Fized Point Theory, 12(2011), No. 1, 155-164
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT THEORY IN GENERALIZED APPROXIMATE
NEIGHBORHOOD EXTENSION SPACES

DONAL O’'REGAN

Department of Mathematics, National University of Ireland
Galway, Ireland
E-mail: donal.oregan@nuigalway.ie

Abstract. Several new fixed point results for compact self maps in new classes of spaces are
presented in this paper.

Key Words and Phrases: Extension spaces, fixed point theory.

2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

In Sections 2 we present new results on fixed point theory in extension type spaces.
In particular we discuss compact self-maps on GNES (generalized neighborhood
extension spaces) and GANES (generalized approximate neighborhood extension
spaces) spaces. These spaces are generalization of spaces considered in [8, 9, 15,
16]. Our results were motivated in part from ideas in [1, 2, 9, 11, 12, 15, 16].

For the remainder of this section we present some definitions and known results
which will be needed throughout this paper. Suppose X and Y are topological
spaces. Given a class X of maps, X(X,Y) denotes the set of maps F : X — 2V
(nonempty subsets of Y) belonging to X, and X, the set of finite compositions of
maps in X. We let

F(X)={Z: FizF #0 forall FeX(Z 2)}

where Fixz F denotes the set of fixed points of F.

The class A of maps is defined by the following properties:
(i). A contains the class C of single valued continuous functions;
(ii). each F' € A, is upper semicontinuous and closed valued; and
(iii). B™ € F(A.) for all n € {1,2,...}; here B" ={z € R": ||z| < 1}.
Remark 1.1. The class A is essentially due to Ben-El-Mechaiekh and Deguire [6].
A includes the class of maps U of Park (U is the class of maps defined by (i), (iii)
and (iv). each F € U, is upper semicontinuous and compact valued). Thus if each
F € A, is compact valued the class A and U coincide and this is what occurs in
Section 2 since our maps will be compact.

We next consider the class UF(X,Y) (respectively A%(X,Y)) of maps F : X —
2Y such that for each F' and each nonempty compact subset K of X there exists
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amap G € U.(K,Y) (respectively G € A.(K,Y)) such that G(z) C F(z) for all
zeK.

Notice [14] that U% is closed under compositions. The class U* include (see [3])
the Kakutani maps, the acyclic maps, the O’Neill maps, the approximable maps and
the maps admissible with respect to Gorniewicz.

For a subset K of a topological space X, we denote by Covx (K) the set of all
coverings of K by open sets of X (usually we write Cov (K) = Covx (K)). Given a
map F: X — 2% and a € Cov(X), a point 2 € X is said to be an a-fixed point of
F if there exists a member U € « such that x € U and F(z) NU # . Given two
maps single valued f, g: X —Y and a € Cov (Y), f and ¢ are said to be a-close
if for any x € X there exists U, € « containing both f(z) and g(z). We say f
and g are a-homotopic if there is a homotopy hp : X — Y (0 <t < 1) joining f
and ¢ such that for each = € X the values h:(z) belong to a common U, € a for
all t€[0,1].

The following results can be found in [4, Lemma 1.2 and 4.7].

Theorem 1.1. Let X be a regular topological space and F : X — 2% an upper
semicontinuous map with closed values. Suppose there exists a cofinal family of cov-
erings 8 C Covx (F(X)) such that F has an «-fized point for every « € 6. Then
F has a fixed point.

Remark 1.2. From Theorem 1.1 in proving the existence of fixed points in uniform
spaces for upper semicontinuous compact maps with closed values it suffices [5 pp.
298] to prove the existence of approximate fixed points (since open covers of a compact
set A admit refinements of the form {U[z]: = € A} where U is a member of the
uniformity [13 pp. 199] so such refinements form a cofinal family of open covers).
Note also uniform spaces are regular (in fact completely regular) [7 pp. 431] (see also
[7 pp. 434]). Note in Theorem 1.1 if F' is compact valued then the assumption that
X is regular can be removed. For convenience in this paper we will apply Theorem
1.1 only when the space is uniform.

Let X, Y and I" be Hausdorff topological spaces. A continuous single valued map
p: ' — X is called a Vietoris map (written p: I' = X) if the following two conditions
are satisfied:

(i). for each x € X, the set p~!(x) is acyclic
(ii). p is a proper map i.e. for every compact A C X we have that p~!(4) is
compact.

Let D(X,Y) be the set of all pairs X & T' L Y where p is a Vietoris map and
g is continuous. We will denote every such diagram by (p,¢q). Given two diagrams

(p,q) and (p',q'), where X & I" L Y| we write (p,q) ~ (p/,¢') if there are maps
f:T—=T"and g: TV — T such that ¢ of=¢q, pof=p, qgog=¢ and pog=7p'.
The equivalence class of a diagram (p,q) € D(X,Y) with respect to ~ is denoted
by

p={XE&ETrLv}:Xx->vY

or ¢ = [(p,q)] and is called a morphism from X to Y. Welet M(X,Y) be the set of
all such morphisms. For any ¢ € M(X,Y) aset ¢(x) = qp~! (z) where ¢ = [(p,q)]
is called an image of x under a morphism ¢.
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Consider vector spaces over a field K. Let E be a vector space and f: E — E
an endomorphism. Now let N(f) ={x € E: f™(x) =0 for some n} where f(™
is the n'" iterate of f, and let E = E\ N(f). Since f(N(f)) € N(f) we have the
induced endomorphism f : E — E. We call f admissible if dim E < oo; for such
f we define the generalized trace Tr(f) of f by putting Tr(f) = tr(f) where tr
stands for the ordinary trace.

Let f ={f,} : E — E be an endomorphism of degree zero of a graded vector
space E = {E,;}. We call f a Leray endomorphism if (i). all f, are admissible and

(ii). almost all E, are trivial. For such f we define the generalized Lefschetz number
A(f) by
A(F) =D (=1)2Tr (fy)-
q

Let H be the Cech homology functor with compact carriers and coefficients in
the field of rational numbers K from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H(X) = {H,(X)} is a graded vector space, Hy(X) being the
g-dimensional Cech homology group with compact carriers of X. For a continuous
map f:X — X, H(f) is the induced linear map fi = {fiq} where f,,: Hy(X) —
H,(X). }

With Cech homology functor extended to a category of morphisms (see [10 pp.
364]) we have the following well known result (note the homology functor H extends
over this category i.e. for a morphism

p={XETLY}: XY
we define the induced map
H(¢) = ¢ : H(X) — H(Y)
by putting ¢, = g o pt).
Recall the following result [8 pp. 227].

Theorem 1.2. If ¢ : X - Y and ¢¥:Y — Z are two morphisms (here X, Y and
Z are Hausdorff topological spaces) then

(1/) o ¢)*:1/)* o Py

Two morphisms ¢, ¢ € M(X,Y) are homotopic (written ¢ ~ 1) provided there
is a morphism y € M(X x [0,1],Y) such that x(z,0) = ¢(z), x(z,1) = ¢¥(z) for
every x € X (i.e. ¢ = x o ig and ¥ = x o iy, where ip, i; : X — X x [0,1] are
defined by ig(x) = (z,0), i1(x) = (z,1)). Recall the following result [9, pp. 231]: If
¢ ~ 1) then ¢, = 1y.

Let ¢ : X — Y be a multivalued map (note for each x € X we assume ¢(z) is a
nonempty subset of Y). A pair (p,q) of single valued continuous maps of the form
X & T LY is called a selected pair of ¢ (written (p,q) C ¢) if the following two
conditions hold:

(i). p is a Vietoris map
and
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(ii). ¢(p~(z)) C ¢(x) for any z € X.
Definition 1.1. An upper semicontinuous map ¢ : X — Y is said to be strongly
admissible [9, 10] (and we write ¢ € Ads(X,Y")) provided there exists a selected pair
(p,q) of ¢ with ¢(z) =q(p~i(z)) for v € X.
Definition 1.2. A map ¢ € Ads(X,X) is said to be a Lefschetz map if for each
selected pair (p,q) C ¢ with ¢(x) = q(p~(x)) for z € X the linear map ¢, p; ' :
H(X) — H(X) (the existence of p;! follows from the Vietoris Theorem) is a Leray
endomorphism.

When we talk about ¢ € Ads it is assumed that we are also considering a specified
selected pair (p,q) of ¢ with ¢(x) = q(p~ (z)).
Remark 1.3. In fact since we specify the pair (p,q) of ¢ it is enough to say ¢ is
a Lefschetz map if ¢, = ¢, p;!: H(X) — H(X) is a Leray endomorphism. However
for the examples of ¢, X known in the literature [9] the more restrictive condition in
Definition 1.2 works. We note [9, pp 227] that ¢, does not depend on the choice of
diagram from [(p, q)], so in fact we could specify the morphism.

If ¢: X — X is a Lefschetz map as described above then we define the Lefschetz
number (see [9, 10]) A (¢) (or Ax (¢)) by

A (¢) = Mg py ).

If we do not wish to specify the selected pair (p,q) of ¢ then we would consider the
Lefschetz set A (¢) = {A(q.pi'): ¢=q(p~ 1)}
Definition 1.3. A Hausdorff topological space X is said to be a Lefschetz space
(for the class Ads) provided every compact ¢ € Ads(X, X) is a Lefschetz map and
A(¢) # 0 implies ¢ has a fixed point.
Definition 1.4. An upper semicontinuous map ¢ : X — Y with closed values is
said to be admissible (and we write ¢ € Ad(X,Y")) provided there exists a selected
pair (p,q) of ¢.
Definition 1.5. A map ¢ € Ad(X,X) is said to be a Lefschetz map if for each
selected pair (p,q) C ¢ the linear map ¢, p;! : H(X) — H(X) (the existence of
p; ! follows from the Vietoris Theorem) is a Leray endomorphism.

If ¢: X — X is a Lefschetz map, we define the Lefschetz set A (¢) (or Ax (¢))
by

A(d) ={AMaqp:"): (p.g) C o}

Definition 1.6. A Hausdorff topological space X is said to be a Lefschetz space
(for the class Ad) provided every compact ¢ € Ad(X,X) is a Lefschetz map and
A(¢) # {0} implies ¢ has a fixed point.

Remark 1.4. Many examples of Lefschetz spaces (for the class Ad or Ads) can be
found in [1, 2, 8, 9, 10, 11, 12, 15, 16].

Definition 1.7. A multivalued map F : X — K(Y) (K(Y) denotes the class of
nonempty compact subsets of Y) is in the class A,,(X,Y) if (i). F is continuous,
and (ii). for each = € X the set F'(z) consists of one or m acyclic components; here
m is a positive integer. We say F' is of class Ay(X,Y) if F' is upper semicontinuous
and for each z € X the set F(z) is acyclic.
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Definition 1.8. A decomposition (F1y,...,F,) of a multivalued map F : X — 2V is

a sequence of maps
F: F F: Frn_1 F,
X:X0—1>X1—2>X2—3> ..... i Xn,1—>Xn:Y,

where F; € Ay, (X;-1,X;), F = F,o ... o F}. One can say that the map F is
determined by the decomposition (F, ..., F),). The number n is said to be the length
of the decomposition (F7,...,F,). We will denote the class of decompositions by
D(X,Y).

Definition 1.9. An upper semicontinuous map F : X — K(Y) is permissible
provided it admits a selector G : X — K(Y') which is determined by a decomposition
(G, ...,Gp) € D(X,Y). We denote the class of permissible maps from X into Y by
P(X,Y).

Let X be a Hausdorff topological space and let a map ® be determined by
(®1,....,Px) € D(X,X). Then & is said to be a Lefschetz map if the induced ho-
mology homomorphism [9, pp 262, 263] (Pq,...,Pr). : H(X) — H(X) is a Leray
endomorphism.

If ®: X — X is a Lefschetz map as described above then we define the Lefschetz
number (see [9]) A (P) (or Ax (D)) by

A (@) = A((®1, .., B).).

A Hausdorff topological space X is said to be a Lefschetz space (for the class
D) provided every compact ® : X — K(X) determined by a decomposition
(®1,....,Pr) € D(X,X) is a Lefschetz map and A(¢) # 0 implies ¢ has a fixed
point.

A map ® € P(X,X) is said to be a Lefschetz map provided every selector G :
X — K(X) of ® which is determined by (Gi,...,Gx) € D(X,X) is such that
(G1,...,Gr)« : H(X) — H(X) is a Leray endomorphism.

If & € P(X,X) is a Lefschetz map as described above then we define the Lefschetz
set A(®) (or Ax (P)) by

A(®) = {A(G1,...,Gr)x): (G1,...,G) € D(X,X)
and (Gi,....,Gy) determines a selection of ®}.

A Hausdorff topological space X is said to be a Lefschetz space (for the class P)
provided every compact ® € P(X,X) is a Lefschetz map and A(¢) # {0} implies
® has a fixed point.

2. FIXED POINT THEORY

By a space we mean a Hausdorff topological space. Let X be a space and F €
UFX,X). Wesay X € GNES (w.r.t. UF and F) if there exists a space U, a single
valued continuous map r : U — X and a compact valued upper semicontinuous map
O cUF(K,U) with r® =idg (here K = F(X)).

Remark 2.1. Examples of GNES spaces can be found in [16, Section 4]. The space
U will be discussed below for particular classes of U maps.

Now assume X € GNES (w.r.t. U and F) and F € UF(X,X) a compact map.

Let U, r and ® be as described above and let G = ® F'r. Notice G € U (U,U)
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is a compact map (note the image of a compact set under ® is compact). We now
assuime

G e UF(U,U) has a fixed point. (2.1)
Then there exists € U with z € Gx. Let y =r(x),s0o y € r® F (y) i.e. y € rP(q)
for some g € F' (y). Note ¢ € K = F(X). Now since r ® = idx we have y € F (y).
Theorem 2.1. Let X € GNES (w.r.t. U and F) and F € UF(X,X) a compact
map. Also assume (2.1) holds with U, r and ® as described above. Then F has a
fixed point.

We discuss Theorem 2.1 for the class Ad(X,X). Let X be a space and F €
Ad(X,X). Wesay X € GNES (w.r.t. Ad and F) if there exists a Lefschetz space
(for the class Ad) U, a single valued continuous map r : U — X and a compact
valued map ® € Ad(K,U) with r ® = idg (here K = F(X)).

Now assume X € GNES (w.ax.t. Ad and F) and F € Ad(X,X) a compact map.
Let U, r and ® be as described above and let G = ® F'r. Notice G € Ad(U,U) is
a compact map. Let (p,q) be a selected pair for F' and (p1,¢1) be a selected pair
of ®. Now since F'r € Ad(U, X) then [9, Section 40] guarantees that there exists a
selected pair (p/,¢’) of Fr with

(@)« ()" = quepi 7 (2:2)
Also there exists [9, Section 40] a selected pair (p,q) of G with
@« @) = (@)« (p1)5" (@) )7 (2:3)
so (2.2) and (2.3) imply
@« ()5 = (1)« (P17 axpy ' 7 (24)
Notice as well that
@Dy T (@)« (P1)7 = qep (2.5)

since r® = idg (here K = F(X)). Now U is a Lefschetz space (for the class Ad)
so (9)« (p); ! is a Leray endomorphism. Now [8, page 214, see (1.3)] (here E' = U’,
E" =X u=(¢) @)t v= () (p);" [ = (@« @), " and f” = q.p;! and
note (2.2), (2.4) and (2.5)) guarantees that ¢.p;' is a Leray endomorphism and
Agepit) = A (@)« P)71). Thus A (F) is well defined.

Next suppose A (F) # {0}. Then there exists a selected pair (p,q) as described
above with A (¢.p;!) # 0. Let P and g be as described above with A ((7)« (p);}) =
A(qepyt) #0. Now since U is a Lefschetz space (for the class Ad) there exists z € U
with z € g(p)~!(z) i.e. © € G(z) so (2.1) is satisfied. Combining with Theorem 2.1
we have the following result.

Theorem 2.2. Let X € GNES (w.r.t. Ad and F) and F € Ad(X,X) a compact
map. Then A (F) is well defined and if A (F) # {0} then F has a fized point.

Remark 2.2. One could also discuss Ads maps. Let X be a space and F €
Ads(X,X). We say X € GNES (wr.t. Ads and F) if there exists a Lefschetz
space (for the class Ads) U, a single valued continuous map r : U — X and a
map ® € Ads(K,U) with r® = idg (here K = F(X)). Essentially the same
reasoning as in Theorem 2.2 establishes: Let X € GNES (w.r.t. Ads and F') and




GENERALIZED APPROXIMATE NEIGHBORHOOD EXTENSION SPACES 161

F € Ads(X, X) a compact map. Then A (F) is well defined and if A (F) # 0 then
F has a fixed point.

Remark 2.3. One could also obtain a result for the class P (of course the results
here can trivially be adjusted for the class D). Let X be a space and F € P(X, X).
We say X € GNES (w.r.t. P and F) if there exists a Lefschetz space (for the class
P) U, a single valued continuous map r : U — X and a map ® € P(K,U) with
r® =idg (here K = F(X)). Let X € GNES (w.r.t. P and F) and F € P(X,X)
a compact map. Let U, r and ® be as described above and let G = ® F'r. Notice
G € P(U,U) is a compact map. We now assume the following condition:

for every selector H : X — K(X) of F which is

determined by (Hy,...,Hy,) € D(X,X) and every selector
U:F(X)— K({U) of ® which is determined by

(¥1,....,9,,) € D(F(X),U) there exists a

(S1,...,5%) € D(U,X) which determines F'r with (2.6)
(S1,-sSk)x = (Hi, ..., Hy) 7« and there exists a

(G1,...,G;) € D(U,U) which determines a selection G with

(

(

H17 ceey Hn)* Tx (‘1117 ceey \Ifm)* = (Hl, ceey Hn)* and
Ty, U)s (S, ey Sk)x = (G oy Gi)s

Fix a selector H of F and a selector ¥ of ® and let (Hy,...,H,), (¥y,...,¥,,) and
(S1,-..,Sk) be as described in (2.6). Notice

(P1y ooy Upn)i (S14 00, Sk )x = (G, oy Gl

and
(517 seey Sk)* (\III; ceey \I’m)* - (Hla ~-~7Hn)* Tx (\Ijla sy \I/m)* - (Hla ceey Hn)*~

Now U is a Lefschetz space (for the class P) so (G, ...,G1)« is a Leray endomor-
phism. Now [8, page 214, see (1.3)] (here E' = U’, E” = X', u = (S1,..., Sk)%,
v = (U, ,Un)s, f/ = (G1,...,Gl)s and f” = (Hy,...,Hp,)s) guarantees that
(Hy,...,Hy,), is a Leray endomorphism and A ((Hy,...,H,)x) = A((G1,...,G))y).
Thus A (F) is well defined. Also as in Theorem 2.2 it is easy to see that if
A (F) # {0} then F has a fixed point.

Let X be a space and F € UF(X,X). Wesay X € GANES (w.rt. U and
F) if for each a € Covx (K) (here K = F(X)) there exists a space U,, a single
valued continuous map 7, : U, — X and a compact valued upper semicontinuous
map ®, € U*(K,U,) such that r,®, : K — 2% and i : K — X are strongly
a-close (by this we mean for each z € K there exists V, € a with r, ®,(z) C V,
and xz =i(x) € V).

Now assume X € GANES (wr.t. UF and F) is a uniform space and F €
UF(X,X) is a compact upper semicontinuous map with closed values. Let a €
Covx (F(X)) and let U,, r, and ®, be as described above. Now let G = @, F r.
Notice Go € UF(Uy, Uy) is a compact upper semicontinuous map with closed values.
We now assume

Go € UF(U,,Uy) has a fixed point (for each a € Covy (F(X))). (2.7)
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Then there exists © € U, with © € G, (z). Let y = ro(z), so y € 7o P F (y) i.e.
Y € 7o Py (q) for some g € F (y). Note ¢ € K = F(X). Now since r, 4 : K — 2%
and ¢: K — X are strongly a-close there exists V € a with

T‘a‘I)a(q)QV and qEV.
Thus y € V since y € 14 Po(q), ¢ € F(y) and ¢ € V, so
yeV and F(y)NnV #0.

As a result F' has an a-fixed point so Theorem 1.1 guarantees that F' has a fixed
point.

Theorem 2.3. Let X € GANES (w.r.t. UF and F) be a uniform space and
F eUr(X,X) a compact upper semicontinuous map with closed values. Also assume
(2.7) holds with U, ro and ®, as described above. Then F has a fized point.

We discuss Theorem 2.3 for the class Ad(X,X). Let X be a space and F €
Ad(X,X). Wesay X € GANES (w.r.t. Ad and F) if for each o € Covx (K) (here
K = F(X)) there exists a Lefschetz space (for the class Ad) U,, a single valued
continuous map 7, : U, — X and a compact valued map ®,, € Ad(K,U,) such that
Ta®o: K — X and i: K — X are a-close (by this we mean for each z € K there
exists V,, € @ with 7, ®o(x) €V, and z = i(z) € V) and a-homotopic.

Now assume X € GANES (wr.t. Ad and F) is a uniform space and F €
Ad(X,X) is a compact map. Let a € Covx (F(X)) and let U,, ro and ®, be
as described above. Let G, = &, Fr,. Let (p,q) be a selected pair for F' and
(p2,4%) be a selected pair of ®,. Now since Fr, € Ad(U,, X) then [9, Section 40]
guarantees that there exists a selected pair (pl,,q),) of Fr, with

(@e)+ (PL)3 " = aepi ™t (ra)s (2.8)
Also there exists [9, Section 40] a selected pair (B,,q,) of G, with
(@a)» (Pa)i " = (@a) (02)5 (g0)« (P0)7 (2.9)
so (2.8) and (2.9) imply
(@o)x (Ba)i " = (@0)« (02)5" €97 (o) (2.10)
Notice as well that
¢ Py (ra)s (d0)s (PR)7! = axp” (2.11)

since 1, ®, and i are a-homotopic (so [9 pp. 202] guarantees that (rq Py )e = ix
and so for any selected pair (pl,ql) of ®, there exists a selected pair (p2,q2) of
i with i, = (¢2) (P2)7 = (Ta)x (¢2)« (PL)71). Now U, is a Lefschetz space (for
the class Ad) so (g,)« (P,)x " is a Leray endomorphism. Now [8, page 214, see (1.3)]
(here B' = U}, E" = X', u = (¢))« (06): " v = (@)« 025" [ = @)+ Ba)i
and f" = q, p; ! and note (2.8), (2.10) and (2.11)) guarantees that ¢, p;! is a Leray
endomorphism and A (g, py!) = A (@)« (P, )5 1). Thus A (F) is well defined.

Next suppose A (F) # {0}. Then there exists a selected pair (p,q) as de-
scribed above with A (gxp;!) # 0. Let p, and g, be as described above with
A((@y)s Po)5 1) = A(gepyt) # 0. Now since U, is a Lefschetz space (for the class
Ad) there exists x € U, with z € g, (p,) () i.e. z € Guo(x) so (2.7) is satisfied.
Note (2.7) here implies F' has an a-fixed point since r, ®, and i are automatically
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strongly a-close (since r, @, : K — X and i: K — X are a-close). Thus we have
the following result.

Theorem 2.4. Let X € GANES (w.r.t. Ad and F) be a uniform space and
F € Ad(X,X) a compact map. Then A (F) is well defined and if A (F) # {0} then
F has a fixed point.

Remark 2.4. In the definition of GANES (w.r.t. Ad and F) it is easy to see that
one could replace the assumption that r, ®, : K — X and 7: K — X are a-close
and a-homotopic with the assumption that 7o ®o : K — 2% and i : K — X are
strongly a-close and (14 )« (ql)« (pL)s! = ix for any selected pair (pL,ql) of @,.
Remark 2.5. One could also discuss Ads maps. Let X be a space and F €
Ads(X,X). Wesay X € GANES (w.r.t. Ads and F) if for each a € Covx (K)
(here K = F(X)) there exists a Lefschetz space (for the class Ads) U,, a single
valued continuous map r, : U, — X and a map ®, € Ads(K,U,) such that
rq Po: K — X and 7: K — X are a-close and a-homotopic. Essentially the same
reasoning as in Theorem 2.4 establishes: Let X € GANES (w.r.t. Ads and F) be
a uniform space and F € Ads(X,X) a compact map. Then A (F) is well defined
and if A (F) #0 then F has a fixed point. There is also an analogue of Remark 2.4
in this situation.

Remark 2.6. One could also obtain a result for the class P (of course the results
here can trivially be adjusted for the class D). Let X be a space and F € P(X, X).
We say X € GANES (w.r.t. P and F) if for each a € Covy (K) (here K = F(X))
there exists a Lefschetz space (for the class P) U,, a single valued continuous map
7o : Uy — X and amap @, € P(K,U,) such that r, @, : K — 2% and i: K — X
are strongly a-close. Now assume X € GANES (w.r.t. P and F') is a uniform space
and F' € P(X,X) is a compact map. Let o € Covx (F(X)) and let Uy, r, and @,
be as described above. Let G, = ®, F r,. We now assume the following condition
(for each « € Covx (F(X))):

for every selector H : X — K(X) of F which is
determined by (Hy, ..., H,) € D(X,X) and every selector
U, : F(X)— K(U,) of ®, which is determined by
(T1,05 0, Uma) € D(F(X),U,) there exists a

(S1.ay s Sk.a) € D(Uy, X) which determines F'r, with
(St,a5 s Sk,a)x = (Hiy ooy Hp)y (ro)«  and there exists a
(
(

Gi,ay-,Gla) € D(Uy,U,) which determines a selection G, with
Hl, ceey Hn)* (Ta)* (\Ijl,a, ceey \I’m,a)* = (Hl, ceey Hn)* and
(P10, Uima)s (Stas - Ska)s = (Gras -, Gla)« -

Reasoning as above establishes A ((Hi,...,Hpn)s) = A((G1,a,-sGia)+), S0 A(F) is
well defined. Also it is easy to see that if A (F') # {0} then F has a fixed point.
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