Fixed Point Theory, 12(2011), No. 1, 155-164 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT THEORY IN GENERALIZED APPROXIMATE NEIGHBORHOOD EXTENSION SPACES

DONAL O'REGAN

Department of Mathematics, National University of Ireland Galway, Ireland E-mail: donal.oregan@nuigalway.ie

Abstract. Several new fixed point results for compact self maps in new classes of spaces are presented in this paper.

Key Words and Phrases: Extension spaces, fixed point theory.

2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

In Sections 2 we present new results on fixed point theory in extension type spaces. In particular we discuss compact self-maps on GNES (generalized neighborhood extension spaces) and GANES (generalized approximate neighborhood extension spaces) spaces. These spaces are generalization of spaces considered in [8, 9, 15, 16]. Our results were motivated in part from ideas in [1, 2, 9, 11, 12, 15, 16].

For the remainder of this section we present some definitions and known results which will be needed throughout this paper. Suppose X and Y are topological spaces. Given a class \mathcal{X} of maps, $\mathcal{X}(X,Y)$ denotes the set of maps $F: X \to 2^Y$ (nonempty subsets of Y) belonging to \mathcal{X} , and \mathcal{X}_c the set of finite compositions of maps in \mathcal{X} . We let

$$\mathcal{F}(\mathcal{X}) = \{ Z : Fix F \neq \emptyset \text{ for all } F \in \mathcal{X}(Z, Z) \}$$

where Fix F denotes the set of fixed points of F.

The class \mathcal{A} of maps is defined by the following properties:

(i). \mathcal{A} contains the class \mathcal{C} of single valued continuous functions;

(ii). each $F \in \mathcal{A}_c$ is upper semicontinuous and closed valued; and

(iii). $B^n \in \mathcal{F}(\mathcal{A}_c)$ for all $n \in \{1, 2,\}$; here $B^n = \{x \in \mathbf{R}^n : ||x|| \le 1\}$.

Remark 1.1. The class \mathcal{A} is essentially due to Ben-El-Mechaiekh and Deguire [6]. \mathcal{A} includes the class of maps \mathcal{U} of Park (\mathcal{U} is the class of maps defined by (i), (iii) and (iv). each $F \in \mathcal{U}_c$ is upper semicontinuous and compact valued). Thus if each $F \in \mathcal{A}_c$ is compact valued the class \mathcal{A} and \mathcal{U} coincide and this is what occurs in Section 2 since our maps will be compact.

We next consider the class $\mathcal{U}_c^{\kappa}(X,Y)$ (respectively $\mathcal{A}_c^{\kappa}(X,Y)$) of maps $F: X \to 2^Y$ such that for each F and each nonempty compact subset K of X there exists

a map $G \in \mathcal{U}_c(K,Y)$ (respectively $G \in \mathcal{A}_c(K,Y)$) such that $G(x) \subseteq F(x)$ for all $x \in K$.

Notice [14] that \mathcal{U}_c^{κ} is closed under compositions. The class \mathcal{U}_c^{κ} include (see [3]) the Kakutani maps, the acyclic maps, the O'Neill maps, the approximable maps and the maps admissible with respect to Gorniewicz.

For a subset K of a topological space X, we denote by $Cov_X(K)$ the set of all coverings of K by open sets of X (usually we write $Cov(K) = Cov_X(K)$). Given a map $F: X \to 2^X$ and $\alpha \in Cov(X)$, a point $x \in X$ is said to be an α -fixed point of F if there exists a member $U \in \alpha$ such that $x \in U$ and $F(x) \cap U \neq \emptyset$. Given two maps single valued $f, g: X \to Y$ and $\alpha \in Cov(Y)$, f and g are said to be α -close if for any $x \in X$ there exists $U_x \in \alpha$ containing both f(x) and g(x). We say f and g are α -homotopic if there is a homotopy $h_h: X \to Y$ ($0 \le t \le 1$) joining f and g such that for each $x \in X$ the values $h_t(x)$ belong to a common $U_x \in \alpha$ for all $t \in [0, 1]$.

The following results can be found in [4, Lemma 1.2 and 4.7].

Theorem 1.1. Let X be a regular topological space and $F: X \to 2^X$ an upper semicontinuous map with closed values. Suppose there exists a cofinal family of coverings $\theta \subseteq Cov_X(\overline{F(X)})$ such that F has an α -fixed point for every $\alpha \in \theta$. Then F has a fixed point.

Remark 1.2. From Theorem 1.1 in proving the existence of fixed points in uniform spaces for upper semicontinuous compact maps with closed values it suffices [5 pp. 298] to prove the existence of approximate fixed points (since open covers of a compact set A admit refinements of the form $\{U[x] : x \in A\}$ where U is a member of the uniformity [13 pp. 199] so such refinements form a cofinal family of open covers). Note also uniform spaces are regular (in fact completely regular) [7 pp. 431] (see also [7 pp. 434]). Note in Theorem 1.1 if F is compact valued then the assumption that X is regular can be removed. For convenience in this paper we will apply Theorem 1.1 only when the space is uniform.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map $p: \Gamma \to X$ is called a Vietoris map (written $p: \Gamma \Rightarrow X$) if the following two conditions are satisfied:

(i). for each $x \in X$, the set $p^{-1}(x)$ is acyclic

(ii). p is a proper map i.e. for every compact $A \subseteq X$ we have that $p^{-1}(A)$ is compact.

Let D(X, Y) be the set of all pairs $X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\rightarrow} Y$ where p is a Vietoris map and q is continuous. We will denote every such diagram by (p,q). Given two diagrams (p,q) and (p',q'), where $X \stackrel{p'}{\leftarrow} \Gamma' \stackrel{q'}{\rightarrow} Y$, we write $(p,q) \sim (p',q')$ if there are maps $f: \Gamma \to \Gamma'$ and $g: \Gamma' \to \Gamma$ such that $q' \circ f = q$, $p' \circ f = p$, $q \circ g = q'$ and $p \circ g = p'$. The equivalence class of a diagram $(p,q) \in D(X,Y)$ with respect to \sim is denoted by

$$\phi = \{ X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\rightarrow} Y \} : X \to Y$$

or $\phi = [(p,q)]$ and is called a morphism from X to Y. We let M(X,Y) be the set of all such morphisms. For any $\phi \in M(X,Y)$ a set $\phi(x) = q p^{-1}(x)$ where $\phi = [(p,q)]$ is called an image of x under a morphism ϕ .

Consider vector spaces over a field K. Let E be a vector space and $f: E \to E$ an endomorphism. Now let $N(f) = \{x \in E : f^{(n)}(x) = 0 \text{ for some } n\}$ where $f^{(n)}$ is the n^{th} iterate of f, and let $\tilde{E} = E \setminus N(f)$. Since $f(N(f)) \subseteq N(f)$ we have the induced endomorphism $\tilde{f}: \tilde{E} \to \tilde{E}$. We call f admissible if $\dim \tilde{E} < \infty$; for such f we define the generalized trace Tr(f) of f by putting $Tr(f) = tr(\tilde{f})$ where trstands for the ordinary trace.

Let $f = \{f_q\} : E \to E$ be an endomorphism of degree zero of a graded vector space $E = \{E_q\}$. We call f a Leray endomorphism if (i). all f_q are admissible and (ii). almost all $\tilde{E_q}$ are trivial. For such f we define the generalized Lefschetz number $\Lambda(f)$ by

$$\Lambda(f) = \sum_{q} \, (-1)^q \, Tr \, (f_q).$$

Let H be the Čech homology functor with compact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus $H(X) = \{H_q(X)\}$ is a graded vector space, $H_q(X)$ being the q-dimensional Čech homology group with compact carriers of X. For a continuous map $f: X \to X$, H(f) is the induced linear map $f_* = \{f_{*q}\}$ where $f_{*q}: H_q(X) \to$ $H_q(X)$.

With Čech homology functor extended to a category of morphisms (see [10 pp. 364]) we have the following well known result (note the homology functor H extends over this category i.e. for a morphism

$$\phi = \{ X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\rightarrow} Y \} : X \to Y$$

we define the induced map

$$H(\phi) = \phi_{\star} : H(X) \to H(Y)$$

by putting $\phi_{\star} = q_{\star} \circ p_{\star}^{-1}$).

Recall the following result [8 pp. 227].

Theorem 1.2. If $\phi : X \to Y$ and $\psi : Y \to Z$ are two morphisms (here X, Y and Z are Hausdorff topological spaces) then

$$(\psi \circ \phi)_{\star} = \psi_{\star} \circ \phi_{\star}.$$

Two morphisms $\phi, \psi \in M(X, Y)$ are homotopic (written $\phi \sim \psi$) provided there is a morphism $\chi \in M(X \times [0, 1], Y)$ such that $\chi(x, 0) = \phi(x), \ \chi(x, 1) = \psi(x)$ for every $x \in X$ (i.e. $\phi = \chi \circ i_0$ and $\psi = \chi \circ i_1$, where $i_0, i_1 : X \to X \times [0, 1]$ are defined by $i_0(x) = (x, 0), \ i_1(x) = (x, 1)$). Recall the following result [9, pp. 231]: If $\phi \sim \psi$ then $\phi_{\star} = \psi_{\star}$.

Let $\phi: X \to Y$ be a multivalued map (note for each $x \in X$ we assume $\phi(x)$ is a nonempty subset of Y). A pair (p,q) of single valued continuous maps of the form $X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\to} Y$ is called a selected pair of ϕ (written $(p,q) \subset \phi$) if the following two conditions hold:

(i). p is a Vietoris map and

(ii). $q(p^{-1}(x)) \subset \phi(x)$ for any $x \in X$.

Definition 1.1. An upper semicontinuous map $\phi : X \to Y$ is said to be strongly admissible [9, 10] (and we write $\phi \in Ads(X, Y)$) provided there exists a selected pair (p,q) of ϕ with $\phi(x) = q(p^{-1}(x))$ for $x \in X$.

Definition 1.2. A map $\phi \in Ads(X, X)$ is said to be a Lefschetz map if for each selected pair $(p,q) \subset \phi$ with $\phi(x) = q(p^{-1}(x))$ for $x \in X$ the linear map $q_* p_*^{-1}$: $H(X) \to H(X)$ (the existence of p_*^{-1} follows from the Vietoris Theorem) is a Leray endomorphism.

When we talk about $\phi \in Ads$ it is assumed that we are also considering a specified selected pair (p,q) of ϕ with $\phi(x) = q(p^{-1}(x))$.

Remark 1.3. In fact since we specify the pair (p,q) of ϕ it is enough to say ϕ is a Lefschetz map if $\phi_{\star} = q_{\star} p_{\star}^{-1} : H(X) \to H(X)$ is a Leray endomorphism. However for the examples of ϕ , X known in the literature [9] the more restrictive condition in Definition 1.2 works. We note [9, pp 227] that ϕ_{\star} does not depend on the choice of diagram from [(p,q)], so in fact we could specify the morphism.

If $\phi: X \to X$ is a Lefschetz map as described above then we define the Lefschetz number (see [9, 10]) $\Lambda(\phi)$ (or $\Lambda_X(\phi)$) by

$$\mathbf{\Lambda}(\phi) = \mathbf{\Lambda}(q_\star p_\star^{-1}).$$

If we do not wish to specify the selected pair (p,q) of ϕ then we would consider the Lefschetz set $\Lambda(\phi) = \{\Lambda(q_* p_*^{-1}) : \phi = q(p^{-1})\}.$

Definition 1.3. A Hausdorff topological space X is said to be a Lefschetz space (for the class Ads) provided every compact $\phi \in Ads(X, X)$ is a Lefschetz map and $\Lambda(\phi) \neq 0$ implies ϕ has a fixed point.

Definition 1.4. An upper semicontinuous map $\phi : X \to Y$ with closed values is said to be admissible (and we write $\phi \in Ad(X, Y)$) provided there exists a selected pair (p,q) of ϕ .

Definition 1.5. A map $\phi \in Ad(X, X)$ is said to be a Lefschetz map if for each selected pair $(p,q) \subset \phi$ the linear map $q_* p_*^{-1} : H(X) \to H(X)$ (the existence of p_*^{-1} follows from the Vietoris Theorem) is a Leray endomorphism.

If $\phi: X \to X$ is a Lefschetz map, we define the Lefschetz set $\Lambda(\phi)$ (or $\Lambda_X(\phi)$) by

$$\mathbf{\Lambda}(\phi) = \left\{ \Lambda(q_\star p_\star^{-1}) : (p,q) \subset \phi \right\}.$$

Definition 1.6. A Hausdorff topological space X is said to be a Lefschetz space (for the class Ad) provided every compact $\phi \in Ad(X, X)$ is a Lefschetz map and $\Lambda(\phi) \neq \{0\}$ implies ϕ has a fixed point.

Remark 1.4. Many examples of Lefschetz spaces (for the class Ad or Ads) can be found in [1, 2, 8, 9, 10, 11, 12, 15, 16].

Definition 1.7. A multivalued map $F : X \to K(Y)$ (K(Y) denotes the class of nonempty compact subsets of Y) is in the class $\mathcal{A}_m(X,Y)$ if (i). F is continuous, and (ii). for each $x \in X$ the set F(x) consists of one or m acyclic components; here m is a positive integer. We say F is of class $\mathcal{A}_0(X,Y)$ if F is upper semicontinuous and for each $x \in X$ the set F(x) is acyclic.

Definition 1.8. A decomposition $(F_1, ..., F_n)$ of a multivalued map $F: X \to 2^Y$ is a sequence of maps

 $X = X_0 \xrightarrow{F_1} X_1 \xrightarrow{F_2} X_2 \xrightarrow{F_3} \quad \dots \quad \xrightarrow{F_{n-1}} X_{n-1} \xrightarrow{F_n} X_n = Y,$

where $F_i \in \mathcal{A}_{m_i}(X_{i-1}, X_i)$, $F = F_n \circ \dots \circ F_1$. One can say that the map F is determined by the decomposition (F_1, \dots, F_n) . The number n is said to be the length of the decomposition (F_1, \dots, F_n) . We will denote the class of decompositions by $\mathcal{D}(X, Y)$.

Definition 1.9. An upper semicontinuous map $F : X \to K(Y)$ is permissible provided it admits a selector $G : X \to K(Y)$ which is determined by a decomposition $(G_1, ..., G_n) \in \mathcal{D}(X, Y)$. We denote the class of permissible maps from X into Y by $\mathcal{P}(X, Y)$.

Let X be a Hausdorff topological space and let a map Φ be determined by $(\Phi_1, ..., \Phi_k) \in \mathcal{D}(X, X)$. Then Φ is said to be a Lefschetz map if the induced homology homomorphism [9, pp 262, 263] $(\Phi_1, ..., \Phi_k)_* : H(X) \to H(X)$ is a Leray endomorphism.

If $\Phi: X \to X$ is a Lefschetz map as described above then we define the Lefschetz number (see [9]) $\Lambda(\Phi)$ (or $\Lambda_X(\Phi)$) by

$$\mathbf{\Lambda}(\Phi) = \mathbf{\Lambda}((\Phi_1, ..., \Phi_k)_{\star}).$$

A Hausdorff topological space X is said to be a Lefschetz space (for the class \mathcal{D}) provided every compact $\Phi : X \to K(X)$ determined by a decomposition $(\Phi_1, ..., \Phi_k) \in \mathcal{D}(X, X)$ is a Lefschetz map and $\Lambda(\phi) \neq 0$ implies Φ has a fixed point.

A map $\Phi \in \mathcal{P}(X, X)$ is said to be a Lefschetz map provided every selector $G : X \to K(X)$ of Φ which is determined by $(G_1, ..., G_k) \in \mathcal{D}(X, X)$ is such that $(G_1, ..., G_k)_{\star} : H(X) \to H(X)$ is a Leray endomorphism.

If $\Phi \in \mathcal{P}(X, X)$ is a Lefschetz map as described above then we define the Lefschetz set $\Lambda(\Phi)$ (or $\Lambda_X(\Phi)$) by

$$\begin{aligned} \mathbf{\Lambda} \left(\Phi \right) &= \{ \Lambda((G_1,...,G_k)_\star) : \ (G_1,...,G_k) \in \mathcal{D}(X,X) \\ & \text{ and } \ (G_1,...,G_k) \ \text{ determines a selection of } \ \Phi \}. \end{aligned}$$

A Hausdorff topological space X is said to be a Lefschetz space (for the class \mathcal{P}) provided every compact $\Phi \in \mathcal{P}(X, X)$ is a Lefschetz map and $\Lambda(\phi) \neq \{0\}$ implies Φ has a fixed point.

2. Fixed point theory

By a space we mean a Hausdorff topological space. Let X be a space and $F \in \mathcal{U}_c^{\kappa}(X, X)$. We say $X \in GNES$ (w.r.t. \mathcal{U}_c^{κ} and F) if there exists a space U, a single valued continuous map $r: U \to X$ and a compact valued upper semicontinuous map $\Phi \in \mathcal{U}_c^{\kappa}(K, U)$ with $r \Phi = id_K$ (here $K = \overline{F(X)}$).

Remark 2.1. Examples of *GNES* spaces can be found in [16, Section 4]. The space U will be discussed below for particular classes of \mathcal{U}_c^{κ} maps.

Now assume $X \in GNES$ (w.r.t. \mathcal{U}_c^{κ} and F) and $F \in \mathcal{U}_c^{\kappa}(X, X)$ a compact map. Let U, r and Φ be as described above and let $G = \Phi F r$. Notice $G \in \mathcal{U}_c^{\kappa}(U, U)$

DONAL O'REGAN

is a compact map (note the image of a compact set under Φ is compact). We now <u>assume</u>

$$G \in \mathcal{U}_{c}^{\kappa}(U, U)$$
 has a fixed point. (2.1)

Then there exists $x \in U$ with $x \in Gx$. Let y = r(x), so $y \in r \Phi F(y)$ i.e. $y \in r \Phi(q)$ for some $q \in F(y)$. Note $q \in K = \overline{F(X)}$. Now since $r \Phi = id_K$ we have $y \in F(y)$. **Theorem 2.1.** Let $X \in GNES$ (w.r.t. \mathcal{U}_c^{κ} and F) and $F \in \mathcal{U}_c^{\kappa}(X,X)$ a compact map. Also assume (2.1) holds with U, r and Φ as described above. Then F has a fixed point.

We discuss Theorem 2.1 for the class Ad(X, X). Let X be a space and $F \in Ad(X, X)$. We say $X \in GNES$ (w.r.t. Ad and F) if there exists a Lefschetz space (for the class Ad) U, a single valued continuous map $r: U \to X$ and a compact valued map $\Phi \in Ad(K, U)$ with $r \Phi = id_K$ (here $K = \overline{F(X)}$).

Now assume $X \in GNES$ (w.r.t. Ad and F) and $F \in Ad(X, X)$ a compact map. Let U, r and Φ be as described above and let $G = \Phi F r$. Notice $G \in Ad(U, U)$ is a compact map. Let (p,q) be a selected pair for F and (p_1,q_1) be a selected pair of Φ . Now since $Fr \in Ad(U, X)$ then [9, Section 40] guarantees that there exists a selected pair (p',q') of Fr with

$$(q')_{\star} (p')_{\star}^{-1} = q_{\star} \, p_{\star}^{-1} \, r_{\star}. \tag{2.2}$$

Also there exists [9, Section 40] a selected pair $(\overline{p}, \overline{q})$ of G with

$$(\overline{q})_{\star} (\overline{p})_{\star}^{-1} = (q_1)_{\star} (p_1)_{\star}^{-1} (q')_{\star} (p')_{\star}^{-1}$$
(2.3)

so (2.2) and (2.3) imply

$$(\overline{q})_{\star} (\overline{p})_{\star}^{-1} = (q_1)_{\star} (p_1)_{\star}^{-1} q_{\star} p_{\star}^{-1} r_{\star}.$$
(2.4)

Notice as well that

$$q_{\star} p_{\star}^{-1} r_{\star} (q_1)_{\star} (p_1)_{\star}^{-1} = q_{\star} p_{\star}^{-1}$$
(2.5)

since $r \Phi = id_K$ (here $K = \overline{F(X)}$). Now U is a Lefschetz space (for the class Ad) so $(\overline{q})_{\star}(\overline{p})_{\star}^{-1}$ is a Leray endomorphism. Now [8, page 214, see (1.3)] (here E' = U', $E'' = X', u = (q')_{\star}(p')_{\star}^{-1}, v = (q_1)_{\star}(p_1)_{\star}^{-1}, f' = (\overline{q})_{\star}(\overline{p})_{\star}^{-1}$ and $f'' = q_{\star} p_{\star}^{-1}$ and note (2.2), (2.4) and (2.5)) guarantees that $q_{\star} p_{\star}^{-1}$ is a Leray endomorphism and $\Lambda(q_{\star} p_{\star}^{-1}) = \Lambda((\overline{q})_{\star}(\overline{p})_{\star}^{-1})$. Thus $\Lambda(F)$ is well defined.

Next suppose $\Lambda(F) \neq \{0\}$. Then there exists a selected pair (p,q) as described above with $\Lambda(q_* p_*^{-1}) \neq 0$. Let \overline{p} and \overline{q} be as described above with $\Lambda((\overline{q})_* (\overline{p})_*^{-1}) =$ $\Lambda(q_* p_*^{-1}) \neq 0$. Now since U is a Lefschetz space (for the class Ad) there exists $x \in U$ with $x \in \overline{q}(\overline{p})^{-1}(x)$ i.e. $x \in G(x)$ so (2.1) is satisfied. Combining with Theorem 2.1 we have the following result.

Theorem 2.2. Let $X \in GNES$ (w.r.t. Ad and F) and $F \in Ad(X, X)$ a compact map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq \{0\}$ then F has a fixed point.

Remark 2.2. One could also discuss Ads maps. Let X be a space and $F \in Ads(X, X)$. We say $X \in GNES$ (w.r.t. Ads and F) if there exists a Lefschetz space (for the class Ads) U, a single valued continuous map $r : U \to X$ and a map $\Phi \in Ads(K, U)$ with $r\Phi = id_K$ (here $K = \overline{F(X)}$). Essentially the same reasoning as in Theorem 2.2 establishes: Let $X \in GNES$ (w.r.t. Ads and F) and

 $F \in Ads(X, X)$ a compact map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

Remark 2.3. One could also obtain a result for the class \mathcal{P} (of course the results here can trivially be adjusted for the class \mathcal{D}). Let X be a space and $F \in \mathcal{P}(X, X)$. We say $X \in GNES$ (w.r.t. \mathcal{P} and F) if there exists a Lefschetz space (for the class \mathcal{P}) U, a single valued continuous map $r: U \to X$ and a map $\Phi \in \mathcal{P}(K, U)$ with $r \Phi = id_K$ (here $K = \overline{F(X)}$). Let $X \in GNES$ (w.r.t. \mathcal{P} and F) and $F \in \mathcal{P}(X, X)$ a compact map. Let U, r and Φ be as described above and let $G = \Phi F r$. Notice $G \in \mathcal{P}(U, U)$ is a compact map. We now assume the following condition:

 $\begin{cases} \text{ for every selector } H: X \to K(X) \text{ of } F \text{ which is} \\ \text{determined by } (H_1, ..., H_n) \in \mathcal{D}(X, X) \text{ and every selector} \\ \Psi: \overline{F(X)} \to K(U) \text{ of } \Phi \text{ which is determined by} \\ (\Psi_1, ..., \Psi_m) \in \mathcal{D}(\overline{F(X)}, U) \text{ there exists a} \\ (S_1, ..., S_k) \in \mathcal{D}(U, X) \text{ which determines } F r \text{ with} \\ (S_1, ..., S_k)_{\star} = (H_1, ..., H_n)_{\star} r_{\star} \text{ and there exists a} \\ (G_1, ..., G_l) \in \mathcal{D}(U, U) \text{ which determines a selection } G \text{ with} \\ (H_1, ..., H_n)_{\star} r_{\star} (\Psi_1, ..., \Psi_m)_{\star} = (H_1, ..., H_n)_{\star} \text{ and} \\ (\Psi_1, ..., \Psi_m)_{\star} (S_1, ..., S_k)_{\star} = (G_1, ..., G_l)_{\star}. \end{cases}$

Fix a selector H of F and a selector Ψ of Φ and let $(H_1, ..., H_n)$, $(\Psi_1, ..., \Psi_m)$ and $(S_1, ..., S_k)$ be as described in (2.6). Notice

$$(\Psi_1, ..., \Psi_m)_{\star} (S_1, ..., S_k)_{\star} = (G_1, ..., G_l)_{\star}$$

and

$$(S_1,...,S_k)_\star \, (\Psi_1,...,\Psi_m)_\star = (H_1,...,H_n)_\star \, r_\star \, (\Psi_1,...,\Psi_m)_\star = (H_1,...,H_n)_\star.$$

Now U is a Lefschetz space (for the class \mathcal{P}) so $(G_1, ..., G_l)_{\star}$ is a Leray endomorphism. Now [8, page 214, see (1.3)] (here $E' = U', E'' = X', u = (S_1, ..., S_k)_{\star}, v = (\Psi_1, ..., \Psi_m)_{\star}, f' = (G_1, ..., G_l)_{\star}$ and $f'' = (H_1, ..., H_n)_{\star}$) guarantees that $(H_1, ..., H_n)_{\star}$ is a Leray endomorphism and $\Lambda((H_1, ..., H_n)_{\star}) = \Lambda((G_1, ..., G_l)_{\star})$. Thus $\Lambda(F)$ is well defined. Also as in Theorem 2.2 it is easy to see that if $\Lambda(F) \neq \{0\}$ then F has a fixed point.

Let X be a space and $F \in \mathcal{U}_c^{\kappa}(X, X)$. We say $X \in GANES$ (w.r.t. \mathcal{U}_c^{κ} and F) if for each $\alpha \in Cov_X(K)$ (here $K = \overline{F(X)}$) there exists a space U_{α} , a single valued continuous map $r_{\alpha} : U_{\alpha} \to X$ and a compact valued upper semicontinuous map $\Phi_{\alpha} \in \mathcal{U}_c^{\kappa}(K, U_{\alpha})$ such that $r_{\alpha} \Phi_{\alpha} : K \to 2^X$ and $i : K \to X$ are strongly α -close (by this we mean for each $x \in K$ there exists $V_x \in \alpha$ with $r_{\alpha} \Phi_{\alpha}(x) \subseteq V_x$ and $x = i(x) \in V_x$).

Now assume $X \in GANES$ (w.r.t. \mathcal{U}_c^{κ} and F) is a uniform space and $F \in \mathcal{U}_c^{\kappa}(X, X)$ is a compact upper semicontinuous map with closed values. Let $\alpha \in Cov_X(\overline{F(X)})$ and let U_{α} , r_{α} and Φ_{α} be as described above. Now let $G_{\alpha} = \Phi_{\alpha} F r_{\alpha}$. Notice $G_{\alpha} \in \mathcal{U}_c^{\kappa}(U_{\alpha}, U_{\alpha})$ is a compact upper semicontinuous map with closed values. We now assume

$$G_{\alpha} \in \mathcal{U}_{c}^{\kappa}(U_{\alpha}, U_{\alpha})$$
 has a fixed point (for each $\alpha \in Cov_{X}(\overline{F(X)})$). (2.7)

Then there exists $x \in U_{\alpha}$ with $x \in G_{\alpha}(x)$. Let $y = r_{\alpha}(x)$, so $y \in r_{\alpha} \Phi_{\alpha} F(y)$ i.e. $y \in r_{\alpha} \Phi_{\alpha}(q)$ for some $q \in F(y)$. Note $q \in K = \overline{F(X)}$. Now since $r_{\alpha} \Phi_{\alpha} : K \to 2^{X}$ and $i: K \to X$ are strongly α -close there exists $V \in \alpha$ with

$$r_{\alpha} \Phi_{\alpha}(q) \subseteq V \text{ and } q \in V$$

Thus $y \in V$ since $y \in r_{\alpha} \Phi_{\alpha}(q), q \in F(y)$ and $q \in V$, so

 $y \in V$ and $F(y) \cap V \neq \emptyset$.

As a result F has an α -fixed point so Theorem 1.1 guarantees that F has a fixed point.

Theorem 2.3. Let $X \in GANES$ (w.r.t. \mathcal{U}_{c}^{κ} and F) be a uniform space and $F \in \mathcal{U}_{c}^{\kappa}(X,X)$ a compact upper semicontinuous map with closed values. Also assume (2.7) holds with U_{α} , r_{α} and Φ_{α} as described above. Then F has a fixed point.

We discuss Theorem 2.3 for the class Ad(X, X). Let X be a space and $F \in$ Ad(X,X). We say $X \in GANES$ (w.r.t. Ad and F) if for each $\alpha \in Cov_X(K)$ (here K = F(X) there exists a Lefschetz space (for the class Ad) U_{α} , a single valued continuous map $r_{\alpha}: U_{\alpha} \to X$ and a compact valued map $\Phi_{\alpha} \in Ad(K, U_{\alpha})$ such that $r_{\alpha} \Phi_{\alpha} : K \to X$ and $i : K \to X$ are α -close (by this we mean for each $x \in K$ there exists $V_x \in \alpha$ with $r_\alpha \Phi_\alpha(x) \in V_x$ and $x = i(x) \in V_x$ and α -homotopic.

Now assume $X \in GANES$ (w.r.t. Ad and F) is a uniform space and $F \in$ Ad(X,X) is a compact map. Let $\alpha \in Cov_X(F(X))$ and let U_{α} , r_{α} and Φ_{α} be as described above. Let $G_{\alpha} = \Phi_{\alpha} F r_{\alpha}$. Let (p,q) be a selected pair for F and $(p^0_{\alpha}, q^0_{\alpha})$ be a selected pair of Φ_{α} . Now since $Fr_{\alpha} \in Ad(U_{\alpha}, X)$ then [9, Section 40] guarantees that there exists a selected pair $(p'_{\alpha}, q'_{\alpha})$ of Fr_{α} with

$$(q'_{\alpha})_{\star} (p'_{\alpha})_{\star}^{-1} = q_{\star} p_{\star}^{-1} (r_{\alpha})_{\star}.$$
(2.8)

Also there exists [9, Section 40] a selected pair $(\overline{p}_{\alpha}, \overline{q}_{\alpha})$ of G_{α} with

$$(\bar{q}_{\alpha})_{\star} (\bar{p}_{\alpha})_{\star}^{-1} = (q_{\alpha}^{0})_{\star} (p_{\alpha}^{0})_{\star}^{-1} (q_{\alpha}')_{\star} (p_{\alpha}')_{\star}^{-1}$$
(2.9)

so (2.8) and (2.9) imply

$$(\bar{q}_{\alpha})_{\star} (\bar{p}_{\alpha})_{\star}^{-1} = (q_{\alpha}^{0})_{\star} (p_{\alpha}^{0})_{\star}^{-1} q_{\star} p_{\star}^{-1} (r_{\alpha})_{\star}.$$
(2.10)

Notice as well that

$$q_{\star} p_{\star}^{-1} (r_{\alpha})_{\star} (q_{\alpha}^{0})_{\star} (p_{\alpha}^{0})_{\star}^{-1} = q_{\star} p_{\star}^{-1}$$
(2.11)

since $r_{\alpha} \Phi_{\alpha}$ and *i* are α -homotopic (so [9 pp. 202] guarantees that $(r_{\alpha} \Phi_{\alpha})_{\star} = i_{\star}$ and so for any selected pair $(p_{\alpha}^1, q_{\alpha}^1)$ of Φ_{α} there exists a selected pair $(p_{\alpha}^2, q_{\alpha}^2)$ of and so for any selected pair $(p_{\alpha}^{1}, q_{\alpha}^{1})$ of Φ_{α} there exists a selected pair $(p_{\alpha}^{2}, q_{\alpha}^{2})$ of i with $i_{\star} = (q_{\alpha}^{2})_{\star} (p_{\alpha}^{2})_{\star}^{-1} = (r_{\alpha})_{\star} (q_{\alpha}^{1})_{\star} (p_{\alpha}^{1})_{\star}^{-1}$. Now U_{α} is a Lefschetz space (for the class Ad) so $(\bar{q}_{\alpha})_{\star} (\bar{p}_{\alpha})_{\star}^{-1}$ is a Leray endomorphism. Now [8, page 214, see (1.3)] (here $E' = U'_{\alpha}, E'' = X', u = (q'_{\alpha})_{\star} (p'_{\alpha})_{\star}^{-1}, v = (q_{\alpha}^{0})_{\star} (p_{\alpha}^{0})_{\star}^{-1}, f' = (\bar{q}_{\alpha})_{\star} (\bar{p}_{\alpha})_{\star}^{-1}$ and $f'' = q_{\star} p_{\star}^{-1}$ and note (2.8), (2.10) and (2.11)) guarantees that $q_{\star} p_{\star}^{-1}$ is a Leray endomorphism and $\Lambda (q_{\star} p_{\star}^{-1}) = \Lambda ((\bar{q}_{\alpha})_{\star} (\bar{p}_{\alpha})_{\star}^{-1})$. Thus $\Lambda (F)$ is well defined. Next suppose $\Lambda (F) \neq \{0\}$. Then there exists a selected pair (p,q) as described above with $\Lambda (q_{\star} p_{\star}^{-1}) \neq 0$. Let \bar{p}_{α} and \bar{q}_{α} be as described above with $\Lambda ((\bar{q}_{\alpha})_{\star} (\bar{p}_{\alpha})_{\star}^{-1}) \neq 0$. Now since U_{α} is a Lefschetz space (for the class Ad) there exists $x \in U_{\alpha}$ with $x \in \bar{q}$ $(\bar{p})^{-1}(x)$ i.e. $x \in G_{\alpha}(x)$ so (2.7) is satisfied.

Ad) there exists $x \in U_{\alpha}$ with $x \in \overline{q}_{\alpha}(\overline{p}_{\alpha})^{-1}(x)$ i.e. $x \in G_{\alpha}(x)$ so (2.7) is satisfied. Note (2.7) here implies F has an α -fixed point since $r_{\alpha} \Phi_{\alpha}$ and i are automatically

strongly α -close (since $r_{\alpha} \Phi_{\alpha} : K \to X$ and $i : K \to X$ are α -close). Thus we have the following result.

Theorem 2.4. Let $X \in GANES$ (w.r.t. Ad and F) be a uniform space and $F \in Ad(X, X)$ a compact map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq \{0\}$ then F has a fixed point.

Remark 2.4. In the definition of GANES (w.r.t. Ad and F) it is easy to see that one could replace the assumption that $r_{\alpha} \Phi_{\alpha} : K \to X$ and $i : K \to X$ are α -close and α -homotopic with the assumption that $r_{\alpha} \Phi_{\alpha} : K \to 2^X$ and $i : K \to X$ are strongly α -close and $(r_{\alpha})_* (q_{\alpha}^1)_* (p_{\alpha}^1)_*^{-1} = i_*$ for any selected pair $(p_{\alpha}^1, q_{\alpha}^1)$ of Φ_{α} . **Remark 2.5.** One could also discuss Ads maps. Let X be a space and $F \in$ Ads(X, X). We say $X \in GANES$ (w.r.t. Ads and F) if for each $\alpha \in Cov_X(K)$ (here $K = \overline{F(X)}$) there exists a Lefschetz space (for the class Ads) U_{α} , a single valued continuous map $r_{\alpha} : U_{\alpha} \to X$ and a map $\Phi_{\alpha} \in Ads(K, U_{\alpha})$ such that $r_{\alpha} \Phi_{\alpha} : K \to X$ and $i : K \to X$ are α -close and α -homotopic. Essentially the same reasoning as in Theorem 2.4 establishes: Let $X \in GANES$ (w.r.t. Ads and F) be a uniform space and $F \in Ads(X, X)$ a compact map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point. There is also an analogue of Remark 2.4 in this situation.

Remark 2.6. One could also obtain a result for the class \mathcal{P} (of course the results here can trivially be adjusted for the class \mathcal{D}). Let X be a space and $F \in \mathcal{P}(X, X)$. We say $X \in GANES$ (w.r.t. \mathcal{P} and F) if for each $\alpha \in Cov_X(K)$ (here $K = \overline{F(X)}$) there exists a Lefschetz space (for the class \mathcal{P}) U_{α} , a single valued continuous map $r_{\alpha}: U_{\alpha} \to X$ and a map $\Phi_{\alpha} \in \mathcal{P}(K, U_{\alpha})$ such that $r_{\alpha} \Phi_{\alpha} : K \to 2^X$ and $i: K \to X$ are strongly α -close. Now assume $X \in GANES$ (w.r.t. \mathcal{P} and F) is a uniform space and $F \in \mathcal{P}(X, X)$ is a compact map. Let $\alpha \in Cov_X(\overline{F(X)})$ and let U_{α}, r_{α} and Φ_{α} be as described above. Let $G_{\alpha} = \Phi_{\alpha} F r_{\alpha}$. We now assume the following condition (for each $\alpha \in Cov_X(\overline{F(X)})$):

(for every selector $H: X \to K(X)$ of F which is determined by $(H_1, ..., H_n) \in \mathcal{D}(X, X)$ and every selector $\Psi_{\alpha}: \overline{F(X)} \to K(U_{\alpha})$ of Φ_{α} which is determined by $(\Psi_{1,\alpha}, ..., \Psi_{m,\alpha}) \in \mathcal{D}(\overline{F(X)}, U_{\alpha})$ there exists a $(S_{1,\alpha}, ..., S_{k,\alpha}) \in \mathcal{D}(U_{\alpha}, X)$ which determines $F r_{\alpha}$ with $(S_{1,\alpha}, ..., S_{k,\alpha})_{\star} = (H_1, ..., H_n)_{\star} (r_{\alpha})_{\star}$ and there exists a $(G_{1,\alpha}, ..., G_{l,\alpha}) \in \mathcal{D}(U_{\alpha}, U_{\alpha})$ which determines a selection G_{α} with $(H_1, ..., H_n)_{\star} (r_{\alpha})_{\star} (\Psi_{1,\alpha}, ..., \Psi_{m,\alpha})_{\star} = (H_1, ..., H_n)_{\star}$ and $(\Psi_{1,\alpha}, ..., \Psi_{m,\alpha})_{\star} (S_{1,\alpha}, ..., S_{k,\alpha})_{\star} = (G_{1,\alpha}, ..., G_{l,\alpha})_{\star}$.

Reasoning as above establishes $\Lambda((H_1, ..., H_n)_{\star}) = \Lambda((G_{1,\alpha}, ..., G_{l,\alpha})_{\star})$, so $\Lambda(F)$ is well defined. Also it is easy to see that if $\Lambda(F) \neq \{0\}$ then F has a fixed point.

References

- R. P. Agarwal, D. O'Regan, A Lefschetz fixed point theorem for admissible maps in Fréchet spaces, Dynamic Systems and Applications, 16(2007), 1-12.
- R.P. Agarwal, D. O'Regan, Fixed point theory for compact absorbing contractive admissible type maps, Applicable Anal., 87(2008), 497-508.

DONAL O'REGAN

- R.P. Agarwal, D. O'Regan, S. Park, Fixed point theory for multimaps in extension type spaces, J. Korean Math. Soc., 39(2002), 579-591.
- [4] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc., 41(1990), 421-434.
- [5] H. Ben-El-Mechaiekh, Spaces and maps approximation and fixed points, J. Comput. Appl. Math., 113(2000), 283-308.
- [6] H. Ben-El-Mechaiekh, P. Deguire, General fixed point theorems for non-convex set valued maps, C.R. Acad. Sci. Paris, 312(1991), 433-438.
- [7] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [8] G. Fournier, L. Gorniewicz, The Lefschetz fixed point theorem for multi-valued maps of nonmetrizable spaces, Fund. Math., 92(1976), 213-222.
- [9] L. Gorniewicz, *Topological Fixed Point Theory of Multivalued Mappings*, Kluwer Acad. Publishers, Dordrecht, 1999.
- [10] L. Górniewicz, A. Granas, Some general theorems in coincidence theory, J. Math. Pures et Appl., 60(1981), 361-373.
- [11] A. Granas, Fixed point theorems for approximative ANR's, Bull. Acad. Polon. Sc., 16(1968), 15-19.
- [12] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
- [13] J.L. Kelley, General Topology, D. Van Nostrand Reinhold Co., New York, 1955.
- [14] D. O'Regan, Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed Point Theory and Applications, 2004(2004), 13-20.
- [15] D. O'Regan, Fixed point theory for compact absorbing contractions in extension type spaces, CUBO, 12(2010), no. 2, 199-215.
- [16] R. Skiba, M. Slosarski, On a generalization of absolute neighborhood retracts, Topology and its Applications, 156(2009), 697-709.

Received: December 15, 2009; Accepted: March 24, 2010.