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1. Introduction

Recently, the existence and multiplicity of positive solutions for nonlinear ordinary
differential equations and difference equations have received a great deal of attentions.
To identify a few, we refer the reader to [1, 2, 3, 4, 5] and references therein. But most
work were done under the assumption that the first order derivative x′ is not involved
explicitly in the nonlinear term. In [6], Bai et al.studied the two-point boundary value
problem

x′′(t) + a(t)f(t, x, x′) = 0 (1.1)

subject to one of the following two pairs of boundary conditions

x(0) = x(1) = 0, or x(0) = x′(1) = 0. (1.2)

By using a new fixed-point theorem introduced by Avery and Peterson [7], they
obtained sufficient conditions for the existence of at least three positive solutions for
this system.

In recent years,accompanied by the development of the theory of functional dif-
ferential equations, many authors have paid attention to boundary value problem of
functional differential equations (for example, see [8]-[10]). In [10], Jiang and Zhang
used fixed-point index theorem in cones to study the existence of at least one positive
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solution for the boundary value problem of second-order delay differential equations
of the form

x′′(t) + f(t, x(t− τ)) = 0, 0 < t < 1, τ > 0, (1.3)

x(t) = 0,−τ ≤ t ≤ 0, x(1) = 0. (1.4)

In [11], by using the fixed-point theorem by Avery and Peterson, the authors studied
the existence of three positive solutions for boundary value problem of delay differen-
tial equation

x′′(t) + f(t, x(t), x′(t− 1)) = 0, 0 < t < 1, (1.5)

x(t) = F (t),−1 ≤ t ≤ 0, x(1) = 0. (1.6)

In this paper we consider existence of positive solutions for delay differential equa-
tions

x′′(t) + f(t, x(t), x′(t− 1)) = 0, 0 < t < 1, (1.7)

x(t) = F (t),−1 ≤ x ≤ 0, x(1) = βx(ξ), (1.8)

where

F (−1) = 0, F (0) = µx(η), 0 < η < ξ < 1, (1.9)

and problem

x′′(t) + f1(t, x(t), x′(t− 1)) = 0, 0 < t < 1, (1.10)

x(t) = F1(t),−1 ≤ x ≤ 0, x(1) =

m−2∑
i=1

αix(ξi), (1.11)

where

F1(−1) = 0, F1(0) = β1x
′
+(0), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. (1.12)

In this article it is assumed that:
C1) f, f1 ∈ C([0, 1]× [0,+∞)×R, [0,+∞));

C2) 0 ≤ µ < 1

1− η
, 0 ≤ β < 1

ξ
, αη(1− β) + (1− α)(1− βξ) > 0;

C3) αi ≥ 0, β1 ≥ 0, i = 1, 2, · · · ,m− 2 satisfying 0 <
m−2∑
i=1

αiξi < 1.

C4) F (t), F1(t) ∈ C1[−1, 0] is a nonnegative concave functional on [-1,0].

2. Background definitions and preliminaries

For the convenience of the reader, we present here the necessary definitions from
cone theory in Banach spaces. This definitions can be found in recent literature.
Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed set
P ⊂ E is said to be a cone provided that

(i) au ∈ P , for all u ∈ P, a ≥ 0;
(ii) u, −u ∈ P implies u = 0.
Note that every one cone P ⊂ E induces an ordering in E given by x ≤ y if

y − x ∈ P .
Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into pre-compact sets.
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Definition 2.3. The map α is said to be a nonnegative continuous convex functional
on cone P of a real Banach space E provided that α : P → [0,+∞) is continuous and

α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y),

for all x, y ∈ P and t ∈ [0, 1].
Definition 2.4. The map β is said to be a nonnegative continuous concave functional
on cone P of a real Banach space E provided that β : P → [0,+∞) is continuous and

β(tx+ (1− t)y) ≥ tβ(x) + (1− t)β(y),

for all x, y ∈ P and t ∈ [0, 1].
Our main results will depend on an application of a fixed-point theorem due

to Avery and Peterson .
Let γ, θ be nonnegative continuous convex functionals on P, α be a nonnegative

continuous concave functional on P and ψ be a nonnegative continuous functional on
P. Then for positive numbers a, b, c and d, we define the following convex sets:

P (γ, d) = {x ∈ P |γ(x) < d},
P (γ, α, b, d) = {x ∈ P |b ≤ α(x), γ(x) ≤ d},
P (γ, θ, α, b, c, d) = {x ∈ P |b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d}

and a closed set
R(γ, ψ, a, d) = {x ∈ P |a ≤ ψ(x), γ(x) ≤ d}.

Lemma 2.5. Let P be a cone in a real Banach space E. Let γ, θ be nonnegative
continuous convex functionals on P , α be a nonnegative continuous concave functional
on P and ψ be a nonnegative continuous functional on P satisfying:

ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, (2.1)

such that for some positive numbers l and d,

α(x) ≤ ψ(x), ‖x‖ ≤ lγ(x) (2.2)

for all x ∈ P (γ, d). Suppose T : P (γ, d)→ P (γ, d) is completely continuous and there
exist positive numbers a, b, c with a < b such that
(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅, and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);
(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;
(S3) 0∈R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that:

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b;ψ(x3) < a. (2.3)

3. Solutions of (1.7)-(1.9)

In this section we impose growth conditions on f , F and apply fixed-point theorem
we mentioned above to establish the existence of three positive solutions of (1.7)-(1.9).
Firstly we give some lemmas which are useful in the proof of our main results.
Lemma 3.1. Denote ρ = (1−βξ)(1−µ)+µη(1−β), the Green’s function of boundary
value problem

−x′′ = 0, (3.1)

x(0) = µx(η), x(1) = βx(ξ), (3.2)
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is

G(t, s) =
1

ρ



s[(1− βξ) + (β − 1)t] s ≤ t, 0 ≤ s ≤ η
t[(1− βξ) + (β − 1)s] + µ(1− η + βη − βξ)(s− t) t ≤ s, 0 ≤ s ≤ η
(µη + s− µs)[(1− βξ) + (β − 1)t] s ≤ t, η ≤ s ≤ ξ
(µη + t− µt)[(1− βξ) + (β − 1)s] t ≤ s, η ≤ s ≤ ξ
(1− s)(t− µt+ µη) + ρ(s− t) s ≤ t, ξ ≤ s ≤ 1
(1− s)(µη − µt+ t) t ≤ s, ξ ≤ s ≤ 1

Further if condition C2) holds, then G(t, s) > 0 for 0 ≤ t, s ≤ 1.
Let X = C1([−1, 1] \ {0}) ∪ C1[−1, 1] be endowed with the ordering x ≤ y if

x(t) ≤ y(t) for all t ∈ [−1, 1] and the norm

‖x‖ = max{ max
−1≤t≤1

|x(t)|,max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′−(0), x′+(0)}}}.

It is easy to see X is a Banach space relative to the norm defined above.
From x′′(t) = −f(t, x(t), x′(t − 1)) ≤ 0, we know that x is concave on [0,1]. We

define the cone P ⊂ X by P = {x ∈ X : x(t) is nonnegative on [-1,1] and concave on
[−1, 0] and [0, 1] respectively}.
Lemma 3.2. If x(t) ∈ P is a solution of problem (1.7)-(1.9), then

max
−1≤t≤1

|x(t)| ≤ l max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′+(0), x′−(0)}},

where

l =



min{1 + |
µη

1− µ
|, 1 + |

β(1− ξ)
1− β

|} µ 6= 1, β 6= 1

1 + |
µη

1− µ
| β = 1

1 + |
β(1− ξ)

1− β
| µ = 1

is a constant.
Proof. It’s easy to see that

max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′+(0), x′−(0)}} = max{ max
−1≤t≤0

|x′(t)|, max
0≤t≤1

|x′(t)|}.

For F (t) = F (−1) +

∫ t

−1
F ′(s)ds =

∫ t

−1
F ′(s)ds,−1 ≤ t ≤ 0, we see

|F (t)| ≤
∫ t

−1
|F ′(s)|ds ≤ max

−1≤t≤0
|F ′(t)|. (3.3)

For t ∈ [0, 1], if µ 6= 1,as x(0) = µx(η) and mean value theorem, there exists

t0 ∈ (0, η) such that x(0) =
µη

1− µ
x′(t0).

Considering x(t) = x(0) +

∫ t

0

x′(s)ds we have

|x(t)| ≤ |
µη

1− µ
x′(t0)|+

∫ t

0

|x′(s)|ds ≤ (|
µη

1− µ
|+ 1) max

0≤t≤1
|x′(t)|. (3.4)
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If β 6= 1,considering x(1) = βx(ξ), similarly we get

|x(t)| ≤ (|
β(1− ξ)

1− β
|+ 1) max

0≤t≤1
|x′(t)|. (3.5)

Let

l =



min{1 + |
µη

1− µ
|, 1 + |

β(1− ξ)
1− β

|} µ 6= 1, β 6= 1

1 + |
µη

1− µ
| β = 1

1 + |
β(1− ξ)

1− β
| µ = 1

From (3.3),(3.4), (3.5) we can obtain that

max
−1≤t≤1

|x(t)| ≤ l max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′+(0), x′−(0)}}.

Lemma 3.3. If x ∈ P is a solution of problem (1.7)-(1.9), we have

min
t∈[η,ξ]

≥ δ max
0≤t≤1

|x(t)|, (3.6)

where δ = min{η, 1− ξ} < 1 is a constant.
Proof. Let x(t1) = max

0≤t≤1
|x(t)|, t1 ∈ [0, 1]. From the concavity of x(t),

min
t∈[η,ξ]

x(t) = min{x(ξj−1), x(ξj)}.

Here we distinguish two cases. (1) : min
t∈[η,ξ]

x(t) = x(η). Here η < t1. We get

x(η)− x(0)

η
≥ x(t1)− x(0)

t1
(3.7)

Arranging (3.7) and considering x(0) ≥ 0, we have x(η) ≥ ηx(t1).
(2) : min

t∈[η,ξ]
x(t) = x(ξ). Here ξ > t1. From

x(1)− x(t1)

1− t1
≥ x(1)− x(ξ)

1− ξ
(3.8)

we see x(ξ) ≥ (1− ξ)x(t1).
Considering (3.7), (3.8) we get that

min
t∈[η,ξ]

≥ min{η, 1− ξ} max
0≤t≤1

|x(t)| = δ max
0≤t≤1

|x(t)|. (3.9)

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals γ, θ and the nonnegative continuous functional ψ be defined on
the cone by

γ(x) = max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′+(0), x′−(0)}},

ψ(x) = min{ min
t∈[−ξ,−η]

|x(t)|, max
0≤t≤1

|x(t)|},

θ(x) = max
0≤t≤1

|x(t)|, α(x) = min
t∈[−ξ,η]∩[η,ξ]

|x(t)|.
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By Lemma 3.2, 3.3 the functionals defined above satisfy:

δθ(x) ≤ α(x) ≤ θ(x), ‖x‖ = max{θ(x), γ(x)} ≤ lγ(x), α(x) ≤ ψ(x). (3.10)

Therefore conditions (2.1) and (2.2) are satisfied.
Let

M = max{
∫ 1

0

|
∂G(t, s)

∂t
|t=0ds,

∫ 1

0

|
∂G(t, s)

∂t
|t=1ds},

m = min{
∫ ξ

η

G(η, s)ds,

∫ ξ

η

G(ξ, s)ds},

N = max
0≤t≤1

∫ 1

0

G(t, s)ds, λ = min{
m

M
, δl}.

We assume that there exist positive constants a, b, c, d with a < b < λd such that:
A1) f(t, u, v) ≤ d/M, (t, u, v) ∈ [0, 1]× [0, ld]× [−d, d];
A2) f(t, u, v) > b/m, (t, u, v) ∈ [η, ξ]× [b, b/δ]× [−d, d];
A3) f(t, u, v) < a/N, (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].

Theorem 3.4. Under assumption A1)−A3) and C1), C2), C4), problem (1.7)-(1.9)
has at least three positive solutions x1, x2, x3 satisfying

max{ max
t∈[−1,1]\{0}

|x′i(t)|, max{x′(i)+(0), x′(i)−(0)}} ≤ d for i = 1, 2, 3;

b < min
t∈[η,ξ]

|x1(t)|, a < max
0≤t≤1

|x2(t)| with min
t∈[η,ξ]

|x2(t)| < b;

max
0≤t≤1

|x3(t)| < a. (3.11)

Proof. Suppose x(t) is a solution of boundary value problem (1.7)-(1.9). Then x(t)
can be expressed as

x(t) =


F (t) −1 ≤ t ≤ 0∫ 1

0

G(t, s)f(s, x(s), x′(s− 1))ds 0 < t < 1

Define an operator T : P → P by

(Tx)(t) =


F (t) −1 ≤ t ≤ 0∫ 1

0

G(t, s)f(s, x(s), x′(s− 1))ds 0 < t < 1

It is well known that the operator T is completely continuous. Now we show all
conditions of Lemma 2.5 are satisfied.

If x ∈ P (γ, d), then γ(x) = max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′+(0), x′−(0)}} ≤ d.

It is easy to see that max
−1≤t≤0

|x′(t)| ≤ d and max
0≤t≤1

|x′(t)| ≤ d. So, when t ∈ [−1, 0],

we have γ(Tx) = max
−1≤t≤0

|F ′(t)| = γ(x(t)) ≤ d.

When t ∈ [0, 1], for x ∈ P (γ, d), we have max
0≤t≤1

|x′(t)| ≤ d. With Lemma 3.3,

assumption (A1) implies f(t, x(t), x′(t− 1)) ≤ d/M.
Thus

γ(Tx) = max
0<t<1

|Tx′(t)| = max{|Tx′(0)|, |Tx′(1)|}
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≤ max{
∫ 1

0

|
∂G(t, s)

∂t
|t=0f(s, x(s), x′(s− 1))ds,

∫ 1

0

|
∂G(t, s)

∂t
|t=1f(s, x(s), x′(s− 1))ds}

≤ max{
∫ 1

0

|
∂G(t, s)

∂t
|t=0ds,

∫ 1

0

|
∂G(t, s)

∂t
|t=1ds}

d

M
=

d

M
M = d.

Hence T : P (γ, d)→ P (γ, d).

To check condition (S1) of Lemma 2.5, we choose x(t) =
b

δ
= c. We can see that

x(t) =
b

δ
∈ P (γ, θ, α, b, c, d) and α(

b

δ
) > b. So {x ∈ P (γ, θ, α, b, c, d|α(x) > b)} 6= ∅.

Next we show that α(Tx) > b,for x ∈ P (γ, θ, α, b, c, d).
As x ∈ P (γ, θ, α, b, c, d), we have b ≤ x(t) ≤ b/δ, |x′(t)| ≤ d for t ∈ [η, ξ]. From

assumption (A2) we have f(t, x(t), x′(t− 1)) ≥ b/m.
Then

α(Tx) = min{(Tx)(η), (Tx)(ξ)}

= min{
∫ 1

0

G(η, s)f(s, x(s), x′(s− 1))ds,

∫ 1

0

G(ξ, s)f(s, x(s), x′(s− 1))ds}

≥ b

m
min{

∫ ξ

η

G(η, s)ds,

∫ ξ

η

G(ξ, s)ds} =
b

m
m = b.

Thus, condition (S2) of Lemma 2.5 is satisfied. Finally we show that (S3) also
holds.

Clearly, ψ(0) = 0 < a shows 0∈R(γ, ψ, a, d). Suppose x ∈ R(γ, ψ, a, d) with
ψ(x) = a. For assumption (A3)we have

max
0≤t≤1

|(Tx)(t)| = max
0≤t≤1

∫ 1

0

G(t, s)f(s, x(s), x′(s−1))ds <
a

N
max
0≤t≤1

∫ 1

0

G(t, s)ds = a.

Thus ψ(Tx) = max
0≤t≤1

|(Tx)(t)| < a. So condition (S3) of Lemma 2.5 is satisfied.

Therefore, an application of Lemma 2.5 implies problem (1.7)-(1.9) has at least
three positive solutions x1, x2, x3 and (3.11) is satisfied. The proof is complete.
Remark 3.5. In [11], the author defined the functionals θ, α with

θ(x) = max
−1≤t≤1

|x(t)|, α(x) = min
t∈[− 3

4 ,−
1
4 ]∪[

1
4 ,

3
4 ]
|x(t)|.

By the definitions and the concavity of x(t), they claimed

α(x) ≥ 1

4
θ(x). (3.12)

In fact, considering the concavity of x(t), we can get that

min
t∈[− 3

4 ,−
1
4 ]
x(t) ≥ 1

4
max

t∈[−1,0]
x(t)

and

min
t∈[ 14 ,

3
4 ]
x(t) ≥ 1

4
max
t∈[0,1]

x(t). (3.13)

But it’s easy to see that we can’t get (3.12) by (3.13). Thus we define the functionals
different with [11].
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Remark 3.6. To apply Lemma 2.5, we only need T : P (γ, d) → P (γ, d), therefore
condition C1) can be substituted with a weaker condition

H1) : f ∈ C([0, 1]× [0, ld]× [−d, d], [0,+∞)).

4. Solutions of (1.10)-(1.12)

In this section we deal with problem (1.10)-(1.12). The method and existence
results are remarkable analogous to those in section 3. Also we give some Lemmas
firstly.

Lemma 4.1. Denote ρ1 = β1(1−
m−1∑
i=0

αi)+1−
m−1∑
i=0

αiξi, then boundary value problem

x′′ + y(t) = 0, (4.1)

x(0) = β1x
′(0), x(1) =

m−2∑
i=1

αix(ξi), (4.2)

has solution x(t) =

∫ 1

0

G1(t, s)y(s)ds, where

G1(t, s)=
1

ρ


[(1− s) +

m−1∑
k=i

αk(s− ξk)](β1 + t) t ≤ s

(s+ β1)(1− t)+
i−1∑
k=0

αk(t− s)(β1 + ξk)+
m−1∑
k=i

αk(t− ξk)(s+ β1) t ≥ s

for ξi−1 ≤ s ≤ ξi.
Proof. Suppose G(t, s) is the Green’s function of problem (4.1), (4.2).

For ξi−1 < s < ξi, i = 1, 2 · · ·m− 1, we let

G(t, s) =

{
A+Bt t ≤ s
C +Dt t ≥ s

From the definition and properties of Green’s function and (4.2) we have
A+Bs = C +Ds
B −D = −1
A = β1B

C +D =
i−1∑
k=0

αk(A+Bξk) +
m−1∑
k=i

αk(C +Dξk)

We get

A =
β1

ρ
[(s− 1) +

m−1∑
k=i

αk(ξk − s)],

B =
1

ρ
[(s− 1) +

m−1∑
k=i

αk(ξk − s)],

C =
1

ρ
[

i−1∑
k=0

αkβ1s+ s(

m−1∑
k=0

αkξk − 1) + β1(

m−1∑
k=i

αkξk − 1)],
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D =
1

ρ
[(β1 + s)(1−

m−1∑
k=i

αk)−
i−1∑
k=0

αk(β1 + ξk)].

Thus

G(t, s)=
1

ρ


[(s− 1) +

m−1∑
k=i

αk(ξk − s)](β1 + t) t ≤ s

(s+ β1)(t− 1)+
i−1∑
k=0

αk(s− t)(β1 + ξk)+
m−1∑
k=i

αk(ξk − t)(s+ β1) t ≥ s

We show the expression of the Green’s function for problem (4.1), (4.2).
Let G1(t, s) = −G(t, s), then the solution of boundary value problem (4.1)− (4.2) is

x(t) =

∫ 1

0

G(t, s)(−y(s))ds =

∫ 1

0

G1(t, s)y(s)ds. (4.3)

Lemma 4.2. If C3) holds, we claim G1(t, s) ≥ 0, t, s ∈ [0, 1].
Proof. For ξi−1 ≤ s ≤ ξi, if t ≤ s,

(1− s) +

m−1∑
k=i

αk(s− ξk) ≥
m−1∑
k=i

αkξk(1− s) +

m−1∑
k=i

αk(s− ξk)

≥
m−1∑
k=i

αk(1− ξk)s ≥ 0.

If t ≥ s,

(s+ β1)(1− t) +

i−1∑
k=0

αk(t− s)(β1 + ξk) +

m−1∑
k=i

αk(t− ξk)(s+ β1)

≥
i−1∑
k=0

αk(t− s)(β1 + ξk) +

m−1∑
k=i

αk(1− ξk)(s+ β1)t ≥ 0.

Then G(t, s) ≥ 0, t, s ∈ [0, 1].
Lemma 4.3. If x ∈ P and is a solution of problem (1.10)-(1.12), then

max
−1≤t≤1

|x(t)| ≤ (β1 + 1) max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′−(0), x′+(0)}}.

Proof. When t ∈ [−1, 0], max
t∈[−1,0]

|x(t)| ≤ max
t∈[−1,0]

|x′(t)| obviously.

When t ∈ [0, 1], for x(t) = x(0) +
∫ t
0
x′(t)dt = β1x

′(0) +
∫ 1

0
x′(t)dt, we have

|x(t)| ≤ |β1x′(0)|+
∫ 1

0

|x′(t)|dt ≤ (β1 + 1) max
t∈[0,1]

|x′(t)|.

We sum up the conclusions above to obtain that

max
−1≤t≤1

|x(t)| ≤ (β1 + 1) max{ max
t∈[−1,1]\{0}

|x′(t)|,max{x′−(0), x′+(0)}}.

Similar to Lemma 3.3, we have

min
t∈[ξj−1,ξj ]

≥ δ1 max
−1≤t≤1

|x(t)|,
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where ξj ∈ {ξ1, ξ2, · · · , ξm−1}, δ1 = min{ξj−1, 1− ξj}.
Let the nonnegative continuous concave functional α1, the nonnegative continuous

convex functionals γ1, θ1 and the nonnegative continuous functional ψ1 be defined on
the cone similarly to Theorem 3.4.

By Lemma 4.3 the functionals satisfy:

δ1θ1(x) ≤ α1(x) ≤ θ1(x), ‖x‖ = max{θ1(x), γ1(x)} ≤ (β1 + 1)γ1(x), α1(x) ≤ ψ1(x).
(4.4)

Therefore conditions (2.1) and (2.2) are satisfied.
Let

M1 = max{
∫ 1

0

|
∂G1(t, s)

∂t
|t=0ds,

∫ 1

0

|
∂G1(t, s)

∂t
|t=1ds},

m1 = min{
∫ ξj

ξj−1

G1(ξj−1, s)ds,

∫ ξj

ξj−1

G1(ξj , s)ds},

N1 = max
0≤t≤1

∫ 1

0

G1(t, s)ds, λ1 = min{
m1

M1
, δ1(β1 + 1)}.

To present our main results, we assume there exist constants 0 < a1, b1, c1, d1,
a1 < b1 < λ1d1 such that
A4) f(t, u, v) ≤ d1/M1, (t, u, v) ∈ [0, 1]× [0, (β1 + 1)d1]× [−d1, d1];
A5) f(t, u, v) > b1/m1, (t, u, v) ∈ [ξj−1, ξj ]× [b1, b1/δ1]× [−d1, d1];
A6) f(t, u, v) < a1/N1, (t, u, v) ∈ [0, 1]× [0, a1]× [−d1, d1].
Theorem 4.4. Under assumption A4)− A6) and C1), C3), (C4), the boundary value
problem (1.10)-(1.12) has at least three positive solutions x1, x2, x3 satisfying

max{ max
t∈[−1,1]\{0}

|x′i(t)|,max{x′(i)+(0), x′(i)−(0)}} ≤ d1 for i = 1, 2, 3;

b1 < min
t∈[ξj−1,ξj ]

|x1(t)|; a1 < max
0≤t≤1

|x2(t)|

with
min

t∈[ξj−1,ξj ]
|x2(t)| < b1; max

0≤t≤1
|x3(t)| < a1. (4.5)

Proof. Define an operator T1 : P1 → P1 by

(T1x)(t) =


F1(t) −1 ≤ t ≤ 0∫ 1

0

G1(t, s)f(s, x(s), x′(s− 1))ds 0 < t < 1

It is well known that the operator T1 is completely continuous and x(t) is a solution
of problem (1.10)-(1.12) if and only if it solves operator equation

x(t) = (T1)x(t). (4.6)

If x ∈ P1(γ1, d1), when t ∈ [−1, 0], γ1(T1x) ≤ d1 obviously. When t ∈ [0, 1], it is easy
to see that f(t, x(t), x′(t− 1)) ≤ d1/M1. Then

γ(T1x) = max
0<t<1

|(T1x)′(t)| = max{|(Tx)′(0)|, |(Tx)′(1)|}

≤ max{
∫ 1

0

|∂G1(t, s)

∂t
|t=0ds,

∫ 1

0

|∂G1(t, s)

∂t
|t=1ds}

d1
M1
≤ d1
M1

M1 = d1.
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Hence T1 : P1(γ1, d1)→ P1(γ1, d1).
From the proof of Theorem 3.4 and the definitions of M1,m1, N1, all the conditions

of lemma 1 are satisfied obviously. Therefore, problem (1.10)-(1.12) has at least three
positive solutions x1, x2, x3 and (4.5) is satisfied.

Remark 4.5. To apply Lemma 2.5,we only need that T1 : P1(γ1, d1) → P1(γ1, d1),
therefore condition C1) can be substituted with a weaker condition, namely
H2) f1 ∈ C([0, 1]× [0, (β1 + 1)d1]× [−d1, d1], [0,+∞)).

5. Example

Finally we present an example to check our main results. Consider the boundary
value problem

x′′(t) + f(t, x(t), x′(t− 1)) = 0, 0 < t < 1, (5.1)

x(t) = F (t) = 7 + 6t− t2, −1 ≤ t ≤ 0, (5.2)

x(0) = x(
1

3
), x(1) =

1

2
x(

2

3
), (5.3)

where

f(t, u, v) =


1

5
et + u3 +

1

5
(
v

3001
)3 0 ≤ u ≤ 5

1

5
et + 125 +

1

5
(
v

3001
)3 u > 5

Choose a = 1, b = 4, d = 3000, η =
1

3
, ξ =

2

3
, we note that δ =

1

3
, l =

4

3
and the

Green’s function

G(t, s) =



s(4− 3t) s ≤ t, 0 ≤ s ≤ 1

3

5s− t− 3st t ≤ s, 0 ≤ s ≤ 1

3

4

3
− t s ≤ t, 1

3
≤ s ≤ 2

3

4

3
− s t ≤ s, 1

3
≤ s ≤ 2

3

2− s− t s ≤ t, 2

3
≤ s ≤ 1

2− 2s t ≤ s, 2

3
≤ s ≤ 1

Conditions H1), C2), C4) hold and F (−1) = 0 obviously. By the definitions above, we
get

M = max{
∫ 1

0

|∂G(t, s)

∂t
|t=0ds,

∫ 1

0

|∂G(t, s)

∂t
|t=1ds} =

5

6
,

m = min{
∫ 2

3

1
3

G(
1

3
, s)ds,

∫ 2
3

1
3

G(
2

3
, s)ds} =

2

9
,
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N = max
0≤t≤1

∫ 1

0

G(t, s)ds =
37

72
, λ = min{m

M
, δl} =

4

15
.

Consequently f(t, u, v) satisfy

f(t, u, v) ≤ 3600, (t, u, v) ∈ [0, 1]× [0, 4000]× [−3000, 3000];

f(t, u, v) ≥ 18, (t, u, v) ∈ [
1

3
,

2

3
]× [4, 12]× [−3000, 3000];

f(t, u, v) ≤ 72

37
, (t, u, v) ∈ [0, 1]× [0, 1]× [−3000, 3000].

Then all assumptions of Theorem 3.4 are satisfied. Thus problem (5.1) − (5.2) has
three positive solutions x1, x2, x3 satisfying

max{ max
t∈[−1,1]\{0}

|x′i(t)|,max{x′(i)+(0), x′(i)−(0)}} ≤ 3000 for i = 1, 2, 3;

4 < min
t∈[ 13 ,

2
3 ]
|x1(t)|; 1 < max

0≤t≤1
|x2(t)|

with
min
t∈[ 13 ,

2
3 ]
|x2(t)| < 4; max

0≤t≤1
|x3(t)| < 1.

Remark 5.1. The early results about positive solutions of boundary value problems,
to author’s best knowledge, are not applicable to this four-point boundary value
problem of functional differential equation.
Remark 5.2. If µ = 0, β = 0, or β1 = 0, αi = 0, i = 1, 2, · · · ,m − 2, Theorem 3.4
or 4.4 gives Theorem 3.2 of [11]. So our main results extend the results of [6], [11].
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