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1. INTRODUCTION

The concept of stability of a fixed point iteration procedure seems to be due to
Ostrowski, as mentioned by Rhoades [1]. It has been systematically studied by Harder
in her thesis and published in the papers of Harder and Hicks ([3] and [4]). Let
(X,d) be a complete metric space and T : X — X a map. Let x,11 = f(T,z,)
be an iteration procedure. Suppose that T has at least one fixed point and that the
sequence {x,} converges to a fixed point ¢ € X. Let {y,} be an arbitrary sequence
in X and define €, = d(yn+t1, f(T,yn)). If lim e, =0 implies that lim y, = ¢, then

n—oo n—oo
the iteration procedure x,1 = f(T,z,) is called T-stable and, if the convergence of
o0
the series > ¢; implies that lim y, = ¢, then the iteration procedure is said to be
: n—oo

=1
almost T—sltable.

There are some papers on T-stability of Picard iteration and equivalence between
T-Stabilities of Mann, Picard and Ishikawa iterations for some mappings (see for ex-
ample [5]-[12]). We shall study almost T-stability of Mann iteration for ¢-contraction
mappings. Also, we shall study the T-stability of Picard iteration for the mappings
satisfying a contractive condition of integral type.

In this paper, we suppose that X is a normed space. Here, let us mention three
iteration methods. For x1,u1,s1 € X, the picard iteration is given by

Tn+l = Txna
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the Mann iteration is given by

Upt1 = (1 — ap)un + apTuy,
and the Ishikawa iteration given by

Snt1 = (1 — an)sn + Tty

tn = (1 - ﬁn)sn + 6nTsna

where {a,}n>1 and {8,}n>1 are sequences in [0,1] and satisfy lim «, = 0 and

n—oo
o0
>y = 0.
i=1

2. SOME RESULTS ON ALMOST T-STABILITY

Now, we are ready to state and prove our main results. We shall need the following
preliminaries. A function ¢ : [0,00) — [0,00) is said to be a comparison function if
¢ is increasing, ¢(0) = 0 and ¢(t) < ¢ for all ¢ > 0. Note that if ¢ is a comparison
function, then ¢™(t) converges to 0 for all t > 0.

Property (A;): We say that a mapping ¢ satisfies property (A1) whenever ¢ is
a convex comparison function and

p(u+v) <u+p(v)

for all u,v € [0, 00).
There are many mappings which satisfy property (A4;). For example, if g : [0, 00) —

¢
[0,1) is an increasing differentiable function, then ¢(t) = [ g(x)dx satisfies property

0
(A1). It is clear that ¢ is increasing and ¢(0) = 0. Since ¢'(t) = g(t) for all ¢ > 0
and ¢ is increasing, ¢’ is increasing. Hence, ¢ is convex. Since 1 — g is continuous
and 1 —g >0, [(1—g) > 0. Thus, ¢(t) < t. Note that

cp(u—i—v):/Ou+vg(:v)dx:/ng(x)dx—i—/:ﬂg(x)dx

u+v v v
< / 1dz + / g(z)dx = u + / g(x)dx = u+ p(v)
v 0 0

for all u,v > 0. Therefore, ¢ satisfies property (A;). In particular, o(t) = t—log(1+t)
satisfies property (A;).

o0
Lemma 2.1. [1; page 13] Let {¢,} be a sequence in [0,1] such that > t, = 00, {¢n}
n=1

a sequence in [0,00) such that Y ¢, < oo. Also, suppose that {a,} and {b,} are
n=1

two sequences in [0,00) satisfying b, = o(t,) and ant1 < (1 —tp)an + by + ¢ for all

n>1. Then, lim a, = 0.

n—oo
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Theorem 2.2. Suppose that X is a normed space, ¢ : [0,00) — [0,00) satisfies
property (A1) and T : X — X is a mapping satisfying F(T) = {q} and
[Tz —ql| <oz —ql) (2.1)

for all x € X. Then Mann iteration is almost T-stable.

Proof. Let {uy}n>1 denote Mann iteration. Then, using (2.1) and the fact that
o(t) <t for each t > 0,

[unt1 = qll = [[(1 = an)upn + anTuy — 4
< (1= an)llun = qll + anl|Tun — g
< (1= an)lun = qll + an@(flun — qll)
< (1= an)llun = gl + an(fun = qll) = [un —ql-
Therefore {||u,—¢|| }n>1 is a nonnegative nonincreasing sequence in X and is bounded.
k

Assume that > y, converges, where
n=1

Ynt1 = |Jtun+1 — (1 — an)un — anTuy||.

Take M = sup ||u, — ¢||. For each € > 0, there exists a natural number p such that
n>1

9

e

> €
dowi< (M) <

for all m > p. By considering d, = |u, — ¢|| and ¢, = ||Tu, — q|| we have
dp, <yn+ (1 —ap_1)dn—1+ an_1¢(d,—1). In fact
dn = [Jun — qll < lJup — (1 = an—1)un—1 — an—1Tup_1||
+||(1 - anfl)unfl + o1 TUp—1 — q”
= JJup — (1 — ap1)Un—1 — an—1TUp_1]|
H(1 = an_1)tp-1 + an—1Tup—1 — (1 — @p_1)q — an_1¢||
<yn + (1 —an1)un1 —gll + an 1| Tun—1 —q||
< Yn+ (1= an—1)l[un—1 = qll + an—19([[un—1 — ql))
=y + (1 —an_1)dn-1+ an_19(dp_1).
Hence,
(I—ap)dp, <(I—ap)yn+ (1 —an)(l—ap_1)dn—1+ (1 — an)an_190(dn-1).

On the other hand, since ¢ is increasing, we have

@(dn) S So(yn + (1 - Oénfl)dnfl + Oén71§0(dn—1)-

If u=y,and v=(1—ay_1)dn-1+ an_1p(dn_1), then by using property (A1) we
have

Qp(dn) <yn+ 90((1 - O‘nfl)d/nfl + O‘nfl(p(dnfl)-
Since ¢ is a convex function, we obtain

(p(dn) S Yn + (1 - O‘nfl)(p(dnfl) + 04n71%02<dn—1)-
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These relations imply that
unt1 = qll < Yns1 + (1 — an)dn + anp(dn)
S Yn+1+ (1= )y + anyn + (1 — ) (1 — an-1)dn—1

+(1 - O‘n)anflsp(dnfl) + an(]- - anfl)ﬁp(dnfl) + anan71§02(dn71)~

Therefore, by using similar methods, we have

[unt1 —all < ynt1+ (1= an)dn + anp(dn)
< Ynp1 + (1 — an)yn + anyn + (1 — apn)(1 — ap—1)dn—1
+ (I —an)an—1p(dn-1) + an(l — an—1)p(dn—1) + anan,1¢2(dn,1)
< Ynrr HUn+ (1 =) (1 — an—1)yn—1
+ (1 —an)an—1Yn—1+ @n(l — apn_1)yYn—1 + nOn_1Yyn—1
+ (I—ap)(l—ap-1)(1—ap_2)d,_2
+ (I—an)(l —ap-1)an—20(dn—-2) + (1 — an)an—1(1 — an—2)p(dn—2)
+  an(l—an-1)(1 — an-2)p(dy—2) + (1 - an)anflaanQPQ(dnfﬂ
+ an(l- anfl)anf2902(dnf2)
+ - 1(1 = an_2)@*(dp_2) + anaty 100, 29> (dn_2)
= Ynt1FYnF+Yn1+ 1 —an)(l— 1)1 —an_2)dn_2
+ (1 —an)(1 = an_1)an_2p(d,_o)
+ (I =an)an—1(1 = an_2)p(dn—2) + an(l — an—1)(1 — an—2)p(dn-2)
+ (1= an)an_—10n_—20*(dp_2) + an(l — an_1)on_o9*(dn_2)
+ anon_1(1 = ap_2)p*(dp_2) + anan_10m_20>(dp_o).

By continuing these replacements, after a finite number of steps, we obtain

n+1 n—p . n
lunt1—all < > wit+ > Spe'dy+ ([ )™ 7 dy,
i=p+1 i=0 i=p

where S! are the coefficients of ¢'d,. Note that

Sl = Z Oy Qpy - .. Oty H (1—ag),

{ri,r2,...,r; } is a subset of {p,p+1,...,n} kel;

where I; = {p,p+1,...,n}\{r1,72,...,r;}. We show that for each k > 1, Z Si=1.

Clearly the equality holds when k = 1. Assume that the equality holds for all k<n.
We will show that the equality holds for n + 1. It is clear that for each i < n we have

sz+1 = (1 - an+1)SZL + Oln+1SZL_1
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Hence,
n+1
DS = SO0 Y8 e YS!
i=0
n+1
= H i + (1 = a1+ app1 (1 = S))
n+1 n
= Ha1 1*an+1)+an+1*an+1 Haz*l
i=0
We shall now prove that lim S’ =0 for all i > 1. For i = 1,
n—oo

n
(1—oay)+ opyr H l—a,)+---+an+1H(1—o¢i).

i=p . i=p
i#p Z¢p+1 i#n

_:]:

n
It is clear that S}, = (1 — an41)Sh + ang1 [ (1— ;). As we know, 1 —z < e~ * for
i=p
n

all z > 0. Since Y. a; = o0, lim [[(1 — ;) =0 and so by lemma 2.1, lim S} = 0.

n—oo

i=p i=p
Assume that lim S{~! = 0. Then
n—oo

S7iz+1 =(1- O‘n-&-l)Sviz + O‘n-&-lSviz_l'

By using an argument similar to case ¢ = 1, by Lemma 2.1, we can deduce that
lim S? = 0. Let n > 2p+ 1. Since p(t) < t for all t > 0, we get

n+1 n
[unt1 —all < Z yi + Zsz M+ ( Z S1)e )+(Hai)80 (dp)
i=p+1 i=p+1 i=p
n+1 )
< ¥ yi+(ZS;)M+s0”(M)+<PP(M)
i=p+1 i=0

P p
€ 7 7
< Z+yn+1+(‘_g S M+4+4§e+yn+1+ E Sn)M

Thus, limsup ||u, — ¢|] < € and so hm |lun — q|| = 0. This shows that the Mann
n—)OO

iteration is almost T-stable. O

Example 2.1. Define the function T : R — R by T'(x) = |z| —log(1 + |z|). Clearly 0
is unique fixed point of T. To show that Mann iteration is almost T-stable, by theorem
2.2, define ¢ : [0,00) — [0,00) by ¢(z) =z — log(1 + z).

Corollary 2.3. Let X be a normed space, ¢ : [0,00) — [0,00) a map satisfying the
property (A1) and T : X — X a self-map satisfying

1
1Tz = Tyl < p(max{|lz —yl, Flllz = T2l + ly = Tyll, lz = Tyl lly — Tzl}),
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for all x,y € X. Then Mann iteration is almost T-stable.

Proof. Tt is known that T has a unique fixed point q. Hence, it is sufficient to show
that T satisfies (2.1). If z # ¢, then

— Tz

2
1Tz — q|| < pmax{]lz - qll, —— Tz - qll})-

If max{||z — gl|, 2520 | T2 — g||} = | — g, then ||Tx — g|| = 0. Thus, suppose
that |72 — || < p(max{[|z — g||, Y. 1f [l — g < 12571 then

=Tl < oL~ gl + g — Tall) < pmas{x — al. g — T,

and (2.1) holds. O

[Tz —ql| <

Remark 2.1. It is easy to check that our results also hold for Ishikawa iteration.

3. T-STABILITY OF PICARD ITERATION FOR MAPS SATISFY A CONTRACTIVE
CONDITION OF INTEGRAL TYPE

In this section, we shall verify the T-stability of Picard iteration for mappings
satisfying a contractive condition of integral type. Let Ry be the set of nonnegative
real numbers and
(i) ¥ : Ry — Ry is subadditive, nondecreasing and continuous from the right such
that 1 (t) < t for all t > 0;

(i) ¢ : Ry — R4 is a summable, Lebesgue-integrable and nonincreasing mapping on
(0,00) such that [ ¢(t)dt > 0 for each & > 0.

Note that, there are many functions which satisfy (i). For example, suppose that
g :10,00) — [0,1] is a strictly decreasing map. Then, ¥(t) = fot g(z)dx satisfies ().

Let (X,d) be a complete metric space, ¥, ¢ : Ry — R, two maps satisfying the
conditions (i) and (i¢) respectively and T : X — X a map satisfying the following

property (As):
d(Tz,Ty) M(z,y)
/ w(t)dt§w< / w(t)dt> (42)
0 0

for all z,y € X, where M(z,y) = max{d(z,y),d(z,Tx),d(y, Ty),d(z, Ty),d(y, Tz)}.
From [2; Theorem 8], we can conclude that, if there exists a bounded sequence {yy, }n>0
with y,41 = Ty, for all n > 0, then T" has a unique fixed point.

Theorem 3.1. Let (X,d) be a complete metric space and T : X — X a map-
ping satisfying property (Ag2). If there exists a bounded sequence {yn}n>0 such that
Um d(yni1,Tyn) =0, then {yntn>0 converges to the unique fized point of T.

n—oo -

Proof. Define the sequence {z,} by 22, = Yn, 22n+1 = TYn, and O(zx,n) =
{Zks Zk+1, -+, Zk4n}. For any set A, 6(A) denotes the diameter of A. We shall show
that §(O(zp)) is finite.

Since limy, d(yn+1,T'yn) = 0, there exists a positive integer N such that, for all
n >N, dYni1, Tyn) < 1/2.
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For any 7,7 > N,
d(yi,y;) < 0(O(yo)) < M,
which is finite since {y,} is bounded.

1
d(yi, Ty;) < d(yi, yj+1) + d(yj1, Ty;) < M + 3

d(Tyi, Ty;) < d(Yi+1, Tyi) + d(Yitr, yj+1) + d(yj41, Ty;) < M+ 1.
It then follows that §(O(zp)) is finite.
Using Lemma 7 of [2],

3(O(zk,n)) N 3(0(20))
/ (1) < ¥ / o(t)dt ) .
0 0

which implies that lim, ; §(O(zx,n)) = 0. Thus {z,} is a Cauchy sequence, which
converges to some point ¢ € X, since X is complete. It is also the case that lim,, y,, =
lim,, Ty, = q.

Using (As), it follows that Jim. f06” ©(t)dt = 0 and so lim 4, = 0. Hence, {yn}tn>1

is a Cauchy sequence. Suppose that y, converges q. Then, we have

d(q,Tq) d(Tyn,Tq) M (yn,q)
p(t)dt = lim / p(t)dt <limsup ) / o(t)dt

d(q,Tq)
<ol [ etoa).
0
d(q,Tq)

This implies that [ ¢(t)dt = 0 and so d(g,Tq) = 0. By a method similar to the
0
proof of [2; Theorem 8], we can show that the fixed point of T is unique. O

Corollary 3.2. Let (X,d) be a complete metric space and T : X — X salisfying
property (As). If the Picard iteration is convergent, then it is T-stable.
Letting ¢ (t) = kt with k € [0,1) in (Az), we obtain the following result.

Corollary 3.3. Let (X,d) be a complete metric space, k € [0,1) and T : X — X
satisfying

d(Tz,Ty) M(z,y)
pt)dt <k / p(t)dt, for all x,y € X,
0 0

where @ satisfies the property (i1). If there exists a bounded sequence {yn}n>1 such
that lim d(yn+1,Tyn) = 0, then the sequence {yn}n>1 converges to the unique fized
poimﬁn?.oo

By considering ¢(t) =1 and 9 (t) = kt with k£ € [0,1) in (A3), we obtain
Corollary 3.4. Let (X,d) be a complete metric space, k € [0,1) and T : X —

)
X satisfying d(Tx,Ty) < kmax{d(z,y), d(z, Tx),d(y,Ty),d(x,Ty),d(y,Tx)}, for all
z,y € X. Then the Picard iteration is T-stable.
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