Fixed Point Theory, 12(2011), No. 1, 179-186 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

SOME RESULTS ABOUT T-STABILITY AND ALMOST T-STABILITY

SH. REZAPOUR*, R. H. HAGHI* AND B. E. RHOADES**

*Department of Mathematics Azarbaidjan University of Tarbiat Moallem Azarshahr, Tabriz, Iran

**Department of Mathematics, Indiana University, Bloomington, IN47405-7106, USA

Abstract. We shall study almost T-stability of Mann iteration for φ -contraction mappings. Also, we shall study the T-stability of Picard iteration for mappings satisfying a contractive condition of integral type.

Key Words and Phrases: Mann Iteration, Picard iteration, T-stability, almost T-stability. 2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

The concept of stability of a fixed point iteration procedure seems to be due to Ostrowski, as mentioned by Rhoades [1]. It has been systematically studied by Harder in her thesis and published in the papers of Harder and Hicks ([3] and [4]). Let (X,d) be a complete metric space and $T: X \to X$ a map. Let $x_{n+1} = f(T,x_n)$ be an iteration procedure. Suppose that T has at least one fixed point and that the sequence $\{x_n\}$ converges to a fixed point $q \in X$. Let $\{y_n\}$ be an arbitrary sequence in X and define $\epsilon_n = d(y_{n+1}, f(T, y_n))$. If $\lim_{n \to \infty} \epsilon_n = 0$ implies that $\lim_{n \to \infty} y_n = q$, then the iteration procedure $x_{n+1} = f(T, x_n)$ is called T-stable and, if the convergence of the series $\sum_{i=1}^{\infty} \epsilon_i$ implies that $\lim_{n \to \infty} y_n = q$, then the iteration procedure is said to be almost T-stable.

There are some papers on T-stability of Picard iteration and equivalence between T-Stabilities of Mann, Picard and Ishikawa iterations for some mappings (see for example [5]-[12]). We shall study almost T-stability of Mann iteration for φ -contraction mappings. Also, we shall study the T-stability of Picard iteration for the mappings satisfying a contractive condition of integral type.

In this paper, we suppose that X is a normed space. Here, let us mention three iteration methods. For $x_1, u_1, s_1 \in X$, the picard iteration is given by

 $x_{n+1} = Tx_n,$ 179

the Mann iteration is given by

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n T u_n,$$

and the Ishikawa iteration given by

$$s_{n+1} = (1 - \alpha_n)s_n + \alpha_n T t_n$$

$$t_n = (1 - \beta_n)s_n + \beta_n T s_n,$$

where $\{\alpha_n\}_{n\geq 1}$ and $\{\beta_n\}_{n\geq 1}$ are sequences in [0,1] and satisfy $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{i=1}^{\infty} \alpha_i = \infty$.

2. Some results on almost T-stability

Now, we are ready to state and prove our main results. We shall need the following preliminaries. A function $\varphi : [0, \infty) \to [0, \infty)$ is said to be a comparison function if φ is increasing, $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0. Note that if φ is a comparison function, then $\varphi^n(t)$ converges to 0 for all t > 0.

Property (A_1) : We say that a mapping φ satisfies property (A_1) whenever φ is a convex comparison function and

$$\varphi(u+v) \le u + \varphi(v)$$

for all $u, v \in [0, \infty)$.

There are many mappings which satisfy property (A_1) . For example, if $g:[0,\infty) \to [0,1)$ is an increasing differentiable function, then $\varphi(t) = \int_0^t g(x)dx$ satisfies property (A_1) . It is clear that φ is increasing and $\varphi(0) = 0$. Since $\varphi'(t) = g(t)$ for all $t \ge 0$ and g is increasing, φ' is increasing. Hence, φ is convex. Since 1 - g is continuous and 1 - g > 0, $\int (1 - g) > 0$. Thus, $\varphi(t) < t$. Note that

$$\varphi(u+v) = \int_0^{u+v} g(x)dx = \int_0^v g(x)dx + \int_v^{u+v} g(x)dx$$
$$\leq \int_v^{u+v} 1dx + \int_0^v g(x)dx = u + \int_0^v g(x)dx = u + \varphi(v)$$

for all $u, v \ge 0$. Therefore, φ satisfies property (A_1) . In particular, $\varphi(t) = t - \log(1+t)$ satisfies property (A_1) .

Lemma 2.1. [1; page 13] Let $\{t_n\}$ be a sequence in [0,1] such that $\sum_{n=1}^{\infty} t_n = \infty$, $\{c_n\}$ a sequence in $[0,\infty)$ such that $\sum_{n=1}^{\infty} c_n < \infty$. Also, suppose that $\{a_n\}$ and $\{b_n\}$ are two sequences in $[0,\infty)$ satisfying $b_n = o(t_n)$ and $a_{n+1} \leq (1-t_n)a_n + b_n + c_n$ for all $n \geq 1$. Then, $\lim_{n \to \infty} a_n = 0$.

180

Theorem 2.2. Suppose that X is a normed space, $\varphi : [0, \infty) \to [0, \infty)$ satisfies property (A_1) and $T : X \to X$ is a mapping satisfying $F(T) = \{q\}$ and

$$||Tx - q|| \le \varphi(||x - q||) \tag{2.1}$$

for all $x \in X$. Then Mann iteration is almost T-stable.

Proof. Let $\{u_n\}_{n\geq 1}$ denote Mann iteration. Then, using (2.1) and the fact that $\varphi(t) \leq t$ for each $t \geq 0$,

$$\begin{aligned} \|u_{n+1} - q\| &= \|(1 - \alpha_n)u_n + \alpha_n T u_n - q\| \\ &\leq (1 - \alpha_n)\|u_n - q\| + \alpha_n\|T u_n - q\| \\ &\leq (1 - \alpha_n)\|u_n - q\| + \alpha_n\varphi(\|u_n - q\|) \\ &\leq (1 - \alpha_n)\|u_n - q\| + \alpha_n(\|u_n - q\|) = \|u_n - q\| \end{aligned}$$

Therefore $\{\|u_n - q\|\}_{n \ge 1}$ is a nonnegative nonincreasing sequence in X and is bounded. Assume that $\sum_{n=1}^{k} y_n$ converges, where

$$y_{n+1} = \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T u_n\|.$$

Take $M = \sup_{n \ge 1} ||u_n - q||$. For each $\epsilon > 0$, there exists a natural number p such that

$$\sum_{i=m}^{\infty} y_i \le \frac{\epsilon}{4}, \ \varphi^m(M) < \frac{\epsilon}{4},$$

for all $m \ge p$. By considering $d_n = ||u_n - q||$ and $c_n = ||Tu_n - q||$ we have $d_n \le y_n + (1 - \alpha_{n-1})d_{n-1} + \alpha_{n-1}\varphi(d_{n-1})$. In fact

$$\begin{aligned} d_n &= \|u_n - q\| \le \|u_n - (1 - \alpha_{n-1})u_{n-1} - \alpha_{n-1}Tu_{n-1}\| \\ &+ \|(1 - \alpha_{n-1})u_{n-1} + \alpha_{n-1}Tu_{n-1} - q\| \\ &= \|u_n - (1 - \alpha_{n-1})u_{n-1} - \alpha_{n-1}Tu_{n-1}\| \\ + \|(1 - \alpha_{n-1})u_{n-1} + \alpha_{n-1}Tu_{n-1} - (1 - \alpha_{n-1})q - \alpha_{n-1}q\| \\ &\le y_n + (1 - \alpha_{n-1})\|u_{n-1} - q\| + \alpha_{n-1}\|Tu_{n-1} - q\| \\ &\le y_n + (1 - \alpha_{n-1})\|u_{n-1} - q\| + \alpha_{n-1}\varphi(\|u_{n-1} - q\|) \\ &= y_n + (1 - \alpha_{n-1})d_{n-1} + \alpha_{n-1}\varphi(d_{n-1}). \end{aligned}$$

Hence,

$$(1 - \alpha_n)d_n \le (1 - \alpha_n)y_n + (1 - \alpha_n)(1 - \alpha_{n-1})d_{n-1} + (1 - \alpha_n)\alpha_{n-1}\varphi(d_{n-1}).$$

On the other hand, since φ is increasing, we have

$$\varphi(d_n) \le \varphi(y_n + (1 - \alpha_{n-1})d_{n-1} + \alpha_{n-1}\varphi(d_{n-1}))$$

If $u = y_n$ and $v = (1 - \alpha_{n-1})d_{n-1} + \alpha_{n-1}\varphi(d_{n-1})$, then by using property (A_1) we have

$$\varphi(d_n) \le y_n + \varphi((1 - \alpha_{n-1})d_{n-1} + \alpha_{n-1}\varphi(d_{n-1}).$$

Since φ is a convex function, we obtain

 $\varphi(d_n) \le y_n + (1 - \alpha_{n-1})\varphi(d_{n-1}) + \alpha_{n-1}\varphi^2(d_{n-1}).$

These relations imply that

$$\|u_{n+1} - q\| \le y_{n+1} + (1 - \alpha_n)d_n + \alpha_n\varphi(d_n)$$

$$\le y_{n+1} + (1 - \alpha_n)y_n + \alpha_ny_n + (1 - \alpha_n)(1 - \alpha_{n-1})d_{n-1}$$

$$+ (1 - \alpha_n)\alpha_{n-1}\varphi(d_{n-1}) + \alpha_n(1 - \alpha_{n-1})\varphi(d_{n-1}) + \alpha_n\alpha_{n-1}\varphi^2(d_{n-1}).$$

Therefore, by using similar methods, we have

$$\begin{split} \|u_{n+1} - q\| &\leq y_{n+1} + (1 - \alpha_n)d_n + \alpha_n\varphi(d_n) \\ &\leq y_{n+1} + (1 - \alpha_n)y_n + \alpha_ny_n + (1 - \alpha_n)(1 - \alpha_{n-1})d_{n-1} \\ &+ (1 - \alpha_n)\alpha_{n-1}\varphi(d_{n-1}) + \alpha_n(1 - \alpha_{n-1})\varphi(d_{n-1}) + \alpha_n\alpha_{n-1}\varphi^2(d_{n-1}) \\ &\leq y_{n+1} + y_n + (1 - \alpha_n)(1 - \alpha_{n-1})y_{n-1} + \alpha_n\alpha_{n-1}y_{n-1} \\ &+ (1 - \alpha_n)\alpha_{n-1}y_{n-1} + \alpha_n(1 - \alpha_{n-1})y_{n-1} + \alpha_n\alpha_{n-1}y_{n-1} \\ &+ (1 - \alpha_n)(1 - \alpha_{n-1})(1 - \alpha_{n-2})d_{n-2} \\ &+ (1 - \alpha_n)(1 - \alpha_{n-1})\alpha_{n-2}\varphi(d_{n-2}) + (1 - \alpha_n)\alpha_{n-1}(1 - \alpha_{n-2})\varphi(d_{n-2}) \\ &+ \alpha_n(1 - \alpha_{n-1})(1 - \alpha_{n-2})\varphi(d_{n-2}) + (1 - \alpha_n)\alpha_{n-1}\alpha_{n-2}\varphi^2(d_{n-2}) \\ &+ \alpha_n(1 - \alpha_{n-1})\alpha_{n-2}\varphi^2(d_{n-2}) \\ &+ \alpha_n\alpha_{n-1}(1 - \alpha_{n-2})\varphi^2(d_{n-2}) + \alpha_n\alpha_{n-1}\alpha_{n-2}\varphi^3(d_{n-2}) \\ &= y_{n+1} + y_n + y_{n-1} + (1 - \alpha_n)(1 - \alpha_{n-1})(1 - \alpha_{n-2})\varphi_{n-2} \\ &+ (1 - \alpha_n)(1 - \alpha_{n-1})\alpha_{n-2}\varphi(d_{n-2}) \\ &+ (1 - \alpha_n)\alpha_{n-1}(1 - \alpha_{n-2})\varphi(d_{n-2}) + \alpha_n(1 - \alpha_{n-1})(1 - \alpha_{n-2})\varphi(d_{n-2}) \\ &+ (1 - \alpha_n)\alpha_{n-1}(1 - \alpha_{n-2})\varphi^2(d_{n-2}) + \alpha_n(1 - \alpha_{n-1})(1 - \alpha_{n-2})\varphi(d_{n-2}) \\ &+ \alpha_n\alpha_{n-1}(1 - \alpha_{n-2})\varphi^2(d_{n-2}) + \alpha_n\alpha_{n-1}\alpha_{n-2}\varphi^3(d_{n-2}). \end{split}$$

By continuing these replacements, after a finite number of steps, we obtain

$$||u_{n+1} - q|| \le \sum_{i=p+1}^{n+1} y_i + \sum_{i=0}^{n-p} S_n^i \varphi^i d_p + (\prod_{i=p}^n \alpha_i) \varphi^{n-p+1} d_p,$$

where S_n^i are the coefficients of $\varphi^i d_p.$ Note that

$$S_n^i = \sum_{\{r_1, r_2, \dots, r_i\} \text{ is a subset of } \{p, p+1, \dots, n\}} \alpha_{r_1} \alpha_{r_2} \dots \alpha_{r_i} \prod_{k \in I_i} (1 - \alpha_k),$$

where $I_i = \{p, p+1, \ldots, n\} \setminus \{r_1, r_2, \ldots, r_i\}$. We show that for each $k \ge 1$, $\sum_{i=0}^k S_k^i = 1$. Clearly the equality holds when k = 1. Assume that the equality holds for all $k \le n$. We will show that the equality holds for n+1. It is clear that for each $i \le n$ we have

$$S_{n+1}^{i} = (1 - \alpha_{n+1})S_{n}^{i} + \alpha_{n+1}S_{n}^{i-1}.$$

Hence,

$$\sum_{i=0}^{n+1} S_{n+1}^{i} = S_{n+1}^{n+1} + (1 - \alpha_{n+1}) \sum_{i=0}^{n} S_{n}^{i} + \alpha_{n+1} \sum_{i=0}^{n} S_{n}^{i-1}$$
$$= \prod_{i=0}^{n+1} \alpha_{i} + (1 - \alpha_{n+1}) + \alpha_{n+1} (1 - S_{n}^{n})$$
$$= \prod_{i=0}^{n+1} \alpha_{i} + (1 - \alpha_{n+1}) + \alpha_{n+1} - \alpha_{n+1} \prod_{i=0}^{n} \alpha_{i} = 1.$$

We shall now prove that $\lim_{n \to \infty} S_n^i = 0$ for all $i \ge 1$. For i = 1,

$$S_n^1 = \alpha_p \prod_{\substack{i=p\\i \neq p}}^n (1 - \alpha_i) + \alpha_{p+1} \prod_{\substack{i=p\\i \neq p+1}}^n (1 - \alpha_i) + \dots + \alpha_{n+1} \prod_{\substack{i=p\\i \neq n}}^n (1 - \alpha_i).$$

It is clear that $S_{n+1}^1 = (1 - \alpha_{n+1})S_n^1 + \alpha_{n+1} \prod_{i=p}^n (1 - \alpha_i)$. As we know, $1 - x \le e^{-x}$ for all x > 0. Since $\sum_{i=p}^{\infty} \alpha_i = \infty$, $\lim_{n \to \infty} \prod_{i=p}^n (1 - \alpha_i) = 0$ and so by lemma 2.1, $\lim_{n \to \infty} S_n^1 = 0$. Assume that $\lim_{n \to \infty} S_n^{i-1} = 0$. Then

$$S_{n+1}^{i} = (1 - \alpha_{n+1})S_{n}^{i} + \alpha_{n+1}S_{n}^{i-1}.$$

By using an argument similar to case i = 1, by Lemma 2.1, we can deduce that $\lim_{n \to \infty} S_n^i = 0$. Let n > 2p + 1. Since $\varphi(t) < t$ for all t > 0, we get

$$\begin{aligned} \|u_{n+1} - q\| &\leq \sum_{i=p+1}^{n+1} y_i + (\sum_{i=0}^p S_n^i) M + (\sum_{i=p+1}^n S_n^i) \varphi^p(M) + (\prod_{i=p}^n \alpha_i) \varphi^p(d_p) \\ &\leq \sum_{i=p+1}^{n+1} y_i + (\sum_{i=0}^p S_n^i) M + \varphi^p(M) + \varphi^p(M) \\ &< \frac{\epsilon}{4} + y_{n+1} + (\sum_{i=0}^p S_n^i) M + \frac{\epsilon}{4} + \frac{\epsilon}{4} \leq \epsilon + y_{n+1} + (\sum_{i=0}^p S_n^i) M. \end{aligned}$$

Thus, $\limsup_{n \to \infty} ||u_n - q|| \le \epsilon$ and so $\lim_{n \to \infty} ||u_n - q|| = 0$. This shows that the Mann iteration is almost T-stable.

Example 2.1. Define the function $T : \mathbb{R} \to \mathbb{R}$ by $T(x) = |x| - \log(1 + |x|)$. Clearly 0 is unique fixed point of T. To show that Mann iteration is almost T-stable, by theorem 2.2, define $\varphi : [0, \infty) \to [0, \infty)$ by $\varphi(x) = x - \log(1 + x)$.

Corollary 2.3. Let X be a normed space, $\varphi : [0, \infty) \to [0, \infty)$ a map satisfying the property (A_1) and $T : X \to X$ a self-map satisfying

$$||Tx - Ty|| \le \varphi(\max\{||x - y||, \frac{1}{2}[||x - Tx|| + ||y - Ty||], ||x - Ty||, ||y - Tx||\}),$$

for all $x, y \in X$. Then Mann iteration is almost T-stable.

Proof. It is known that T has a unique fixed point q. Hence, it is sufficient to show that T satisfies (2.1). If $x \neq q$, then

$$||Tx - q|| \le \varphi(\max\{||x - q||, \frac{||x - Tx||}{2}, ||Tx - q||\}).$$

If $\max\{\|x-q\|, \frac{\|x-Tx\|}{2}, \|Tx-q\|\} = \|Tx-q\|$, then $\|Tx-q\| = 0$. Thus, suppose that $||Tx - q|| \le \varphi(\max\{||x - q||, \frac{||x - Tx||}{2}\})$. If $||x - q|| < \frac{||x - Tx||}{2}$, then

$$\|Tx - q\| \le \varphi(\frac{\|x - Tx\|}{2}) \le \varphi(\frac{1}{2}[\|x - q\| + \|q - Tx\|]) \le \varphi(\max\{\|x - q\|, \|q - Tx\|\}),$$

and (2.1) holds.

and (2.1) holds.

Remark 2.1. It is easy to check that our results also hold for Ishikawa iteration.

3. T-STABILITY OF PICARD ITERATION FOR MAPS SATISFY A CONTRACTIVE CONDITION OF INTEGRAL TYPE

In this section, we shall verify the T-stability of Picard iteration for mappings satisfying a contractive condition of integral type. Let \mathbb{R}_+ be the set of nonnegative real numbers and

(i) $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ is subadditive, nondecreasing and continuous from the right such that $\psi(t) < t$ for all t > 0;

(ii) $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a summable, Lebesgue-integrable and nonincreasing mapping on $(0,\infty)$ such that $\int_{o}^{\varepsilon} \varphi(t) dt > 0$ for each $\varepsilon > 0$.

Note that, there are many functions which satisfy (i). For example, suppose that $g: [0,\infty) \to [0,1]$ is a strictly decreasing map. Then, $\psi(t) = \int_0^t g(x) dx$ satisfies (i).

Let (X, d) be a complete metric space, $\psi, \varphi : \mathbb{R}_+ \to \mathbb{R}_+$ two maps satisfying the conditions (i) and (ii) respectively and $T: X \to X$ a map satisfying the following property (A_2) :

$$\int_{0}^{d(Tx,Ty)} \varphi(t)dt \le \psi\left(\int_{0}^{M(x,y)} \varphi(t)dt\right) \ (A_2)$$

for all $x, y \in X$, where $M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$. From [2; Theorem 8], we can conclude that, if there exists a bounded sequence $\{y_n\}_{n\geq 0}$ with $y_{n+1} = Ty_n$ for all $n \ge 0$, then T has a unique fixed point.

Theorem 3.1. Let (X,d) be a complete metric space and $T : X \to X$ a mapping satisfying property (A_2) . If there exists a bounded sequence $\{y_n\}_{n\geq 0}$ such that $\lim_{n \to \infty} d(y_{n+1}, Ty_n) = 0, \text{ then } \{y_n\}_{n \ge 0} \text{ converges to the unique fixed point of } T.$

Proof. Define the sequence $\{z_n\}$ by $z_{2n} = y_n$, $z_{2n+1} = Ty_n$, and $O(z_k, n) =$ $\{z_k, z_{k+1}, \ldots, z_{k+n}\}$. For any set A, $\delta(A)$ denotes the diameter of A. We shall show that $\delta(O(z_0))$ is finite.

Since $\lim_{n \to \infty} d(y_{n+1}, Ty_n) = 0$, there exists a positive integer N such that, for all $n > N, d(y_{n+1}, Ty_n) < 1/2.$

For any i, j > N,

$$d(y_i, y_j) \le \delta(O(y_0)) \le M,$$

which is finite since $\{y_n\}$ is bounded.

$$d(y_i, Ty_j) \le d(y_i, y_{j+1}) + d(y_{j+1}, Ty_j) \le M + \frac{1}{2}.$$

 $d(Ty_i, Ty_j) \le d(y_{i+1}, Ty_i) + d(y_{i+1}, y_{j+1}) + d(y_{j+1}, Ty_j) \le M + 1.$

It then follows that $\delta(O(z_0))$ is finite.

Using Lemma 7 of [2],

$$\int_0^{\delta(O(z_k,n))} \varphi(t) \le \psi^k \left(\int_0^{\delta(O(z_0))} \varphi(t) dt \right),$$

which implies that $\lim_{n,k} \delta(O(z_k, n)) = 0$. Thus $\{z_n\}$ is a Cauchy sequence, which converges to some point $q \in X$, since X is complete. It is also the case that $\lim_n y_n = \lim_n Ty_n = q$.

Using (A_2) , it follows that $\lim_{n \to \infty} \int_0^{\delta_n} \varphi(t) dt = 0$ and so $\lim_{n \to \infty} \delta_n = 0$. Hence, $\{y_n\}_{n \ge 1}$ is a Cauchy sequence. Suppose that y_n converges q. Then, we have

$$\int_{0}^{d(q,Tq)} \varphi(t)dt = \lim_{n \to \infty} \int_{0}^{d(Ty_n,Tq)} \varphi(t)dt \le \limsup_{n \to \infty} \psi\left(\int_{0}^{M(y_n,q)} \varphi(t)dt\right)$$
$$\le \psi\left(\int_{0}^{d(q,Tq)} \varphi(t)dt\right).$$

This implies that $\int_{0}^{d(q,Tq)} \varphi(t)dt = 0$ and so d(q,Tq) = 0. By a method similar to the proof of [2; Theorem 8], we can show that the fixed point of T is unique.

Corollary 3.2. Let (X, d) be a complete metric space and $T : X \to X$ satisfying property (A_2) . If the Picard iteration is convergent, then it is T-stable.

Letting $\psi(t) = kt$ with $k \in [0, 1)$ in (A_2) , we obtain the following result.

Corollary 3.3. Let (X,d) be a complete metric space, $k \in [0,1)$ and $T: X \to X$ satisfying

$$\int_{0}^{d(Tx,Ty)} \varphi(t)dt \le k \int_{0}^{M(x,y)} \varphi(t)dt, \text{ for all } x, y \in X.$$

where φ satisfies the property (ii). If there exists a bounded sequence $\{y_n\}_{n\geq 1}$ such that $\lim_{n\to\infty} d(y_{n+1}, Ty_n) = 0$, then the sequence $\{y_n\}_{n\geq 1}$ converges to the unique fixed point T.

By considering $\varphi(t) = 1$ and $\psi(t) = kt$ with $k \in [0, 1)$ in (A_2) , we obtain

Corollary 3.4. Let (X,d) be a complete metric space, $k \in [0,1)$ and $T : X \to X$ satisfying $d(Tx,Ty) \leq k \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}$, for all $x, y \in X$. Then the Picard iteration is T-stable.

185

References

- [1] V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag 2007.
- A. Djoudi, F. Merghadi, Common fixed point theorems for maps under contractive condition of integral type, J. Math. Anal. Appl., 341(2008), 953-960.
- [3] A.M. Harder, T.L. Hicks, A stable iteration procedure for nonexpansive mappings, Math. Japon., 33(1988), no. 5, 687-692.
- [4] A.M. Harder, T.L. Hicks, Stability results for fixed point iteration procedures, Math. Japon., 33(1988), no. 5, 693-706.
- [5] Y. Qing, B.E. Rhoades, *T-stability of Picard iteration in metric spaces*, Fixed Point Theory Appl., 2008(2008), Article ID 418971, 4 pages.
- [6] B.E. Rhoades, S.M. Soltuz, The equivalence between the convergence of Ishikawa and Mann iterations for an asymptotically pseudocontractive map, J. Math. Anal. Appl., 283(2003), 681-688.
- [7] B.E. Rhoades, S.M. Soltuz, The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl., 289(2004), 266-278.
- [8] B.E. Rhoades, S.M. Soltuz, The equivalence between Mann-Ishikawa iteration and multistep iteration, Nonlinear Anal., 58(2004), 219-228.
- B.E. Rhoades, S.M. Soltuz, The equivalence between the T-stabilities of Mann and Ishikawa iterations, J. Math. Anal. Appl., 318(2006), 472-475.
- [10] B.E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 63(2003), 4007-4013.
- [11] N. Shahzad, H. Zegeye, On stability results for φ -strongly pseudocontractive mappings, Nonlinear Anal., **64**(2006), 2619-2630.
- [12] S.M. Soltuz, The equivalence between the T-stabilities of Picard-Banach and Mann-Ishikawa iterations, Applied Math. E-Notes, 8(2008), 109-114.

Received: June 13, 2009; Accepted: October 28, 2010.