212 = ns1 — 21 + il — 21

< o — s l2n — 211 + Nznss — 21) + anllu — 2.

(3.15)

Since ||zp, — Tny1l] — 0, @ — 0, p1 € (0,261) and pe € (0,202), we obtain from
(3.15) that || Byuy, — Biu*|| = 0 and | Bz, — B2z|| — 0.
By using Lemma 2.2, we obtain

T2 (2n — p2Bazp) — T2 (2 — paBa2)|?

((zn, — p2Bazp) — (2 — p2Baz), up — u™)

3U(zn = p2Bozn) = (2 = paBoz) || + |lup — u*||?
[(zn = p2B2zn) — (2 — p2Baz) — (up — u*)|?]

[|un _U*||2

Al

< 3llzn — 207 + llup — w*|?

—[[(zn — un) — p2(Bazn — Boz) — (2 — u")|’]

= 3l = 212 + llup — w* [ = (20 — un) = (2 — u*)|]?
+22((2n — up) — (2 — u*), Bazn — Baz) — p3||Bazn — Baz|?].

So, we get that
lun —u*|* <
2212 | (2 tim) ~ (2~ ) 22412z~ ) (21" ), Bazn— Bz}~ 13| Bazn— Bz
< lzn =21 = [1(zn = un) = (2 = u")|* + 2p2( (20 — un) = (2 = "), Bazn — Baz). (3.16)
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Hence, from (3.14) and (3.16) it follows that

[Znt1 =2l < Ballen —2|* + (1= Ba)[lun — w* [P+ (1 — 261) || Brun — Bru*||?]
+an|u - 2|?
< Ballzn — 2| + (1 = Ba)|[un — w*||* + anflu — 2|
< Ballzn = 2l17 + (1 = Ba)lllzn — 2117 = [[(2n — un) = (2 — u*)|1?
+2u2{(2n — upn) — (2 — u*), Bazy, — Ba2)] + ay|lu — 2||?
< Ballzn — 2l + (1 = Bo)llzn — 2[1* = I(z0 — un) — (2 — uw*)|1?
+2p2|[(2n — un) = (2 — w*)||| Bazn — Baz|] + anllu — ZH2
= |lzn = 2)17 = (1= Ba)ll(2n — up) = (2 — u)|)?
+2(1 = Bu)pal (20 — un) — (2 = u*)||[| B2z — Boz|| + anlu — 2|,

which implies that
(L= Dl(zn = un) = (2 = w)* < (1= Bu)ll(z0 — un) = (z = u*)|
< len = 2l* = llznt1 — 21 + anllu — 2|
+2(1 = Bp)pell(zn — un) — (2 = w)||[[ B2zn — Baz||
<l = znall(lzn = 2l + lznar = 2l]) + anllu - 2|
+ 2p2||(2n — un) — (2 — u’) ||| Bazn — Baz||.
Since ||zn, — Zp41]] — 0, ay, — 0 and || Bz, — Ba2z|| — 0, we have
[(zn — un) = (z —u")| = 0. (3.17)
Now, utilizing Lemma 2.6 and the firm nonexpansivity of TMG1 ! we have
[(un = yn) + (2 —u)|?
= |lun — pa1Brun — (u* — pr Byu*) — [TS (un — 1 Biuy,)
—TS (u* — i Byu*)] + i (Byuy, — Byu®)|?
2
< Hun — p1 Bruy, — (u* — py Biu*) — [T,ﬁl (n — p1Biuy) — TE (u* — ulBlu*)] H
+2,UJ1<B1un - 81U*a (un - yn) + (Z - U*)>
< lun — p1 Brup — (u* — py Byu®)|

2 H1 M1
+2p1 || Brun — Bru* ||| (un — yn) + (2 — u*)||
= ||un - /’LlBlun - (U* - ,ulBlU'*)”2 - ‘yn - Z||2
+2p1 || Brun — Brw®||[[(un — yn) + (2 — u”)]|
< lun — pa Brugp — (u* — pa Byu*)||* — [|Syn — [
20| Butn, — By || (u — ) + (= — u”)
= |lun — p1Brun — (u* — M1Bw*)llz - I\St; —2|* + 1Stn — 2|* = ISyn — =
z—u*

+2p1 | Brun, — Bru*||[[(un — yn) +
< lun = pa1Biuy — (u* — prBiu®) — (St, — 2)||

(It — i1 Bt — (4" — pir By)| + ||t — 2]

18t — Syall(1Stn — 21l + 1Sy — 21) + 2411 | Brten — Bree* [ — )+ (2 — )]
= |lzn —xp + @y — Sty + 2 — u* — (2, — upn) — p1(Bru, — Bru)||

X([|un = p1Brun — (u* — p Bru”)|| + [|St,, — 2|))

5t =S5t = = S 1)+ B v, = Bl )42 =),

3.18
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Since ||zn —xn|| — 0, |zn —Stn]| — 0, [|[(zn —un) — (z—u*)|| — 0, || Biu, — Biu*|| — 0
and ||St, — Syn|| — 0, it follows from (3.18) that ||(u, — yn) + (2 — u*)|| — 0.
We also observe that

[Stn—tnll <15t =z |[Hlzn =20 HH| (20 —tn) = (z=0") [H| (un—yn )+ (z=u") |+ [|yn—tn -

Thus, we get
I1St, — tnl|l — 0. (3.19)
Next, putting T = Pp(s)ngpnst, we claim that
limsup(u — Z,t, — ) < 0. (3.20)

To show inequality (3.20) holds, we consider a subsequence {t,,} of {t,} such that

limsup(u — Z,t, — ) = lim (u — Z,t,, — T). (3.21)
Without loss of generality, we may assume that ¢,, — w. Since C is closed and
convex, C' is weakly closed. So, we have w € C. Let us show w € F(S)NEPNU. We
first show w € EP. Note that ||St, — t,]| — 0, ||St, — 2| — 0 and ||z, — 2z,|| — 0.
Hence it follows that ||t, — zn|| < ||tn — Stall + [|Stn — @l + [|2n — 2n|| — 0, and so
[tn — zn| — 0. Consequently, we have z,, — w. Since 2z, = T% (r, — A\, Awy,), for
any y € C' we have

1
F(vay) + <Axnyy - Zn> + )\7<y — ZnsZn — 'Tn> > 0.

From (A2), we obtain (Azy,y — z) + 5= (Y — Zn, 20 — Tn) > F(y, 2,,). Replacing n by
n;, we get

(Azp,,y — zn,) + <y—zm,zn’)\%> > F(y, zn,)- (3.22)

Let z; = ty+ (1 —t)w for all ¢ € (0,1] and y € C, we have z; € C. So, from (3.22) we
obtain

(2t — 2n;, Aze) >
<Zt - Zni’AZt> - <Zt - anvAxn7> - <Zt — Zngs %> + F(Zt7zn7:) =

‘i

(2t — 2, Aze — Azp,) + (2t — 2, Az, — Axp,) — <zt — Zn,, Z");m"’ > + F(zt, 2n,)-

i

Since ||zn, — Zn,|| — 0, we have |Az,, — Ax,,|| — 0. Further, from the monotonicity
of A, we have (z; — zp,,, Azt — Azp,) > 0. So, from (A4), as i — oo, we have

(2t —w, Az) > F(z, w), (3.23)
From (A1), (A4) and (3.23), we have
0 = F(zt,2t) <tF(ze,y) + (1 = ) F(z,w) <tF(zt,y) + (1 —t){z — w, Az)
=1F(zt,y) + (1 = )i{y — w, Az)

and hence 0 < F(z,y) + (1 — t){y — w, Az). Letting t — 0, we have, for each y € C,
0 < F(w,y) + (y — w, Aw). This implies that w € EP.

Now, we show that w € F(S). Indeed, since t,, — w and ||St,, — t,| — 0 due to
(3.19), utilizing Lemma 2.5 we have (I — S)w = 0 and hence w € F(S).
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Next, we show that w € U. Indeed, utilizing Lemma 2.2 we have for all z,y € C

IT(x) -T(y)|> = H%ﬁl [%22 (z — poBox) — p1 BiTG? (@ — pia Bax))
—T (102 (y — paBay) — pu BiT5 (y — paBay)|1?
< | TS2(x — poBox) — pa By TS (4 — poBax)
~[1,72(y = 2 Bay) — i B1 T3 (y — p2 Bay)]|1?
= |T52 (2 — paBax) — TS2(y — paBay)
— i (B1 T2 (& — paBaw) — BiT G2 (y — paBoy))|I?
< T2 (x — p2Bow) — T2 (y — p2 Bay)|?
+p1(p1 — 261) || BiTS? (x — poBax) — BiT52 (y — poBoy)||?
< | TS2 (x — paBox) — TS2 (y — paBay)|?
< ||z — p2Bax) — (y — p2Bay)|?
< |lz =yl + pa(pz — 262)|| Box — Bayll®
<z —yl*.
It shows that ' : C' — C'is nonexpansive. Since ||St, —t,|| — 0, ||St, —z,| — 0 and
[tn — znll < [|Stn — tall + |Stn — 24,
we conclude that [|t,, — 2| — 0 as n — oco. Furthermore,
[tn =Tt = lItn = yull + llyn = L&)l
= apllu = ynll + 1T (T35 (20 — p2Bazn) — i Bi T2 (2 — h2Bazy)] — T(t)|
= apllu — ynll + [T(2n) = L)l < anllu — ynll + 20 — tall-
Since a,, — 0 and ||t, — z,|| — 0, we obtain ||t, — I'(¢,)| — 0. In terms of Lemma
2.5 we have (I —T')w = 0 and so w € U. Therefore, w € F(S)NEPNU.
This together with (3.21) and the property of metric projection, implies that
limsup(u — Z,t,, — Z) = lim (u — T, t,, — T) = (u — T, w —T) < 0.
Finally, we prove x,, — Z. Indeed, since t, — = = ayu+ (1 —a,)yn — T = ap(u—Z) +
(1 = an)(yn — T), by utilizing Lemma 2.6, we derive from (3.2) and (3.3) that

[Znt1 = ZI1* < Bullen — 2| + (1 — B,)||Stn — 2|
Sﬂn‘|xn_f||2+( = Bn ”tn_i”2
< Bnllzn — EHQ + (1= Bu)[(1 - an)2||yn - 57”2 + 20 (u — 7, t,, — 7))
< Bnllzn — fHQ + (1= B)[(1 — an)llzn — jH2 + 20 (u — Z,t, — T)]
< Bullzn — fllz + (1= Ba)[(1 = an)l|zn — iHQ + 2an(u — T, t, — T)]
= (1= (1= Bu)an)llzn — 2|1 +2(1 = Bn)an(u — 7,1, — 7).

— — — —

(3.24)
Now, put v, = (1 — 8,)a, and 6, = 2(1 — B,)an{u — Z,t, — ) for all n € N. Then
(3.24) can be rewritten as

lzns1 =2l < (1= ya)llon — Zl° + 6, VnEN. (3.25)

oo (oo}
Since 0 < ¢ < B, < d < 1 and Zan = oo, we have Z(l — Bn)ay, = oo and
n=1 n=1
oo
S0 Z’yn = oo. Note that limsup,, .. %= = limsup,, . 2(u — Z,t, — Z) < 0, due

5
n=1
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to (3.20). Consequently, by applying Lemma 2.4 to (3.25), we deduce that {z,}
converges strongly to Z. This completes the proof. O

By using Theorem 3.1, we obtain the following strong convergence results in a
Hilbert space.

Corollary 3.1. Let F,G1,Gs : C'xC — R be three bifunctions such that Condition
A holds. Let the mappings By, Bs : C — H be inverse-strongly monotone mappings
with constants B1 and Ps, respectively, and let S : C' — C be a nonexpansive mapping
such that F(S)NEP(F)NU # 0, where U is the same as in Theorem 8.1. Let u € C,
x1 € C and {x,} C C be a sequence generated by the following scheme

F(vay)+%<yfzn,zn*xn>zoa Vy € C,

= TG [T% (2, — paBozn) — 1 B1TC? (2, — 112 B
Yn = T (T2 (2 — p2Bazn) — 1 B1T, 2 (20 — paBazn)],
Tyl = Py + (1 - ﬂn)S[anu + (1 - O‘n)ynL Vn € N,

where M1 € (072/81)7 M2 € (03252)7 and {Oén} - [07 1]) {ﬁn} c [07 1]7 {)\n} - (0700)
satisfy the following conditions 0 < ¢ < 5, < d < 1, 0<a< A <b<oo,
lim (A, = Apy1) =0, lim a, =0 and Zan = 00.
n=1
Then, {xn} converges strongly to T = Pp(s\nppr)nsu and (Z,9) is a solution of
problem (1.2), where §j = TE;‘ (Z — paBaT).
Proof. In Theorem 3.1, for alln € N, z, = T}i (xn, — ApAx,) is equivalent to

1
F(zn,y) + (A2, y = 20) + (Y = 20, 20 — @) 20, Wy €C.
By putting A = 0, we obtain F(z,,y) + ﬁ(y — ZnyZn — Tpn) 2 0, Vy € C. Observe
that for all a € (0,00) (x — y, Ax — Ay) > af||Ax — Ay||?, Vax,y € C. So, taking
a,b € (0,00) with 0 < a <b < oo and choosing a sequence {\,} of real numbers with
a < A, < b, we obtain the desired result from Theorem 3.1. (I

Corollary 3.2. Let G1,G3 : C x C'— R be two bifunctions such that Condition A
holds. Let the mappings A, By, By : C — H be inverse-strongly monotone mappings
with constants o, By, B2, respectively, and let S : C — C' be a nonexpansive mapping
such that VI(C, A)NF(S)NT # 0, where U is the same as in Theorem 3.1. Letu € C,

xz1 € C and {z,} C C be a sequence generated by the following iterative scheme

2n = Po(xn — ApAxy),
Yn = T,ﬁl [T,?; (2zn — p2Bazy) — MlBle;Q (2n — p2Bazy)]
-rn-i-l - 67133’” + (1 - ﬁn)S [anu + (1 - O‘n)yn} ) vn S Na

where py € (0,201), po € (0,202), {an}t C [0,1], {Bn} C [0,1], and {A\.} C [0,2¢q]
satisfy the following conditions 0 < ¢ < 8, <d < 1, 0<a< )\, <b<2aq,
lim (A, — Apy1) =0, lim a, =0 and Zan = o0.
n=1
Then, {x,} converges strongly to T = Py ¢, a)nr(s)not and (Z,7) is a solution of
problem (1.2), where § = TS?(T — paBok).
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Proof. In Theorem 3.1, for all n € N, z, = Tf (zn, — MyAxy,) is equivalent to

1
F(Z'rmy) + <Axn7y - Zn> + )\7<y — ZnyRn — xn> Z 0; Vy S C
By taking F' = 0, we obtain <Axn7y—zn>+i(y—zmzn—xn> >0, VYye(C,VneN,
which implies that (y — zn, T, — ApAx, — 2,) < 0, Vy € C. So, it follows that
Po(xy — A\pAxy,) = 2z, for all n € N and we obtain the desired result from Theorem
3.1. 0

A mapping T : C — C is called strictly pseudocontractive if there exists k with
0 < k < 1such that [|Te—Ty||? < |z —y|?+k|(I-T)x—(I-T)y|?, for all x,y € C.
Notice that, if T : C' — C' is a strictly pseudocontractive mapping with constant k,
then the mapping A = I — T is inverse-strongly monotone with constant (1 — k)/2.

Theorem 3.2. Let F,G1,Gs : C'x C — R be three bifunctions such that Condition
A holds. Let T : C — C be a strictly pseudocontractive mapping with constant
k and let B1,Bs : C — H be inverse-strongly monotone mappings with constants
b1, and Bs2, respectively, and let S : C' — C be a nonerpansive mapping such that
F(SYNEPNU # 0, where A =1—T and U is the same as in Theorem 3.1. Let
u€ C, z1 € C and {x,} C C be a sequence generated by the following iterative
scheme

o = TF (1= M) + ATt
Yn = T,fl [Tﬁi? (2n — p2Bazn) — M1B1Tf22 (2n — p2Bazy)]

Tnt1 = Bnn + (1 — Bn)S[anu+ (1 — ap)ys], VneN,

where p1 € (0,261), 2 € (0,262), and {ay,} C [0,1], {8} C [0,1], {\} C[0,1 — k]
satisfy
0<e<pB,<d<1, O<a< )\, <b<1-k,

nlirgo(An — Any1) =0, nILH;O a, =0 and Z oy, = 00.
n=1

Then, {x,} converges strongly to T = Pr(s)nppnst and (Z,7) is a solution of problem

(1.2), where §j = TS? (T — paBol).

Proof. Since T is a strictly pseudocontractive mapping with contant k, the map-
ping A = I — T is inverse-strongly monotone with constant (1 — k)/2. Consider
a = (1 —k)/2. Then z, = TY (z, — MAzy) = T% (#n — AT — T)xy) =
T (1 = Ap)xp + AyTizy). By Theorem 3.1, we get the conclusion. [

REFERENCES

[1] F.E. Browder, W.V. Petryshyn, Construction of fized points of nonlinear mappings in Hilbert
spaces, J. Math. Anal. Appl., 201967, 197-228.

[2] K. Goebel, W.A. Kirk, Topics on Metric Fized-Point Theory, Cambridge University Press,
Cambridge, 1990.

[3] R.U. Verma, lterative algorithms and a new system of nonlinear quasivariational inequalities,
Advan. Nonlinear Var. Ineq., 4(2001), 117-124.

[4] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradient method for
nonezxpansive mappings and monotone mappings, J. Optim. Th. Appl., 128(2006), 191-201.



308

(5]

[16]

(17]
18]

[19]

24]

[25]

[26]

L.-C. CENG, Q.H. ANSARI, S. SCHAIBLE AND J.-C. YAO

P.L. Combettes, A. Hirstoaga, Equilibrium Programming in Hilbert spaces, J. Nonlinear Con-
vex Anal., 6(2005), 117-136.

T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter
nonezpansive semigroups without Bochner integrals, J. Math. Anal. and Appl., 305(2005),227-
239.

A. Tada, W. Takahashi, Strong convergence theorem for an equilibrium problem and a non-
ezpansive mapping, J. Optim. Th. Appl., 133(2007), 359-370.

S. Takahashi, W. Takahashi, Viscosity approrimation methods for equilibrium problems and
fized point problems in Hilbert spaces, J. Math. Anal. Appl., 331(2007), 506-515.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl.,
298(2004), 279-292.

L.C. Zeng, Iterative algorithms for finding approzimate solutions for general strongly nonlinear
variational inequalities, J. Math. Anal. Appl., 187(1994), 352-360.

W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and mono-
tone mappings, J. Optim. Th. Appl., 118(2003), 417-428.

Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone
mappings, Appl. Math. Comput., 186(2007), 1551-1558.

L.C. Zeng, J.C. Yao, Strong convergence theorem by an extragradient method for fized point
problems and variational inequality problems, Taiwanese J. Math., 10(2006), 1293-1303,.

S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium
problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69(2008), 1025-
1033.

L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relazed extragradient
method for a general system of variational inequalities, Math. Meth. Oper. Research, 67(2008),
375-390.

L.C. Zeng, N.C. Wong, J.C. Yao, Strong convergence theorems for strictly pseudocontractive
mappings of Browder-Petryshyn type, Taiwanese J. Math., 10(2006), 837-849.

L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mized equilibrium problems and fized point
problems, J. Comput. Appl. Math., 214(2008), 186-201.

L.C. Ceng, S. Schaible, J.C. Yao, Implicit iteration scheme with perturbed mapping for equi-
librium problems and fized point problems of finitely many nonexpansive mappings, J. Optim.
Th. Appl., 139(2008), 403-418.

E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Stud., 63(1994), 123-145.

A. Moudafi, M. Théra, Prozimal and dynamical approaches to equilibrium problems, in: Lec-
ture Notes in Economics and Mathematical Systems, Springer-Verlag, Heidelberg, 477(1999),
187-201.

A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems,
J. Nonlinear Convex Anal., 9(2008), No. 1, 37-43.

L.C. Ceng, S. Al-Homidan, Q.H. Ansari, J.C. Yao, An iterative scheme for equilibrium prob-
lems and fized points problems of strict pseudo-contraction mappings, J. Comput. Appl. Math.,
223(2009), No. 2, 967-974.

L.C. Ceng, Q.H. Ansari, J.C. Yao, Mann type steepest-descent and modified hybrid steepest-
descent methods for variational inequalities in Banach spaces, Num. Funct. Anal. Optim.,
29(2008), No. 9-10, 987-1033.

Q.H. Ansari, J.C. Yao, A fized point theorem and its applications to the system of variational
inequalities, Bull. Austral. Math. Soc., 59(1999), 433-442.

N. Petrot, R. Wangkeeree, P. Kumam, A viscosity approximation method of common solutions
for quasi-variational inclusion and fized point problems, Fixed Point Theory, 12(2011), No. 1,
165-178.

Receiwved: August 1, 2009; Accepted: December 7, 2009.



