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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H and A : C → H a nonlinear operator.
A is said to be

(1) monotone if 〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ C,
(2) η-strongly monotone if there exists a constant η > 0 such that

〈Ax−Ay, x− y〉 ≥ η‖x− y‖2 for all x, y ∈ C,

(3) ν-inverse strongly monotone (ν-ism) if there exists a constant ν > 0 such that

〈Ax−Ay, x− y〉 ≥ ν‖Ax−Ay‖2 for all x, y ∈ C,

(4) L-Lipschitzian if there exists a constant L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖2 for all x, y ∈ C.

An L-Lipschitzian operator is called contraction (respectively, nonexpansive) if L < 1
(respectively, L = 1).
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The variational inequality V I(C,A) is formulated as finding a point z ∈ C such
that 〈Az, z − v〉 ≥ 0 for all v ∈ C. The set of solutions of the variational inequality
V I(C,A) is denoted by Ω(C,A), i.e.,

Ω(C,A) = {z ∈ C : 〈Az, z − v〉 ≥ 0 for all v ∈ C}.
We denote by F (T ) the set of fixed points of mapping T : C → C.

The variational inequalities were initially studied by Stampachhia [13, 15] and
ever since have been widely studied. Such a problem is connected with the convex
minimization problem, the complementarity problem, the problem of finding a point
u ∈ H satisfying 0 = Au and so on. The existence and approximation of solutions
are important aspects of study of variational inequalities. The variational inequality
problem V I(C,A) is equivalent to the fixed point problem:

find x∗ ∈ C such that x∗ = PC(I − µA)x∗,

where µ > 0 is a constant and PC is the metric projection from H onto C. It is
well known that if A is κ-Lipschitzian and ν-strongly monotone, then the operator
Fµx := PC(I−µA)x is a contraction on C provided that 0 < µ < 2η/κ2. In this case,
the Banach contraction principle guarantees that V I(C,A) has a unique solution x∗

and the sequence of the Picard iteration process, given by,

xn+1 = PC(I − µA)xn, n ∈ N (1.1)

converges strongly to x∗. This method is called the projected gradient method (PGM)
([33]). It has been used widely in many practical problems, due partially to its fast
convergence.

Now our concern is the following:

Qusetion 1.1. Is it possible to develop an iterative sequence whose rate of convergence
is faster than the Picard iteration process (1.1)?

Construction of fixed points of nonexpansive operators is an important subject
in the theory of nonexpansive operators and its applications in a number of applied
areas, in particular, in image recovery and signal processing (see, e.g.,[7, 12, 31, 32]).
For instance, split feasibility problem (SFP) is

to find a point x ∈ C such that Ax ∈ Q, (1.2)

here C is a closed convex subset of a Hilbert space H1, Q is a closed convex subset of
another Hilbert space H2 and A : H1 → H2 is a bounded linear operator. The SFP
is said to be consistent if (1.2) has a solution. It is easy to see that SFP is consistent
if and only if the following fixed point problem has a solution:

find x ∈ C such that x = PC(I − γA∗(I − PQ)A)x, (1.3)

where PC and PQ are the orthogonal projections onto C and Q, respectively; γ >
0, and A∗ is the adjoint of A. Note that for sufficient small γ > 0, the operator
PC(I − γA∗(I − PQ)A) in operator equation (1.3) is nonexpansive.

It is well known that the sequence {Tnx} of iterates of nonexpansive operator T
at a point x ∈ C may, in general, not behave well. This means that it may not
converge (even in the weak topology). One way to overcome this difficulty is to use
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the Krasnoselskii-Mann (KM) iteration method [7, 10] that produces a sequence {xn}
via the recursive manner:

xn+1 = (1− αn)xn + αnTxn for all n ∈ N,

where the initial guess x1 ∈ C is chosen arbitrarily and {αn} is a real sequence in
[0,1]. It is worth noting that the KM iteration process is well known for finding fixed
points of nonexpansive operators (see, [7]) and it is further developed in a general
context in [30].

Recently, Agarwal, O’Regan and Sahu [2] have introduced the S-iteration process
as follows: Let X be a normed linear space, C a nonempty convex subset of X and
T : C → C an operator. Then, for arbitrary x1 ∈ C, the S-iteration process is defined
by

(S)

{
xn+1 = (1− αn)Txn + αnTyn,
yn = (1− βn)xn + βnTxn, n ∈ N,

where {αn} and {βn} are real sequences in (0,1) satisfying the condition:
∞∑
n=1

αnβn(1− βn) =∞. (1.4)

We remark that the S-iteration process is faster than the Picard iteration process
for contraction operators (see, Theorem 3.5). One of the purposes of this paper is to
apply the S-iteration process for finding solutions of SFP(1.2).

On the other hand, the strong convergence of the path {xt = tu + (1 − t)Txt :
t ∈ (0, 1)} as t → 0+ for nonexpansive operator T on a bounded C was proved in
a Hilbert space independently by Browder [6] and Halpern [11] in 1967 and in a
uniformly smooth Banach space by Reich [16] in 1980. For a sequence {αn} of real
numbers in [0, 1] and an arbitrary u ∈ C, let the sequence {xn} in C be iteratively
defined by x1 ∈ C,

xn+1 = αnu+ (1− αn)Txn for all n ∈ N. (1.5)

The explicit formula (1.5) was first introduced and its strong convergence to fixed
points of nonexpansive operator T was proved in 1967 by Halpern [11] in the frame-
work of Hilbert space with the choice αn = 1/nθ, where θ ∈ (0, 1). The strong
convergence of the explicit formula (1.5) to fixed point of nonexpansive operator T
was further studied by Cho, Kang and Zhou [9]; Lions [14]; Sahu, Kang and Liu [19];
Shioji and Takahashi [24]; Wittmann [25]; Wong, Sahu and Yao [26]; Xu [28, 29] un-
der certain assumptions on iteration parameter αn. One can unify these convergence
results by a general theorem as follows:

Theorem 1.2. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, C a nonempty closed convex subset of X and T : C → C a nonexpansive
operator with F (T ) 6= ∅. Suppose that C has the fixed-point property for nonexpansive
mappings. For given u, x1 ∈ C, let {xn} be a sequence in C defined by (1.5). Suppose
the sequence {αn} ⊂ (0, 1) satisfies the conditions:

(C1) limn→∞ αn = 0,
(C2)

∑∞
n=1 αn =∞.
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In addition, suppose {αn} satisfies one of the following conditions:

(C3) limn→∞ |αn − αn+1|/α2
n+1 = 0,

(C4)
∑∞
n=1 |αn − αn+1| <∞,

(C5) {αn} is decreasing
(C6) limn→∞ |αn − αn+1|/αn+1 = 0.

Then {xn} converges strongly to RF (T )u, where RF (T ) is the sunny nonexpansive
retraction from C onto F (T ).

Recently, Suzuki [20] (see also Chidume and Chidume [8]) gave some variants on
(1.5) as below:

xn+1 = αnu+ (1− αn)T ((1− λ)xn + λTxn) for all n ∈ N (1.6)

and they proved that the conditions (C1) and (C2) on iteration parameter αn are
sufficient for strong convergence of iteration process (1.6).

The purpose of this paper is to further analyze the S-iteration process for dif-
ferent classes of nonlinear operators and give applications of investigated results in
constrained minimization problems and split feasibility problems. The paper is or-
ganized as follows: The next section includes useful mathematical formulations and
facts. In section 3, we compare the rate of convergence of the S-iteration process with
the Picard and KM iteration processes. It is shown, theoretically as well as numeri-
cally, that the S-iteration process is faster than the Picard and KM iteration processes
for contraction operators. An affirmative answer of Question 1.1 is also given in this
section. Some properties of the S-iteration process for nonexpansive operators are
given in section 4. In section 5, a new iterative algorithm, different from Suzuki [20],
is designed suxh that it converges strongly to an element of the solution set. The last
section contains applications our results investigated in sections 4 and 5 for finding
solutions of constrained minimization problems and split feasibility problems.

2. Preliminaries

We use SX to denote the unit sphere SX = {x ∈ X : ‖x‖ = 1} on Banach space
X. A Banach space X is said to be strictly convex if

x, y ∈ SX with x 6= y ⇒ ‖(1− λ)x+ λy‖ < 1 for all λ ∈ (0, 1).

In a strictly convex Banach space X, we have that if ‖x‖ = ‖y‖ = ‖αx + (1 − α)y‖
for x, y ∈ X and α ∈ (0, 1), then x = y (see, e.g., [1, 21]).

Recall that a Banach space X is said to be smooth provided the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x and y in SX = {x ∈ X : ‖x‖ = 1}. In this case, the norm of X is
said to be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable if
for each y ∈ SX , this limit is attained uniformly for x ∈ SX . It is well known that
every uniformly smooth space (e.g., Lp space, 1 < p < ∞) has uniformly Gâteaux
differentiable norm (see e.g., [1]).
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A Banach space X is said to satisfy Opial condition (see [1]) if for each sequence
{xn} in X which converges weakly to a point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ for all y ∈ X with y 6= x.

Let X be an arbitrary real normed space with dual space X∗. We denote by J the
normalized duality mapping from X into 2X

∗
defined by

J(x) := {f∗ ∈ X∗ : 〈x, f∗〉 = ||x||2 = ||f∗||2}, x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. Then for each x, y ∈ X, there
exists j(x+ y) ∈ J(x+ y) such that

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉.

It is well known that J is single-valued if and only if X is smooth (see, [1]).
A subset C of a Banach space X is called a retract of X if there exists a continuous

mapping P from X onto C such that Px = x for all x in C. We call such P a retraction
of X onto C. It follows that if a mapping P is a retraction, then Py = y for all y in
the range of P . A retraction P is said to be sunny if P (Px + t(x − Px)) = Px for
each x in X and t ≥ 0. If a sunny retraction P is also nonexpansive, then C is said
to be a sunny nonexpansive retract of X.

The following lemmas will be needed in the sequel for the proof of our main results:

Lemma 2.1. Let X be a smooth Banach space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉 for all x, y ∈ X.

Lemma 2.2. (Xu [28, Lemma 2.5]). Let {an} be a sequence of nonnegative real
numbers satisfying:

an+1 ≤ (1− tn)an + tnbn for all n ∈ N,

where {bn} and {tn} are sequences of real numbers which satisfy the conditions:

(i) {tn} ⊂ [0, 1] and
∞∑
n=1

tn =∞,

(ii) lim supn→∞ bn = 0.

Then limn→∞ an = 0.

Lemma 2.3. (Takahashi and Ueda [22] and Wong, Sahu and Yao [26, Theorem 3.6]).
Let X be a reflexive Banach space whose norm is uniformly Gâteaux differentiable,
C a nonempty closed convex subset of X and T : C → C a nonexpansive operator
with F (T ) 6= ∅. Suppose that every closed convex bounded subset of C has fixed point
property for nonexpansive self-operators. Then F(T) is the sunny nonexpansive retract
of C. Moreover, if u ∈ C and zt be the unique point in C defined by

zt = tu+ (1− t)Tzt, t ∈ (0, 1), (2.1)

then {zt} converges strongly to RF (T )(u) as t → 0+, where RF (T ) is the sunny non-
expansive retraction from C onto F (T ).
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Lemma 2.4. (Wong, Sahu and Yao [26, Lemma 2.12]). Let X be a Banach space
with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of
X, f : C → C a continuous operator, T : C → C a nonexpansive operator and {xn}
a bounded sequence in C such that limn→∞ ‖xn − Txn‖ = 0. Suppose {zt} is a path
in C defined by zt = tfzt + (1− t)Tzt, t ∈ (0, 1) such that zt → z as t→ 0+. Then

lim sup
n→∞

〈fz − z, J(xn − z)〉 ≤ 0.

Lemma 2.5. (Agarwal, O’Regan and Sahu [1, Lemma 6.7.2]). Let X be a normed
space, C a nonempty convex subset of X and T : C → C a nonexpansive operator. If
{xn} is the iterative process defined by (S), then lim

n→∞
‖xn − Txn‖ exists.

Let X be a normed linear space, C a nonempty convex subset of X, T : C → C
an operator with F (T ) 6= ∅ and {xn} a sequence in C. We say that {xn} has

(D1) limit existence property (in short, LE property) if lim
n→∞

‖xn − p‖ exists for all

p ∈ F (T ),
(D2) approximate fixed point property (in short, AF point property) if lim

n→∞
‖xn −

Txn‖ = 0.
(D3) LEAF point property if {xn} has both LE property and AF point property.

It is not difficult to see that the Krasnoselskii-Mann (KM) iteration method and S-
iteration method enjoy LEAF point property under suitable conditions of iteration
parameters in Banach spaces (cf. [1, 17, 23]).

The following proposition shows that the LEAF point property plays an important
role in approximation of fixed points of nonlinear operators.

Lemma 2.6. (Agarwal, O’Regan and Sahu [2, Lemma 2.10]). Let X be a reflexive
Banach space satisfying the Opial condition, C a nonempty closed convex subset of X
and T : C → X a operator such that

(i) F (T ) 6= ∅,
(ii) I − T is demiclosed at zero.

Let {xn} be a sequence in C satisfying the following properties:

(D1) limit existence property: lim
n→∞

‖xn − p‖ exists for all p ∈ F (T );

(D2) approximate fixed point property: lim
n→∞

‖xn − Txn‖ = 0.

Then {xn} converges weakly to a fixed point of T .

3. Comparison of three fixed point iteration processes

In this section, we introduce S-operator and discuss its properties and then compare
the rate of convergence of the S-iteration process with the Picard and KM iteration
processes for contraction operators.

First, we introduce notion of S-operator. Let C be a nonempty convex subset of a
vector space X and T : C → C an operator. Then

(1) an operator Gα,β,T : C → C is said to be an S-operator generated by α ∈
(0, 1], β ∈ (0, 1) and T if

Gα,β,T = (1− α)T + αT ((1− β)I + βT ),
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(2) an operator Gβ,T : C → C is said to be an S-operator generated by β ∈ (0, 1)
and T if

Gβ,T = T ((1− β)I + βT ).

It is not difficult to see that Gα,β,T is contraction with contractivity factor k(1−αβ(1−
k)) if T is a contraction with contractivity factor k and Gα,β,T is nonexpansive if T
is a nonexpansive.

Proposition 3.1. Let C be a nonempty closed convex subset of a Banach space X
and T : C → C a contraction operator. Assume that α ∈ (0, 1] and β ∈ (0, 1). If
Gα,β,T is an S-operator generated by α, β and T , then F (Gα,β,T ) = F (T ).

Corollary 3.2. Let C be a nonempty closed convex subset of a Banach space X and
T : C → C a contraction operator. Assume that λ ∈ (0, 1). If Gλ,T is an S-operator
generated by λ and T , then F (Gλ,T ) = F (T ).

Proposition 3.3. Let C be a nonempty closed convex subset of a strictly convex
Banach space X and T : C → C a nonexpansive operator with F (T ) 6= ∅. Assume
that α ∈ (0, 1] and β ∈ (0, 1). If Gα,β,T is an S-operator generated by α, β and T ,
then F (T ) = F (Gα,β,T ).

Proof. Set Gα,β,T := G. Note F (T ) ⊆ F (G). Let z ∈ F (G) and v ∈ F (T ). Observe
that

‖z − v‖ = ‖(1− α)Tz + αT ((1− β)I + βT )z − v‖
≤ (1− α)‖Tz − v‖+ α‖T ((1− β)I + βT )z − v‖
≤ (1− α)‖z − v‖+ α‖(1− β)z + βTz − v‖
≤ (1− α)‖z − v‖+ α((1− β)‖z − v‖+ β‖Tz − v‖)
= (1− αβ)‖z − v‖+ αβ‖Tz − v‖
≤ ‖z − v‖,

which implies that

||z−v|| = ||Tz−v|| = ||T ((1−β)z+βTz)−v|| = ‖(1−α)Tz+αT ((1−β)z+βTz)−v||.
Since X is a strictly convex, it follows that Tz = z. �

Motivated by the S-operators generated by a sequence {λn} of real numbers in
(0,1) and operator T , we introduce the normal S-iteration process as follows:

Let X be a normed linear space, C a nonempty convex subset of X and T : C → C
an operator. Then, for arbitrary x1 ∈ C, the normal S-iteration process is defined by

xn+1 = Snxn = T [(1− λn)xn + λnTxn], n ∈ N,

where {Sn} is a sequence of S-operators generated by a sequence {λn} of real numbers
in (0,1) and operator T .

In order to compare two fixed point iteration procedures {un} and {vn} that con-
verge to a certain fixed point p of a given operator T, Rhoades [18] considered that
{un} is better than {vn} if

||un − p|| ≤ ||vn − p|| for all n ∈ N.
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Berinde [5] introduced a different formulation from that of Rhoades as below:

Definition 3.4. Let {an} and {bn} be two sequences of real numbers that converge
to a and b, respectively, and assume that there exists

l = lim
n→∞

|an − a|
|bn − b|

.

(a) If l = 0, then it can be said that {an} converges to a faster than {bn} converges
to b.

(b) If 0 < l < ∞, then it can be said that {an} and {bn} have the same rate of
convergence.

Suppose that for two fixed point iteration procedures {un} and {vn}, both con-
verging to the same fixed point p, the error estimates

||un − p|| ≤ an for all n ∈ N, (3.1)

||vn − p|| ≤ bn for all n ∈ N, (3.2)

are available, where {an} and {bn} are two sequences of positive numbers (converging
to zero). Then, in view of Definition 3.4, we will adopt the following concept.

Definition 3.5. (Berinde [5]). Let {un} and {vn} be two fixed point iteration proce-
dures that converge to the same fixed point p and satisfy (3.1) and (3.2), respectively.
If {an} converges faster than {bn}, then it can be said that {un} converges faster
than {vn} to p.

Theorem 3.6. Let C be a nonempty closed convex subset of a Banach space X and
T : C → C a contraction operator with contractivity factor k ∈ [0, 1) and fixed point
x∗. Let {αn} and {βn} be two real sequences in [0, 1] such that α ≤ αn ≤ 1 and
β ≤ βn < 1 for all n ∈ N and for some α, β > 0. For given u1 = v1 = w1 ∈ C, define
sequences {un} {vn} and {wn} in C as follows:

S-iteration process: un+1 = (1− αn)Tun + αnTyn,

yn = (1− βn)un + βnTun, n ∈ N.
Picard iteration : vn+1 = Tvn, n ∈ N.

Mann iteration process : wn+1 = (1− βn)wn + βnTwn, n ∈ N.
Then we have the following:

(a) ‖un+1 − x∗‖ ≤ kn[1− (1− k)αβ]n‖u1 − x∗‖ for all n ∈ N.

(b) ‖vn+1 − x∗‖ ≤ kn‖v1 − x∗‖ for all n ∈ N.

(c) ‖wn+1 − x∗‖ ≤ [1− (1− k)β]n‖w1 − x∗‖ for all n ∈ N.

Moreover, the S-iteration process is faster than the Picard and Mann iteration
processes.

Proof. (a) By the definition of the S-iteration process, we have

‖un+1 − x∗‖ ≤ k[(1− αn)‖un − x∗‖+ αn‖yn − x∗‖]
≤ k[(1− αn)‖un − x∗‖+ αn((1− βn)‖un − x∗‖+ βn‖Tun − x∗‖)]
≤ k[1− (1− k)αnβn]‖un − x∗‖
≤ an,



APPLICATIONS OF THE S-ITERATION PROCESS 195

where an = kn[1− (1− k)αβ]n‖u1 − x∗‖.
(b) Note

‖vn+1 − x∗‖ ≤ k‖vn − x∗‖ ≤ bn,

where bn = kn‖v1 − x∗‖.
(b) By the definition of the Mann iteration process, we have

‖wn+1 − x∗‖ ≤ (1− βn)‖wn − x∗‖+ βn‖Twn − x∗‖]
≤ [1− (1− k)βn]‖wn − x∗‖
≤ cn,

where cn = [1− (1− k)β]n‖w1 − x∗‖.
It is easy to see that limn→∞

an
bn

= 0, it follows from Definition 3.5 that the S-
iteration process is faster than the Picard iteration process. Similarly, one can show
that the normal S-iteration process is faster than the Mann iteration process. �

Examples 3.7. Let X = R and C = [0,∞). Let T : C → C be an operator defined
by Tx = (3x + 18)1/3 for all x ∈ C. It is easy to see that T is a contraction on C
with contractivity factor k = 18−1/3 and x∗ = 3. Choose u1 = v1 = w1 ∈ C and
αn = βn = 1/2, the corresponding S-iteration process, Picard iteration process and
KM iteration process are given by {un}, {vn} and {wn}, respectively.

Table 1. : Comparison of S-iteration, Picard iteration and KM
iteration processes

no. of iteration S-iteration Picard iteration Mann iteration
1 1000 1000 1000
2 12.99923955 14.4512832 507.2256416
3 3.679603367 3.94409414 259.3864187
4 3.057482809 3.101431265 134.3273583
5 3.004958405 3.011228065 70.91103158
6 3.000428435 3.001247044 38.52222997
7 3.000037025 3.000138554 21.81696909
8 3.0000032 3.000015395 13.09346233
9 3.000000277 3.000001711 8.474131743

The sequences {un}, {vn} and {wn} converge to x∗ = 3. The comparison of the
S-iteration process with the Picard and KM iteration processes is given for the first
9 iterates in Table 1 and for initial value x1 = 1000.

In the light of Theorem 3.6, we have the following sharper results which contain
iterative sequences faster than the sequence defined by (1.1).

Theorem 3.8. Let C be a nonempty closed convex subset of a Hilbert space H and
A : C → H a κ-Lipschitzian and η-strongly monotone operator. Let {αn} and {βn}
be two sequences in (0,1) such that a ≤ αn and β ≤ βn for all n ∈ N and for some



196 D. R. SAHU

α, β > 0. Then for µ ∈ (0, 2η/κ2), the iterative sequence {xn} generated from x1 ∈ C,
and defined by{

xn+1 = (1− αn)PC(I − µA)xn + αnPC(I − µA)yn,
yn = (1− βn)xn + βnPC(I − µA)xn, n ∈ N (3.3)

converges strongly to x∗ ∈ Ω(C,A).

Remark 3.9. Theorem 3.6 showes that the rate of convergence of sequence {xn}
defined by (3.3) is faster than that the rate of convergence of the Picard iterative
sequence defined by (1.1). Therefore, Theorem 3.8 provides an affirmative answer to
Question 1.1.

Theorem 3.10. Let C be a nonempty closed convex subset of a Hilbert space H
and A : C → H a κ-Lipschitzian and η-strongly monotone operator. Let {λn} be a
sequence in (0,1) such that λ ≤ λn for all n ∈ N and for some λ > 0. Then for
µ ∈ (0, 2η/κ2), the iterative sequence {xn} generated from x1 ∈ C, and defined by

xn+1 = PC(I − µA)[(1− λn)xn + λnPC(I − µA)xn], n ∈ N

converges strongly to x∗ ∈ Ω.

4. Nonexpansive operators and S-iteration process

First, we give an important characterization of the S-iteration process for nonex-
pansive operators in a uniformly convex Banach space which is slightly different from
Lemma 2.5.

Theorem 4.1. [1, Theorem 6.7.3]. Let C be a nonempty closed convex (not necessary
bounded) subset of a uniformly convex Banach space X and T : C → C a nonexpansive
mapping. Let {xn} be the sequence defined by (S) with the restriction:

lim
n→∞

αnβn(1− αn) exists and lim
n→∞

αnβn(1− βn) 6= 0. (4.1)

Then, for arbitrary initial value x1 ∈ C, {‖xn − Txn‖} converges to some constant
rC(T ), which is independent of the choice of the initial value x1 ∈ C.

Remark 4.2. In Theorem 4.1, the condition (4.1) can be replaced by (1.4).

By using the LEAF point property of S-iteration process, one can establish a con-
vergence theorem for finding fixed points of nonexpansive operators. Indeed, applying
Lemma 2.6, we have

Theorem 4.3. [1, Theorem 6.7.4]. Let X a real uniformly convex Banach space
with a Fréchet differentiable norm or which satisfies the Opial condition. Let C be
a nonempty closed convex (not necessary bounded) subset of and T : C → C a non-
expansive mapping with F (T ) 6= ∅. Let {xn} be the sequence defined by (S) with the
restriction (4.1). Then {xn} converges weakly to a fixed point of T .

Next, we show that {xn} generated by the S-iteration process is an unbounded
sequence if T has no fixed points.
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Theorem 4.4. Let H be a Hilbert space and T : H → H a nonexpansive operator.
Let {xn} be the sequence defined by (S) with the restriction (4.1). If F (T ) = ∅, then
{xn} is unbounded.

Proof. Let F (T ) = ∅. Suppose, for contradiction, that {xn} is bounded. Then there
exists a constant K > 0 such that ‖xn‖ ≤ K for all n ∈ N. By the nonexpansiveness
of T , we have

‖Txn‖ ≤ ‖Txn − Tx1‖+ ‖Tx1‖
≤ ‖xn − x1‖+ ‖Tx1‖
≤ ‖Tx1‖+ 2K for all n ∈ N.

Let C := {x ∈ H : ‖Tx‖ ≤ ‖Tx1‖+ 2K}. Note that C is a closed convex bounded set

of H, there exists a metric projection operator PC from H onto C. Define T̂ = PCT.

It is not hard to check that T̂ is nonexpansive and T̂ xn = Txn for all n ∈ N. Thus,

iterative sequence {xn} of (S) can be generated by the nonexpansive operator T̂ as
below: {

xn+1 = (1− αn)T̂ xn + αnT̂ yn,

yn = (1− βn)xn + βnT̂ xn, n ∈ N.

It follows from Theorem 4.3 that {xn} converges weakly to x∗, a fixed point of T̂ .
Note that ‖xn‖ ≤ K, we have ‖x∗‖ ≤ K. Observe that

‖T̂ x∗‖ ≤ ‖T̂ x∗ − T̂ x1‖+ ‖T̂ x1‖
≤ ‖x∗ − x1‖+ ‖T̂ x1‖
≤ ‖T̂ x1‖+ 2K for all n ∈ N.

It shows that x∗ ∈ C. Therefore, x∗ = T̂ x∗ = PCTx
∗ = Tx∗, i.e., x∗ ∈ F (T ), a

contradiction. �

5. Strong convergence of S-iteration process of Helpern type

Motivated by works of Chidume and Chidume [8] and Suzuki [20], we propose the
following algorithms:

Algorithm 5.1. Let C be a nonempty closed convex subset of a Banach space X and
T : C → C an operator. Given u, x1 ∈ C, a sequence {xn} in C is constructed as
follows: {

xn+1 = (1− αn)Txn + αnTyn,
yn = (1− βn)xn + βnu, n ∈ N, (5.1)

where {αn} and {βn} are two sequences in (0, 1] satisfying the following condition:

(C1) limn→∞ βn = 0, limn→∞
αn

αn+1
= limn→∞

βn

βn+1
= 1 and

∑∞
n=1 αnβn =∞.

The iterative sequence {xn} defined by (5.1) is called S-iteration process of Halpern
type.
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Algorithm 5.2. Let C be a nonempty closed convex subset of a Banach space X and
T : C → C an operator. Given u, x1 ∈ C, a sequence {xn} in C is constructed as
follows: {

xn+1 = (1− λ)Txn + λTyn,
yn = (1− βn)xn + βnu, n ∈ N, (5.2)

where λ ∈ (0, 1] and {βn} is a sequence in (0, 1] satisfying the following condition:

(C2) limn→∞ βn = 0, limn→∞
βn

βn+1
= 1 and

∑∞
n=1 βn =∞.

Our Algorithms 5.1 ∼ 5.2 are independent from (1.5) and (1.6). Some basic prop-
erties of Algorithm 5.1 are detailed below:

Proposition 5.3. Let C be a nonempty closed convex subset of a Banach space X
and T : C → C a nonexpansive operator such that F (T ) 6= ∅. For given u, x1 ∈ C,
let {xn} be a sequence in C generated by Algorithm 5.1. Then we have the following:
(a) {xn} and {yn} are bounded.
(b) lim

n→∞
||xn − yn|| = lim

n→∞
||xn+1 − xn|| = lim

n→∞
||xn − Txn|| = lim

n→∞
||yn − Tyn|| = 0.

Proof. (a) Suppose p ∈ F (T ). From (5.1), we have

‖yn − p‖ ≤ (1− βn)‖xn − p‖+ βn‖u− p‖. (5.3)

Invoking (5.3), we have

‖xn+1 − p‖ = ‖(1− αn)(Txn − p) + αn(Tyn − p)‖
≤ (1− αn)‖xn − p‖+ αn‖yn − p‖
≤ (1− αnβn)‖xn − p‖+ αnβn‖u− p‖
≤ max{‖xn − p‖, ‖u− p‖}
...

≤ max{‖x1 − p‖, ‖u− p‖}.

Thus, {xn} is bounded and hence, from (5.3), {yn} is bounded.

(b) Note that the condition limn→∞ βn = 0 implies that

‖yn − xn‖ = βn‖xn − u‖ → 0 as n→∞.

Further, we have

‖xn+1 − Txn‖ = ‖Tyn − Txn‖ ≤ ‖yn − xn‖ → 0 as n→∞.

Observe that

||yn − yn−1|| = ||(1− βn)xn + βnu− (1− βn−1)xn−1 − βn−1u‖
= ||(1− βn)xn − (1− βn)xn−1 + (1− βn)xn−1

−(1− βn−1)xn−1 + (βn − βn−1)u‖
≤ (1− βn)||xn − xn−1‖+ |βn − βn−1|(‖u‖+ ‖xn−1‖)
≤ (1− βn)||xn − xn−1‖+ |βn − βn−1|K1
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for some constant K1 > 0. From (5.1), we have

||xn+1 − xn|| = ||(1− αn)Txn + αnTyn − (1− αn−1)Txn−1 − αn−1Tyn−1||
= ||(1− αn)Txn − (1− αn)Txn−1 + (1− αn)Txn−1 + αnTyn

− αnTyn−1 + αnTyn−1 − (1− αn−1)Txn−1 − αn−1Tyn−1||
≤ (1− αn)||xn − xn−1‖+ αn‖yn − yn−1‖
+ |αn − αn−1| ‖Txn−1 − Tyn−1||
≤ (1− αn)||xn − xn−1‖+ αn‖yn − yn−1‖+ |αn − αn−1| ‖xn−1 − yn−1||
= (1− αn)||xn − xn−1‖+ αn[(1− βn)||xn − xn−1‖+ |βn − βn−1|K1]

+ |αn − αn−1| ‖xn−1 − yn−1||
≤ (1− αnβn)||xn − xn−1‖

+ αnβn

(∣∣∣∣1− βn−1
βn

∣∣∣∣K1 +

∣∣∣∣1− αn−1
αn

∣∣∣∣βn−1βn
K2

)
for some constant K2 > 0. From condition (C1), we have limn→∞

∣∣∣∣1− αn−1

αn

∣∣∣∣ = 0 and

limn→∞

∣∣∣∣1− βn−1

βn

∣∣∣∣ = 0. It follows from Lemma 2.2 that ‖xn+1 − xn‖ → 0 as n→∞.

Hence

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖ → 0 as n→∞.
Moreover,

||yn − Tyn|| ≤ ||yn − xn||+ ||xn − Txn||+ ||Txn − Tyn||
≤ 2||yn − xn||+ ||xn − Txn|| → 0 as n→∞.

�

Now we are in a position to establish the main strong convergence theorems of this
section.

Theorem 5.4. Let X be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex subset of X and T : C → C a
nonexpansive operator with F (T ) 6= ∅. For given u, x1 ∈ C, let {xn} be a sequence
in C generated by Algorithm 5.1. Then {xn} converges strongly to RF (T )(u), where
RF (T ) is the sunny nonexpansive retraction from C onto F (T ).

Proof. Invoking Lemma 2.3, we see that the path {zt} defined by (2.1) for t ∈ (0, 1)
is strongly convergent to RF (T )(u) as t → 0+. Set z := RF (T )(u) = limt→0+ zt. By
Lemma 2.4, we have

lim sup
n→∞

〈u− z, J(yn − z)〉 ≤ 0.

Applying Lemma 2.1, we get

‖yn − z‖2 = ‖(1− βn)(xn − z) + βn(u− z)‖2

≤ (1− βn)‖xn − z‖2 + 2βn〈u− z, J(yn − z)〉.
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Now since X is uniformly convex, by [27], there exists a continuous strictly convex
function ϕ : R+ → R+ such that ϕ(0) = 0 and

‖λx+ (1− λ)y‖2 = ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ(‖x− y‖) (5.4)

for all x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r and for all λ ∈ [0, 1] and for some r > 0.
Choose r > 0 large enough so that ‖Txn − z‖ ≤ r and ‖Tyn − z‖ ≤ r for all n ∈ N.
From (5.4), we have

‖xn+1 − z‖2 = ‖(1− αn)(Txn − z) + αn(Tyn − z)‖2

≤ (1− αn)‖Txn − z‖2 + αn‖Tyn − z‖2

≤ (1− αn)‖xn − z‖2 + αn‖yn − z‖2

≤ (1− αnβn)‖xn − z‖2 + 2αnβn〈u− z, J(yn − z)〉
≤ (1− αnβn)‖xn − z‖2 + λnσn,

where λn := αnβn and σn := 2〈u − z, J(yn − z)〉. Since
∑∞
n=1 λn = ∞ and

lim supn→∞ σn ≤ 0, we conclude from Lemma 2.2 that {xn} converges strongly to
z. �

Corollary 5.5. Let X be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex subset of X and T : C → C a
nonexpansive operator with F (T ) 6= ∅. For given u, x1 ∈ C, let {xn} be a sequence in
C generated by Algorithm 5.2. Then {xn} converges strongly to RF (T )(u).

Proof. Suppose αn = λ for all n ∈ N. Then the condition (C1) is satisfied and hence
Corollary 5.5 follows from Theorem 5.4. �

We now close this section with the following basic convergence theorem.

Theorem 5.6. Let X be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex subset of X and T : C → C a
nonexpansive operator with F (T ) 6= ∅. For given u, x1 ∈ C, let {xn} be a sequence in
C generated by

xn+1 = T [(1− βn)xn + βnu], n ∈ N, (5.5)

where {βn} is a sequence in (0, 1] satisfying the condition (C2). Then {xn} converges
strongly to RF (T )(u), where RF (T ) is the sunny nonexpansive retraction from C onto
F (T ).

6. Applications

6.1. Application to constrained optimization problems. Let C be a closed
convex subset of a Hilbert space H, ν > 0 a constant, PC the metric projection
mapping from H onto C and A : C → H a ν-ism. It is well known that PC(I − γA)
is nonexpansive operator provided that γ ∈ (0, 2ν).

In view of above fact, we derive the following results from Theorems 4.3 and 5.4,
respectively.
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Theorem 6.1. Let C be a closed convex subset of a Hilbert space H, ν > 0 a constant,
PC the metric projection mapping from H onto C and A : C → H a ν-ism. Assume
that Ω(C,A) 6= ∅ and γ ∈ (0, 2ν). For given x1 ∈ C, let {xn} be a sequence in C
generated by {

xn+1 = (1− αn)PC(I − γA)xn + αnPC(I − γA)yn,
yn = (1− βn)xn + βnPC(I − γA)xn, n ∈ N, (6.1)

where {αn} and {βn} are two sequences in (0,1) satisfy the condition (1.4). Then
{xn} converges weakly to a solution of the variational inequality V I(C,A).

Theorem 6.2. Let C be a nonempty closed convex subset of a Hilbert space H, ν > 0
a constant, PC the metric projection mapping from H onto C and A : C → H a ν-ism.
Assume that Ω(C,A) 6= ∅ and γ ∈ (0, 2ν). For given u, x1 ∈ C, let {xn} be a sequence
in C generated by{

xn+1 = (1− αn)PC(I − γA)xn + αnPC(I − γA)yn,
yn = (1− βn)xn + βnu, n ∈ N, (6.2)

where {βn} and {αn} are two sequences in (0,1] satisfy the condition (C1). Then
{xn} converges strongly to a solution of the variational inequality V I(C,A).

Algorithms for signal and image processing are often iterative constrained opti-
mization procedures designed to minimize a convex differentiable function f(x) over
a closed convex set C in H. It is well known that every L-Lipschitzian operator is
2/L-ism. Therefore, the following algorithms (6.3) and (6.4) converge to minimizer
of f .

Corollary 6.3. Let C be a closed convex subset of a Hilbert space H and f be a
convex and differentiable function on an open set D containing the set C. Assume
that ∇f is a L-Lipschitz continuous operator on D, γ ∈ (0, 2/L) and minimizers of f
relative to the set C exists. For given x1 ∈ C, let {xn} be a sequence in C generated
by {

xn+1 = (1− αn)PC(I − γ∇f)xn + αnPC(I − γ∇f)yn,
yn = (1− βn)xn + βnPC(I − γ∇f)xn, n ∈ N, (6.3)

where {αn} and {βn} are two sequences in (0,1) satisfy the condition (1.4). Then
{xn} converges weakly to a minimizer of f .

Corollary 6.4. Let C be a closed convex subset of a Hilbert space H and f be a
convex and differentiable function on an open set D containing the set C. Assume
that ∇f is a L-Lipschitz continuous operator on D, γ ∈ (0, 2/L) and minimizers of f
relative to the set C exists. For given u, x1 ∈ C, let {xn} be a sequence in C generated
by {

xn+1 = (1− αn)PC(I − γ∇f)xn + αnPC(I − γ∇f)yn,
yn = (1− βn)xn + βnu, n ∈ N, (6.4)

where {βn} and {αn} are two sequences in (0,1] satisfy the condition (C1). Then
{xn} converges strongly to a minimizer of f .
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6.2. Application to split feasibility problems. Recall that a mapping T in a
Hilbert space H is said to be averaged if T can be written as (1 − α)I + αS, where
α ∈ (0, 1) and S is nonexpansive on H.

Let C be a closed convex subset of a Hilbert space H1, Q a closed convex subset of
another Hilbert space H2 and A : H1 → H2 a bounded linear operator. Let PC and
PQ be the orthogonal projections onto C and Q, respectively; γ > 0 a constant, and
A∗ the adjoint of A. Set q(x) := 1

2‖Ax− PQAx‖
2, x ∈ C.

Consider the minimization problem:

find min
x∈C

q(x).

By [3], the gradient of q is

∇q = A∗(I − PQ)A.

Since I − PQ is nonexpansive, it follows that ∇q is L-Lipschitzian with L = ‖A‖2.
Therefore, ∇q is 1/L-ism (cf. [4]) and for any 0 < γ < 2/L, I − γ∇q is averaged.
Therefore, the composite PC(I − γ∇q) is also averaged. Set T := PC(I − γ∇q). Note
that solution set of SFP(1.2) is F (T ).

We now present some iterative algorithms that can be used to find solutions of
SFP(1.2).

Theorem 6.5. Assume that SFP(1.2) is consistent. Let {αn} and {βn} be two
sequences in (0,1) such that α ≤ αn and β ≤ βn for all n ∈ N and for some α, β > 0.
Let {xn} be a sequence in C generated by{

xn+1 = (1− αn)PC(I − γ∇q)xn + αnPC(I − γ∇q)yn,
yn = (1− βn)xn + βnPC(I − γ∇q)xn, n ∈ N,

where 0 < γ < 2/‖A‖2. Then {xn} converges weakly to a solution of SFP(1.2).

Proof. Since T := PC(I − λ∇q) is nonexpansive, Theorem 6.5 follows from Theorem
4.3. �

Theorem 6.6. Assume that SFP(1.2) is consistent. For given u, x1 ∈ C, let {xn}
be a sequence in C generated by{

xn+1 = (1− αn)PC(I − γ∇q)xn + αnPC(I − γ∇q)yn,
yn = (1− βn)xn + βnu, n ∈ N,

where 0 < γ < 2/‖A‖2 and {αn} and {βn} are two sequences in (0,1] satisfy the
condition (C1). Then {xn} converges strongly to a solution of SFP(1.2) nearest to u.

Proof. Since T := PC(I − λ∇q) is nonexpansive, Theorem 6.6 follows from Theorem
5.4. �

The special case of Theorem 6.6 is the following corollary:

Corollary 6.7. Assume that SFP(1.2) is consistent. For given u, x1 ∈ C, let {xn}
be a sequence in C generated by

xn+1 = PC(I − γ∇q)[(1− βn)xn + βnu], n ∈ N,
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where 0 < γ < 2/‖A‖2 and {βn} is a sequence in (0,1] satisfies the condition (C2).
Then {xn} converges strongly to a solution of SFP(1.2) nearest to u.
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the manuscript.

References

[1] R.P. Agarwal, D. O’Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with

Applications, Series Topological Fixed Point Theory and Its Applications, Springer, New York,
2009.

[2] R.P. Agarwal, D. O’Regan, D.R. Sahu, Iterative construction of fixed points of nearly asymp-

totically nonexpansive mappings, J. Nonlinear Convex Anal., 8(2007), no. 1, 61-79.
[3] J.P. Aubin, A. Cellina, Diffierential Inclusions, Springer, Berlin, 1984.

[4] J B. Baillon, G. Haddad, Quelques proprietes des operateurs angle-bornes et cycliquement mono-
tones, Israel J. Math., 26(1977), 137-150.

[5] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontractive

operators, Fixed Point Theory and Applications, 2004(2004), 97-105.
[6] F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings

in Banach spaces, Arch. Rational Mech. Anal., 24(1967), 82-90.

[7] C.L. Byrne, A unified treatment of some iterative algorithms insignal processing and image
reconstruction, Inverse Problems, 20(2004), 103-120.

[8] C.E. Chidume, C.O. Chidume, Iterative approximation of fixed points of nonexpansive map-

pings, J. Math. Anal. Appl., 318(2006), no. 1, 288-295.
[9] Y.J. Cho, S.M. Kang, H.Y. Zhou, Some control condition on iterative methods, Commun. Appl.

Nonlinear Anal., 12(2005), no. 2, 27-34.

[10] P. Combettes, Fejer monotonicity in convex optimization, Encyclopedia of Optimization (C.A.
Floudas and P.M. Pardalos, Eds.), Boston, MA, Kluwer, 2000.

[11] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961.
[12] C.I. Podilchuk, R.J. Mammone, Image recovery by convex projections using a least squares

constraint, J. Opt. Soc. Am. A, 7(1990), 517-521.

[13] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Appli-
cations, Academic Press, New York, 1980.

[14] P.L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci. Paris Ser. AB,

284(1977), 1357-1359.
[15] J.L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20(1967), 493-

517.

[16] S. Reich, Strong convergence theorems for resolvents of operators in Banach spaces, J. Math.
Anal. Appl., 75(1980), 287-292.

[17] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.

Anal. Appl., 67(1979), 274276.
[18] B.E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56(1976),

no. 3, 741-750.
[19] D.R. Sahu, Zeqing Liu and Shin Min Kang, Iterative approaches to common fixed points of

asymptotically nonexpansive mappings, Rocky Mountain J. Math., 39(2009), 281-304.

[20] T. Suzuki, Strong convergence of approximated sequences for nonexpansive mappings in Banach
spaces, Proc. Amer. Math. Soc., 135(2007), 99-106.

[21] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

[22] W. Takahashi, Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive
operators, J. Math. Anal. Appl., 104(1984), 546-553.

[23] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa
iteration process, J. Math. Anal. Appl., 178(1993), 301-308.

[24] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive map-

pings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.



204 D. R. SAHU

[25] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992),
486-491.

[26] N.C. Wong, D.R. Sahu, J.C. Yao, Solving variational inequalities involving nonexpansive type

mappings, Nonlinear Anal., 69(2008), 4732-4753.
[27] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138.

[28] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.

[29] H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull.
Austral. Math. Soc., 65(2002), 109-113.

[30] H.K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem,
Inverse Problems, 22(2006), 2021-2034.

[31] D. Youla, Mathematical theory of image restoration by the method of convex projections, in: H.

Stark (Ed.), Image Recovery Theory and Applications, Academic Press, Orlando, (1987), 29-77.
[32] D. Youla, On deterministic convergence of iterations of relaxed projection operators, J. Visual

Comm. Image Representation, 1(1990), 12-20.

[33] E. Zeidler, Nonlinear Functional Analysis and its Applications, III: Variational Methods and
Applications, Springer, New York, NY, 1985.

Received: May 18, 2009; Accepted: March 24, 2010.


