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Abstract. In this paper, we introduce a new iterative scheme for finding solutions the common

element of the set of fixed points of a nonexpansive mapping and the set of solutions of the varia-

tional inclusion problem with a multivalued maximal monotone mapping and an α-inverse-strongly
monotone mapping. We show that the sequence converges strongly to a common solutions for quasi

variational inclusion and fixed point problems under some parameters controlling conditions. This

main theorem extends a recent result of Zhang et al. [Algorithms of common solutions to quasi
variational inclusion and fixed point problems. Appl. Math. Mech. Engl. Ed., 2008, 29(5)(2006),

571-581.] and some other authors.
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1. Introduction

Let H be a real Hilbert space with norm ‖·‖ and inner product 〈·, ·〉. Let A : H → H
be a single-valued nonlinear mapping and M : H → 2H be a multi-valued mapping.
We are interested to the problem so-called quasi-variational inclusion problem, that
is, determine an element u ∈ H such that

0 ∈ A(u) + M(u). (1.1)
The set of solutions of the problem (1.1) is denoted by V I(H,A, M).

Examples of the variational inclusion (1.1):
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(I) If M = ∂ϕ, where ∂ϕ denotes the subdifferential of a proper, convex and
lower semi-continuous functional ϕ : H → (−∞,+∞], then problem (1.1)
reduces to the following problem: find u ∈ H such that

〈A(u), v − u〉+ ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ H. (1.2)
which is called a nonlinear variational inequality and has been studied by
many authors.

(II) If M = ∂δC , where C is a nonempty closed convex subset of H, and δC :
H → [0,∞] is the indicator function of C, i.e.,

δC(x) =
{

0, x ∈ C,

+∞, x /∈ C.
(1.3)

Then the variational inclusion problem (1.1) is equivalent (see [32]) to find
u ∈ C such that

〈A(u), v − u〉 ≥ 0, ∀v ∈ C. (1.4)

This problem is called Hartman-Stampacchia variational inequality problem
(or the classical variational inequality) denoted by V I(C,A).

Inspired by their wide applications, many researchers have studied the classical
variational inequality and generalized it in various directions. Many computational
methods for solving variational inequalities have been proposed in Hilbert spaces,
see [1, 4, 8] and [18] and the references therein. In fact, it is worth noting that,
the variational inequalities problems are among the most interesting and important
mathematical problems and have been studied intensively in the past years since they
have wide applications in mechanics, physics, optimization and control, nonlinear pro-
gramming, economics and transportation equilibrium, and engineering sciences, etc.
Meanwhile, the variational inclusions problems have been generalized and extended
in different directions using the novel and innovative techniques. Various kinds of it-
erative algorithms to solve the variational inequalities and variational inclusions have
been developed by many authors, see [8, 5, 10, 11, 12, 13, 15, 16, 17, 27, 28, 30] and
[32] and the references therein.

In 1976, Korpelevich [14] introduced the following so-called extragradient method:
Let C be a closed convex subset of RN ,

x0 = x ∈ C,

x̄n = PC(xn − λAxn),

xn+1 = PC(xn − λAx̄n)
(1.5)

for all n ≥ 0, where A is a monotone and k-Lipschitz continuous mapping of C
in to RN . He showed that if V I(C,A) is nonempty then, under some suitable
conditions, the sequences {xn} and {x̄n}, generated by (1.5), converge to the same
point z ∈ V I(C,A).

Related to the variational inequalities problems, we also have the problems of
finding the fixed points of the nonlinear mappings, which is the subject of current
interest in functional analysis. It is natural to construct a unified approach for these
problems. In this direction, several authors have introduced some iterative schemes
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for finding a common element of the set of solutions of the equilibrium problems and
the set of fixed points of nonlinear mappings. In 2003, Takahashi and Toyoda [26]
introduced the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn) (1.6)

for every n = 0, 1, 2, ..., where x0 = x ∈ C,αn is a sequence in (0, 1), and λn is a
sequence in (0, 2α). They proved that if F (S)∩V I(C,A) 6= ∅, where F (S) is denoted
for the set of fixed points of S, then the sequence {xn} generated by (1.6) converges
weakly to some z ∈ F (S)∩V I(C,A). Moreover, in 2006, Yao and Yao [31] introduced
the following iterative scheme:{

yn = PC(xn − λnAxn)
xn+1 = αnu + βnxn + γnSPC(yn − λnAyn), (1.7)

where {αn}, {βn}, {γn} are three sequences in [0, 1] and {λn} is a sequence in [0, 2α].
They proved that, under some suitable control conditions, the sequence {xn} de-
fined by (1.7) converges strongly to common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality for α-
inverse-strongly monotone mappings under some parameters controlling conditions.
Recently, in 2008, Zhang Shi-sheng et al. [32], introduced the following iterative
scheme:

xn+1 = αnx + (1− αn)SJλ
M (xn − λAxn) (1.8)

for every n = 0, 1, 2, ..., where Jλ
M the resolvent operator associated with M and

M is maximal monotone and x0 = x ∈ H, {αn} is a sequence in (0, 1), and λ ∈
(0, 2α] satisfy some parameters controlling conditions. They proved that if F (S) ∩
V I(H,A, M) 6= ∅, then the sequence {xn} converges strongly to PF (S)∩V I(H,A,M)x0.

On the other hand, in 2000, Moudafi [21] introduced the so-called viscosity approx-
imation method for nonexpansive mappings: Let f be a contraction on H. Starting
with an arbitrary x0 ∈ H, defined a sequence {xn} generated by

xn+1 = αnf(xn) + (1− αn)Sxn, n ≥ 0, (1.9)

where {αn} is a sequence in (0, 1). Moreover, Takahashi and Takahashi [25] introduced
an iterative scheme by using the viscosity approximation method to proved a strong
convergence theorem, which is connected with Combettes and Hirstoaga’s result [7]
and Wittmann’s result [29].

In this paper, motivated by the iterative schemes considered in [21, 25, 31, 32], we
will introduce the new following iterative process: given x0 ∈ H arbitrarily and{

xn+1 = αnf(xn) + βnxn + γnSJλ
M (yn − λAyn),

yn = Jλ
M (xn − λAxn), n ≥ 0.

We will use the sequence {xn} for finding a common element of the set of fixed points
of a nonexpansive mapping and the solutions set of the quasi variational inequality
inclusion problem for an α-inverse-strongly monotone mapping in a real Hilbert space.
Furthermore, we also provide some strong convergence theorems which are connected
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with Yao and Yao’s result [31] and Takahashi and Takahashi’s result [25]. Our results
extend and improve the results of Sheng et al. [32].

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and let C be
a closed convex subset of H. In the following, we denote by → strong convergence
and by ⇀ weak convergence. It is well known that for any λ ∈ [0, 1]

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.1)
For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonex-
pansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (2.2)

for every x, y ∈ H. Moreover, PCx is characterized by the following properties: PCx ∈
C and

〈x− PCx, y − PCx〉 ≤ 0, (2.3)
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (2.4)

for all x ∈ H, y ∈ C. It is easy to see that the following is true :

u ∈ V I(C,A) ⇔ u = PC(u− λAu), λ > 0. (2.5)

We now recall some basic definitions and well-known results.
A mapping S : H → H is called L-Lipschitz continuous, if

‖Sx− Sy‖ ≤ L‖x− y‖ ∀x, y ∈ H.

In particular, if L = 1 then S is called a nonexpansive mapping. Moreover, if L ∈ [0, 1)
then S is called a contraction mapping.

Recall that a mapping A : H → H is said to be:
(i) monotone if 〈Au−Av, u− v〉 ≥ 0, ∀u, v ∈ H;
(ii) α-inverse-strongly monotone [2, 18] if there exists a positive real number α

such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, ∀u, v ∈ C.

Notice that any α-inverse-strongly monotone mapping A is monotone and 1
α -Lipschitz

continuous. Moreover, if A is α-inverse-strongly monotone, then I − λA is a nonex-
pansive mapping from C to H, provided λ ≤ 2α.

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx
and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone mapping M : H → 2H is maximal
if the graph of G(M) of M is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping M is maximal if and only
if for (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(M) implies f ∈ Mx. Let
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M be a monotone map of H into H, L-Lipschitz continuous mapping and let NCv be
the normal cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈u− v, w〉 ≥ 0,∀u ∈ C}. Define

Tv =
{

Mv + NCv, v ∈ C;
∅, v /∈ C.

Then T is the maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,B); see [23].

Proposition 2.1. [32, Proposition 1.2] Let M : H → H be a maximal monotone
mapping. For any λ > 0, define the operator Jλ

M : H → H by Jλ
M = (I + λM)−1,

where I is the identity operator on H. Then Jλ
M possesses the following properties:

(i) Jλ
M is single-valued and nonexpansive mapping;

(ii) Jλ
M is 1-inverse-strongly monotone, i.e.,

‖Jλ
Mx− Jλ

My‖2 ≤ 〈x− y, Jλ
Mx− Jλ

My〉, ∀x, y ∈ H. (2.6)

Definition 2.2. Let M : H → H be a maximal monotone mapping. Then for any
λ > 0, the mapping Jλ

M : H → H associated with M defined by

Jλ
M (x) = (I + λM)−1(x), ∀x ∈ H,

is called the resolvent operator.

Lemma 2.3. [32]. Let M : H → H be a maximal monotone mapping.

(1) For any λ > 0, we have

u ∈ V I(H,A, M) ⇔ u = Jλ
M (u− λAu),∀λ > 0. (2.7)

(2) If λ ∈ (0, 2α], then V I(H,A, M) is a closed convex subset in H.

In order to prove our main results, we need the following lemmas.

Lemma 2.4. [22] Let (E, 〈., .〉) be an inner product space. Then for all x, y, z ∈ E
and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 −αβ‖x− y‖2 −αγ‖x− z‖2 − βγ‖y− z‖2.

Lemma 2.5. ([24]) Let {xn} and {zn} be bounded sequences in a Banach space E
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1 − βn)zn + βnxn for all integers n ≥ 1 and lim supn→∞(‖zn+1 −
zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖zn − xn‖ = 0.

Lemma 2.6. ([29]) Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− λn)an + bn, ∀n ≥ n0,

where n0 is some nonnegative integer, {λn} is a sequence in [0, 1] with
∑∞

n=1 λn = ∞,
bn = ◦(λn), then limn→∞ an = o.
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3. Main results

In this section, we prove strong convergence theorems.

Theorem 3.1. Let H be a real Hilbert space and let A : H → H be an α−inverse-
strongly monotone mapping M : H → 2H be a maximal monotone mapping and S be
a nonexpansive mapping of H into itself. Let f be a contraction of H into itself. Let
{xn} be a sequence generated by


x0 ∈ H, chosen arbitrary ,

xn+1 = αnf(xn) + βnxn + γnSzn

zn = Jλ
M (yn − λAyn),

yn = Jλ
M (xn − λAxn)

(3.1)

for all n ∈ N ∪ {0}, where {αn}, {βn}, {γn} are three sequences in [0, 1] and λ ∈
(0, 2α]. If {αn}, {βn}, {γn} and λ are chosen so that λ ∈ (a, b] for some a, b with
0 < a < λ ≤ b < 2α and

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

If F (S) ∩ V I(H,A, M) 6= ∅, then {xn} converges strongly to z0 which is the unique
solution in F (S) ∩ V I(H,A, M) to the following variational inequality:

〈(f − I)z0, z0 − z〉 ≤ 0 for all z ∈ F (S) ∩ V I(H,A, M). (3.2)

Equivalently, we have z0 = PF (S)∩V I(H,A,M)f(z0).

Proof. Let v ∈ F (S)∩V I(H,A, M), then v = Jλ
M (v−λAv). By the nonexpansiveness

of Jλ
M and I − λA, we note that

‖zn − v‖ = ‖Jλ
M (yn − λAyn)− Jλ

M (v − λAv)‖
≤ ‖(yn − λAyn)− (v − λAv)‖
= ‖(I − λA)yn − (I − λA)v‖
≤ ‖yn − v‖ (3.3)

= ‖Jλ
M (xn − λAxn)− Jλ

M (v − λAv)‖
≤ ‖(xn − λAxn)− (v − λAv)‖
≤ ‖xn − v‖. (3.4)
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Thus, we have

‖xn+1 − v‖ = ‖αnf(xn) + βnxn + γnSzn − v‖
≤ αn‖f(xn)− v‖+ βn‖xn − v‖+ γn‖zn − v‖
≤ αn‖f(xn)− v‖+ βn‖xn − v‖+ γn‖xn − v‖
≤ αn‖f(xn)− f(v)‖+ αn‖f(v)− v‖+ (1− αn)‖xn − v‖
≤ αnα‖xn − v‖+ αn‖f(v)− v‖+ (1− αn)‖xn − v‖

= (1− αn(1− α))‖xn − v‖+ αn(1− α)
‖f(v)− v‖

(1− α)

≤ max{‖x0 − v‖, ‖f(v)− v‖
(1− α)

}.

Therefore {xn} is bounded. Consequently, the sets {xn}, {zn}, {Szn}, {Axn} and
{Ayn} are also bounded. Moreover, we observe that

‖zn+1 − zn‖ = ‖Jλ
M (yn+1 − λAyn+1)− Jλ

M (yn − λAyn)‖
≤ ‖(yn+1 − λAyn+1)− (yn − λAyn)‖
= ‖(I − λA)yn+1 − (I − λA)yn‖
≤ ‖yn+1 − yn‖
= ‖Jλ

M (xn+1 − λAxn+1)− Jλ
M (xn − λnAxn)‖

≤ ‖(xn+1 − λAxn+1)− (xn − λnAxn)‖
≤ ‖xn+1 − xn‖. (3.5)

Let xn+1 = (1− βn)wn + βnxn. Thus, we note that

wn =
xn+1 − βnxn

1− βn
=

αnf(xn) + γnSzn

1− βn
=

αnf(xn) + γnSJλ
M (yn − λAyn)

1− βn

and hence we have

wn+1 − wn =
αn+1f(xn+1) + γn+1Szn+1

1− βn+1
− αnf(xn) + γnSzn

1− βn

=
αn+1f(xn+1) + γn+1Szn+1

1− βn+1
− αn+1f(xn) + γn+1Szn

1− βn+1

+
αn+1f(xn) + γn+1Szn

1− βn+1
− αnf(xn) + γnSzn

1− βn

=
αn+1

1− βn+1
(f(xn+1)− f(xn)) + (

αn+1

1− βn+1
− αn

1− βn
)f(xn)

+
γn+1

1− βn+1
(Szn+1 − Szn) + (

γn+1

1− βn+1
− γn

1− βn
)Szn. (3.6)

Combining (3.5) and (3.6), we obtain

‖wn+1−wn‖−‖xn+1−xn‖ ≤
αn+1

1− βn+1
‖f(xn+1)−f(xn)‖+| αn+1

1− βn+1
− αn

1− βn
|‖f(xn)‖

+
γn+1

1− βn+1
‖zn+1 − zn‖+ | γn+1

1− βn+1
− γn

1− βn
|‖Szn‖ − ‖xn+1 − xn‖
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≤ αn+1

1− βn+1
α‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|‖f(xn)‖

+
γn+1

1− βn+1
‖xn+1 − xn‖+

γn+1

1− βn+1
− γn

1− βn
|‖Szn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
α‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|‖f(xn)‖

+| γn+1

1− βn+1
− γn

1− βn
|‖Szn‖+ (

γn+1

1− βn+1
− 1)‖xn+1 − xn‖

≤ |αn+1(α− 1)
1− βn+1

|‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖Szn‖)

This together with (ii) and (iii) imply that

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.5, we obtain ‖wn − xn‖ → 0 as n →∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖wn − xn‖ = 0. (3.7)

From (iii), (3.5) and (3.7), we also have ‖zn+1 − zn‖ → 0, ‖xn+1 − xn‖ → 0 and
‖yn+1 − yn‖ → 0 as n →∞. Since

xn+1 − xn = αnf(xn) + βnxn + γnSzn − xn = αn(f(xn)− xn) + γn(Szn − xn),

it follows by (ii) and (3.7) that

‖xn − Szn‖ → 0 as n →∞. (3.8)

From Lemma 2.4, equations (3.1) and (3.3), we get

‖xn+1 − v‖2 ≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2 + γn‖zn − v‖2

≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2 + γn‖yn − v‖2

≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2

+ γn{‖Jλ
M (xn − λAxn)− Jλ

M (v − λAv)‖2}
≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2

+ γn{‖(xn − λAxn)− (v − λAv)‖2}
≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2

+ γn{‖xn − v‖2 + λ(λ− 2α)‖Axn −Av‖2}
= αn‖f(xn)− v‖2 + βn‖xn − v‖2

+ γn‖xn − v‖2 + γnλ(λ− 2α)‖Axn −Av‖2

≤ αn‖f(xn)− v‖2 + (1− αn)‖xn − v‖2 + γna(b− 2α)‖Axn −Av‖2.

Therefore, we have

− γna(b− 2α)‖Axn −Av‖2 ≤ αn‖f(xn)− v‖2 + ‖xn − v‖2 − ‖xn+1 − v‖2

= αn‖f(xn)− v‖2 + (‖xn − v‖+ ‖xn+1 − v‖)× (‖xn − v‖ − ‖xn+1 − v‖)
≤ αn‖f(xn)− v‖2 + (‖xn − v‖+ ‖xn+1 − v‖)× ‖xn − xn+1‖. (3.9)
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Since αn → 0 and ‖xn−xn+1‖ → 0 as n →∞, from (3.9), we obtain ‖Axn−Av‖ → 0
as n →∞. Since Jλ

M is 1-inverse-strongly monotone mapping, we have

‖yn − v‖2 = ‖Jλ
M (xn − λAxn)− Jλ

M (v − λAv)‖2

≤ 〈(xn − λAxn)− (v − λAv), yn − v〉

=
1
2
{‖(xn − λAxn)− (v − λAv)‖2 + ‖yn − v‖2

− ‖(xn − λAxn)− (v − λAv)− (yn − v)‖2}

≤ 1
2
{‖xn − v‖2 + ‖yn − v‖2 − ‖(xn − yn)− λ(Axn −Av)‖2}

=
1
2
{‖xn − v‖2 + ‖yn − v‖2 − ‖xn − yn‖2

+ 2λ〈xn − yn, Axn −Av〉 − λ2‖Axn −Av‖2}

so, we obtain

‖yn − v‖2 ≤ ‖xn − v‖2 − ‖xn − yn‖2 + 2λ〈xn − yn, Axn −Av〉 − λ2‖Axn −Av‖2.

Hence

‖xn+1 − v‖2 ≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2 + γn‖zn − v‖2

≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2 + γn‖yn − v‖2

≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2 + γn{‖xn − v‖2 − ‖xn − yn‖2

+ 2λ〈xn − yn, Axn −Av〉 − λ2‖Axn −Av‖2}
≤ αn‖f(xn)− v‖2 + βn‖xn − v‖2 + γn{‖xn − v‖2 − ‖xn − yn‖2

+ 2λ〈xn − yn, Axn −Av〉 − λ2‖Axn −Av‖2}
≤ αn‖f(xn)− v‖2 + ‖xn − v‖2 − γn‖xn − yn‖2

+ 2γnλ‖xn − yn‖‖Axn −Av‖

which implies that

γn‖xn − yn‖2 ≤ αn‖f(xn)− v‖2 + ‖xn − v‖2 − ‖xn+1 − v‖2

+ 2γnλ‖xn − yn‖‖Axn −Av‖
≤ αn‖f(xn)− v‖2 + 2γnλ‖xn − yn‖‖Axn −Av‖
+ ‖xn − xn+1‖ × (‖xn − v‖+ ‖xn+1 − v‖). (3.10)

From αn → 0, ‖xn−xn+1‖ → 0 and ‖Axn−Av‖ → 0 as n →∞, we have ‖xn−yn‖ → 0
as n →∞. Since

‖Szn − zn‖ ≤ ‖Szn − xn‖+ ‖xn − yn‖+ ‖yn − zn‖
= ‖Szn − xn‖+ ‖xn − yn‖+ ‖Jλ

M (xn − λAxn)− Jλ
M (yn − λAyn)‖

≤ ‖Szn − xn‖+ ‖xn − yn‖+ ‖(xn − λAxn)− (yn − λAyn)‖
≤ ‖Szn − xn‖+ 2‖xn − yn‖,
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we get ‖Szn − zn‖ → 0 as n →∞. Hence

‖zn − yn‖ ≤ ‖zn − Szn‖+ ‖Szn − xn‖+ ‖xn − yn‖ → 0, n →∞.

It is clear that PF (S)∩V I(H,A,M)f is contractive, then PF (S)∩V I(H,A,M)f has a unique
fixed point, say z0 ∈ H. That is z0 = PF (S)∩V I(H,A,M)fz0.
Next, we show that

lim sup
n→∞

〈f(z0)− z0, xn − z0〉 ≤ 0.

To this end, we choose a subsequence {zni
} of {zn} such that

lim sup
n→∞

〈f(z0)− z0, Szn − z0〉 = lim
i→∞

〈f(z0)− z0, Szni
− z0〉.

Since {zni} is bounded, there exists a subsequence {znij
} of {zni} which converges

weakly to z. Without loss of generality, we can assume that zni
⇀ z. From ‖Szn −

zn‖ → 0, we obtain Szni ⇀ z. By the Opial’s condition, we obtain z ∈ F (S).
Finally, by the same argument as that in the proof of [32, Theorem 2.1, p. 578-579],

we can show that z ∈ V I(H,A, M). Hence z ∈ F (S) ∩ V I(H,A, M).
Now from (3.8), we have

lim sup
n→∞

〈f(z0)− z0, xn − z0〉 = lim sup
n→∞

〈f(z0)− z0, Szn − z0〉

= lim
i→∞

〈f(z0)− z0, Szni
− z0〉

= 〈f(z0)− z0, z − z0〉 ≤ 0. (3.11)

Therefore,

‖xn+1 − z0‖2 = 〈αnf(xn) + βnxn + γnSzn − z0, xn+1 − z0〉
= αn〈f(xn)− z0, xn+1 − z0〉+ βn〈xn − z0, xn+1 − z0〉
+ γn〈Szn − z0, xn+1 − z0〉

≤ αn〈f(xn)− z0, xn+1 − z0〉+
1
2
βn(‖xn − z0‖2 + ‖xn+1 − z0‖2)

+
1
2
γn(‖zn − z0‖2 + ‖xn+1 − z0‖2)

=
1
2
(βn + γn)(‖xn − z0‖2 + ‖xn+1 − z0‖2)

+ αn〈f(xn)− f(z0), xn+1 − z0〉+ αn〈f(z0)− z0, xn+1 − z0〉

=
1
2
(1− αn)(‖xn − z0‖2 + ‖xn+1 − z0‖2) + αnα‖xn − z0‖‖xn+1 − z0‖

+ αn〈f(z0)− z0, xn+1 − z0〉

≤ 1
2
{(1− αn)‖xn − z0‖2 + ‖xn+1 − z0‖2}+ αnα‖xn − z0‖‖xn+1 − z0‖

+ αn〈f(z0)− z0, xn+1 − z0〉

which implies that

‖xn+1−z0‖2≤(1−αn)‖xn−z0‖2+2αnα‖xn−z0‖‖xn+1−z0‖+2αn〈f(z0)−z0, xn+1−z0〉.
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Finally by (3.11) and Lemma 2.6, we get that {xn} converges to z0. This completes
the proof. �

Using the same argument as in the proof in Theorem 3.1, we can obtain the fol-
lowing theorems in Hilbert Spaces.

Theorem 3.2. Let H be a real Hilbert space and let A be an α−inverse-strongly
monotone mapping of C into H, M : H → 2H be a maximal monotone mapping and
S be a nonexpansive mapping of H into itself. Suppose that F (S)∩V I(H,A, M) 6= ∅.
Let f be a contraction of H into itself and given x0 ∈ H arbitrarily and {xn} is the
sequences defined by

xn+1 = αnf(xn) + βnxn + γnSJλ
M (xn − λAxn), (3.12)

for all n ∈ N∪{0}, where {αn}, {βn}, {γn} are three sequences in [0, 1] and λ ∈ (0, 2α].
If {αn}, {βn} and {γn} satisfy the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then {xn} converges strongly to z0 which is the unique solution in F (S)∩V I(H,A, M)
to the following variational inequality:

〈(f − I)z0, z0 − z〉 ≤ 0 for all z ∈ F (S) ∩ V I(H,A, M). (3.13)

Corollary 3.3. Let H be a real Hilbert space and let A be an α−inverse-strongly
monotone mapping of C into H, M : H → 2H be a maximal monotone mapping and
S be a nonexpansive mapping of H into itself. Suppose that F (S)∩V I(H,A, M) 6= ∅.
Given x0 = u ∈ H arbitrarily and {xn} is the sequences defined by

xn+1 = αnu + βnxn + γnSJλ
M (xn − λAxn) (3.14)

for all n ∈ N ∪ {0}, where {αn}, {βn}, {γn} are three sequences in [0, 1] and λ ∈
(0, 2α] . If {αn}, {βn}, {γn} and {λ} are chosen so that λ ∈ (a, b] for some a, b with
0 < a < λ ≤ b < 2α and

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then {xn} converges strongly to PF (S)∩V I(H,A,M)x0.

Proof. Put f(xn) = x0, for all n ∈ N in Theorem 3.2, we obtain the desired easily. �

4. Applications

Using Theorem 3.1, we obtain the following results.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
an α−inverse-strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F (S) ∩ V I(C,A) 6= ∅. Suppose x1 = u ∈ C and
{xn}, {yn} are given by{

yn = PC(xn − λAxn)
xn+1 = αnf(xn) + βnxn + γnSPC(yn − λAyn),
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where {αn}, {βn}, {γn} are three sequences in [0, 1] and λ ∈ (0, 2α] . If {αn}, {βn},
{γn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 2α and

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then {xn} converges strongly to PF (S)∩V I(C,A)f(z0).

Proof. Take M = ∂δC : H → 2H , where δC : H → [0,∞] is the indicator function of
C, i.e.,

δC(x) =
{

0, x ∈ C;
+∞, x /∈ C.

Then the variational inclusion problem (1.1) is equivalent to variational inequality
problem (1.4) (see [32]). Putting Jλ

M|C
= I, and we get

yn = PC(xn − λAxn) = Jλ
M (PC(xn − λAxn))

and
zn = PC(yn − λAyn) = Jλ

M (PC(yn − λAyn)).

The conclusion of Theorem 4.1 can be obtained from Theorem 3.1 immediately. �

Next, we will apply the main results to the problem for finding a common element
of the set of fixed points of a nonexpansive mappings and the set of fixed points of a
k-strictly pseudocontractive mapping.

Definition 4.2. A mapping T : C → H is said to be a k-strictly pseudocontractive
mapping, if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C. (4.1)

Remark 4.3. If T : C → H is a k-strictly pseudocontractive mapping, then I − T
is 1−k

2 -inverse-strongly monotone. Indeed, Let T : C → H be a k-strictly pseudo-
contractive mapping for some 0 ≤ k < 1. Set the mapping A = I − T : C → H.
From

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

we have
‖(I −A)x− (I −A)y‖2 ≤ ‖x− y‖2 + k‖Ax−Ay‖2.

On the other hand, we observe that

‖(I −A)x− (I −A)y‖2 = ‖x− y‖2 − 2〈x− y, Ax−Ay〉+ ‖Ax−Ay‖2.

Hence we have

〈x− y, Ax−Ay〉 ≥ 1− k

2
‖Ax−Ay‖2.

This shows that A is 1−k
2 -inverse-strongly monotone.
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Theorem 4.4. Let C be a closed convex subset of a real Hilbert space H. Let S
be a nonexpansive mapping of C into itself and let T be a strictly pseudocontractive
mapping with constant k of C into itself such that F (S)∩F (T ) 6= ∅. For x1 = u ∈ C,
let the sequence {xn} be given by{

yn = (1− λ)xn + λTxn

xn+1 = αnf(xn) + βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N ∪ {0}, where {αn}, {βn}, {γn} are three sequences in [0, 1] and λ ∈
[0, 1 − k]. If {αn}, {βn}, {γn} and λ are chosen so that λ ∈ [a, b] for some a, b with
0 < a < b < 1− k and

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then {xn} converges strongly to PF (S)∩F (T )u.

Proof. Setting A = I−T, we obtain A is 1−k
2 −inverse-strongly monotone. We observe

that F (T ) is the solution set of V I(A,C) i.e., F (T ) = V I(A,C). Moreover, since
PC(xn − λAxn) = (1 − λ)xn + λTxn and PC(yn − λAyn) = (1 − λ)yn + λTyn, by
Theorem 4.1, the conclusion follows. �
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