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1. Introduction

The problem of investigating sufficient conditions under which the convergence of
a sequence of self mappings on a metric space (X, d) implies the convergence of the
sequence of their fixed points has been of continuing interest. In fixed point theory,
this problem is known as stability (or continuity) of fixed points. The first result in
this direction for contraction mappings stated below is due to Bonsall [7].

Theorem 1.1. Let (X, d) be a complete metric space, and T and Tn(n = 1, 2, ...) be
contraction mappings of X into itself with the same Lipschitz constant k < 1, and
with fixed points u and un(n = 1, 2, ...) respectively. Suppose that limn Tnx = Tx for
every x ∈ X. Then limn un = u.

The above result also appears in Sonnenschein [14] with a different proof. Moreover,
as an application a periodic solution of a nonlinear differential equation is obtained.

The following remarks can be made with respect to Theorem 1.1:

(a) the condition that all the contraction mappings Tn (n = 1, 2, ...) have the same
Lipschitz constant k is too restrictive as one can easily see by the remarks
and example given in Nadler [11].

(b) the assumption that T is a contraction mapping is superfluous as this follows
from the fact that Tn(n = 1, 2, ...) is a contraction mapping.

(c) the completeness condition may be replaced by the assumption of the exis-
tence of fixed points for the mappings T and Tn (n = 1, 2, ...) .
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Under uniform convergence of the sequence {Tn} to T and retaining the essence of
(a), (b) and (c) the following stability result was obtained by Nadler [11, Theorem 1].

Theorem 1.2. Let (X, d) be a metric space, let Tn : X → X be a mapping with
at least one fixed point an for each n = 1, 2, ...and let T0 : X → X be a contraction
mapping with fixed point a0. If the sequence {Tn}∞n=1 converges uniformly to T0, then
the sequence {an}∞n=1 converges to a0.

It is well known that fixed points can be viewed as solutions of various operator
equations and in many cases a localized version (where the domain of definition of a
given operator is a nonempty subset of the given space) of a particular fixed point
theorem becomes more useful. In respect of stability results, uniform convergence
(resp. pointwise convergence) plays a crucial role. However, when the domain of
definition of all mappings Tn in question is not the same spaceX or a unique nonempty
subset M of it, the above notions do not work. This difficulty has recently been
overcome by Barbet and Nachi [6] (see also, Barbet and Nachi [5] and Nachi [10])
where a number of new notions of convergence have been introduced. Interesting
examples presented there in illustrate the generality of their notions over the existing
ones. Subsequently, these notions are utilized to generalize Theorem 1.2 above and,
in addition, a number of other supporting results are also obtained. In this paper
we present a double generalization of the results of Bonsall [7] and Nadler [11] in the
sense that the underlying space has been freed to a non-metrizable setting and the
nature of convergence is generalized after the style of Barbet and Nachi [6].

2. Preliminaries

Let (X,u) be a uniform space. A family P = {pα : α ∈ I} of pseudometrics on X,
where I is an indexing set is called an associated family for the uniformity u if the
family β = {V (α, r) : α ∈ I, r > 0}, where V (α, r) = {(x, y) ∈ X ×X : pα(x, y) < r}
is a subbase for the uniformity u. We may assume β itself to be a base for u by
adjoining finite intersections of members of β if necessary. The corresponding family
of pseudometrics is called an augmented associated family for u. An augmented asso-
ciated family for u will be denoted by P ∗. (cf. Mishra [9] and Thron [16]). In view of
Kelley [8], we note that each member V (α, r) of β is symmetric and pα is uniformly
continuous on X × X for each α ∈ I. Further, the uniformity u is not necessarily
pseudometrizable (resp. metrizable) unless β is countable and in that case u may
be generated by a single pseudometric (resp. a metric) p on X For an interesting
motivation we refer to Reilly [12, Example 2] (see also, Kelley [8, Example C, page
204]).

For further details on uniform spaces and a systematic account of fixed points in
uniform spaces and their applications, we refer to Weil [17] and Angelov [3] respec-
tively (see also [2]).

Now onwards, unless stated otherwise, X will denote a uniform space (X,u) defined
by P ∗. N will denote the set of natural numbers while N = N ∪ {∞} .
Definition 2.1. ([15]) Let X be a uniform space and let {pα : α ∈ I} = P ∗. A
mapping f : X → X is called a P ∗−contraction if for each α ∈ I, there exists a real
k(α), 0 < k(α) < 1 such that pα(f(x), f(y)) ≤ k(α)pα(x, y) for all x, y ∈ X.
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It is well known that f : X → X is P ∗−contraction if and only if it is P−contraction
(see Tarafdar [15, Remark 1]). Hence, now onward, we shall simply use the term
k−contraction to mean either of them. In case the above condition is satisfied for any
k = k(α) > 0, f will be called k−Lipschitz.

The following result due to Tarafdar [15, Theorem 1.1] (see also, Acharya [1, The-
orem 3.1]) presents an analogue of the well-known Banach contraction principle [4].

Theorem 2.2. Let X be a Hausdorff complete uniform space and let {pα : α ∈ I} =
P ∗. Let f be a contraction on X. Then f has a unique fixed point a ∈ X such that
fn(x)→ a in τu (the uniform topology) for each x ∈ X.
Definition 2.3. Let {Xn}n∈N be a family of nonempty subsets of X and
{Tn : Xn → X}n∈N a family of mappings. Then:
T∞ is called a (G)−limit of the sequence {Tn}n∈N or, equivalently {Tn}n∈N satisfies

the property (G), if the following condition holds:

(G) Gr(T∞) ⊂ lim inf Gr(Tn) : for every x ∈ X∞, there exists a sequence
{xn} in Πn∈NXn such that for any α ∈ I, we have limn pα(xn, x) =
0 and limn pα(Tnxn, T∞x) = 0, where Gr(T ) stands for the graph of T.

T∞ is called a (G−)−limit of the sequence {Tn}n∈N or, equivalently {Tn}n∈ N
satisfies the property (G−), if the following condition holds:

(G−) Gr(T∞) ⊂ lim supGr(Tn) : for every x ∈ X∞, there exists a sequence {xn} in
Πn∈ NXn and an s ∈ S such that for any α ∈ I, we have limn pα(xs(n), x) =
0 and limn pα(Ts(n)xs(n), T∞x) = 0, where S denotes the set of all increasing
functions s : N→ N.

Further, T∞ is called an (H)−limit of the sequence {Tn}n∈N or, equivalently
{Tn}n∈N satisfies the property (H) if the following condition holds:

(H) For all sequences {xn} in Πn∈ NXn, there exists a sequence {yn} in X∞ such
that for any α ∈ I, we have limn pα(xn, yn) = 0 and limn(Tnxn, Tnyn) = 0.

If X is a metrizable uniform space (i.e., the uniformity u is generated by a
metric d ), we get the corresponding definitions due to Barbet and Nachi [6].

Remark 2.4. We note the following properties of the above limits. For details we
refer the reader to [6].

(i) a (G)−limit need not be unique. However, if Tn is a k−contraction (resp.
k−Lipschitz) for each n ∈ N, then it is so.

(ii) a (H)−limit need not be unique.
(iii) when T∞ is continuous and the condition X∞ ⊂ lim inf Xn is satisfied, then

the following implications hold: (H)⇒ (G)⇒ (G−).
However, without the two restrictions above, we have the relationship

(G) ⇒ (G−) , (H) ⇒ (G−), whereas a counter example in [6] shows that
(G)−limit is not necessarily an (H)−limit.

(iv) pointwise convergence ⇒ (G)−convergence. However, the above implication
is not reversible unless {Tn}n∈N is equicontinuous on the common domain of
definition.

(v) the interrelationship between the (H) convergence and uniform convergence
is captured in Theorem 3.12.
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3. Results

Our main results of this section are the two stability results (namely, Theorem 3.3
and Theorem 3.13) which generalize the corresponding results of Barbet and Nachi
[6, Theorem 2 and Theorem 11] and which in turn include the results of Bonsall [7]
and Nadler [11, Theorem 1]. Other supporting results of this section present the
uniform space version of the corresponding results in [6]. For the sake of brevity, we
shall present the detailed proofs of Proposition 3.1 and Theorem 3.3 only as far as
the analysis in uniform spaces is concerned. For others, we give only outlines that
parallel the respective proof techniques of [6].

Proposition 3.1. Let X be a Hausdorff uniform space,{Xn}n∈N a family of
nonempty subsets of X and Tn : Xn → X a k−contraction mapping for each n ∈ N.
If T∞ : X∞ → X is a (G)−limit of {Tn}n∈N , then T∞ is unique.

Proof. Let U ∈ u be an arbitrary entourage. Then, since β is a base for u, there
exists V (α, r) ∈ β, α ∈ I, r > 0 such that V (α, r) ⊂ U. Assume that T∞ : X∞ → X
and S∞ : X∞ → X are two different (G)−limits of the sequence {Tn}

n∈N
. Now by

the property (G), for any x ∈ X∞, there exist sequences {xn} and {yn} in Πn∈ N Xn

such that for any α ∈ I,
lim
n
pα(xn, x) = 0 and lim

n
pα(Tnxn, T∞x) = 0,

lim
n
pα(yn, x) = 0 and lim

n
pα(Tnyn, S∞x) = 0.

Further, since Tn is a k−contraction, for any α ∈ I, there exists a constant
k(α) such that pα(Tnxn, Tnyn) ≤ k(α)pα(xn, yn) ≤ k(α) [pα(xn, x) + pα(x, yn)] →
0 as n→∞.

Now for any n ∈ N and α ∈ I,
pα(T∞x, S∞x) ≤ pα(T∞x, Tnxn) + pα(Tnxn, Tnyn) + pα(Tnyn, S∞x)

≤ pα(T∞x, Tnxn) + k(α)pα(xn, yn) + pα(Tnyn, S∞x).

The R.H.S. of the above expression tends to 0 as n→∞. Hence pα (T∞x, S∞x) < r
for all n ≥ N(α, r). Therefore (T∞x, S∞x) ∈ V (α, r) ⊂ U and since X is Hausdorff,
it follows that T∞x = S∞x. �

Remark 3.2. The above proposition still remains true if each Tn is k−Lipschitz in
stead of k−contraction for each n ∈ N. Further, if X is metrizable, then we obtain a
result of Barbet and Nachi [6, Proposition 1] in this case.

The following theorem presents our first stability result.
Theorem 3.3. Let X be a Hausdorff uniform space, {Xn}n∈N a family of nonempty
subsets of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G)

and Tn is a k−contraction for each n ∈ N. If xn is a fixed point of Tn for each n ∈ N,
then the sequence {xn}n∈N converges to x∞.

Proof. Let W ∈ u be arbitrary. Then there exists V (λ, r) ∈ β, λ ∈ I, r > 0 such
that V (λ, r) ⊂ W. By the property (G) and the fact that x∞ ∈ X∞, there exists a
sequence {yn} in Xn for all n ∈ N such that for any λ ∈ I,

lim
n
pλ (yn, x∞) = 0 and lim

n
pλ (Tnyn, T∞x∞) = 0.
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Hence by using the contractive condition for Tn, for any λ ∈ I, we have

pλ (xn, x∞) ≤ pλ (Tnxn, Tnyn) + pλ (Tnyn, T∞x∞)

≤ k(λ)pλ (xn, yn) + pλ (Tn yn, T∞x∞)

≤ k(λ) [pλ (xn, x∞) + pλ(x∞, yn)] + pλ (Tnyn, T∞x∞)

Thus, (1− k(λ)) pλ (xn, x∞) ≤ k(λ)pλ (x∞, yn) + pλ (Tnyn, T∞x∞)→ 0 as n→∞
and since k(λ) < 1, it follows that pλ (xn, x∞)→ 0 as n→∞. Hence pλ (xn, x∞) < r
for all n ≥ N(λ, r) and so (xn, x∞) ∈ V (λ, r) ⊂W and the conclusion follows. �

In case X is metrizable we obtain Theorem 2 of Barbet and Nachi [6] which in turn
includes the result of Bonsall [7] (where X is complete and Xn = X for all n ∈ N).

Proposition 3.4. Let X be a Hausdorff uniform space, {Xn}n∈N a family of
nonempty subsets of X and {Tn : Xn → X}n∈N a family of mappings satisfying the
property (G) and that Tn is a contraction mapping with contraction constant kn for
each n ∈ N such that limn kn = k < 1. Then T∞ is k−contraction.

Proof. By the property (G), for any two points x, y ∈ X∞, there exist sequences
{xn} , {yn} in ΠnXn such that for any α ∈ I

lim
n
pα(xn, x) = 0 and lim

n
pα (Tnxn, T∞x) = 0,

lim
n
pα (yn, y) = 0 and lim

n
pα (Tnyn, T∞y) = 0

Further, for any n ∈ N and for α ∈ I,

pα (T∞x, T∞y) ≤ pα (T∞x, Tnxn) + pα (Tnxn, Tnyn) + pα (Tnyn, T∞y)

≤ pα (T∞x, Tnxn) + knpα (xn, yn) + pα (Tnyn, T∞y)

Now making n→∞, the conclusion follows. �

The following result that generalizes Proposition 4 of Barbet and Nachi [6] can be
easily proved by following the proof techniques of Proposition 3.4.

Proposition 3.5. Let X be a Hausdorff uniform space, {Xn}n∈N a family of
nonempty subsets of X and {Tn : Xn → X}n∈N a family of mappings satisfying
the property (G) and that Tn is a Lipscitz mapping with Lipscitz constant kn for
each n ∈ N and {kn} is bounded (resp. convergent). Then T∞ is k−Lipschitz with
k = limn sup kn (resp. limn kn = k ).

As noted in Remark 2.4, in general uniform convergence and (G)−convergence are
not equivalent (see [6], the Example on page 53). When the domain of definition
is a unique nonempty subset of the space X, the following theorem establishes the
required equivalence.

Proposition 3.6. Let M be a nonempty subset of a uniform space X and
{Tn : M → X}n∈N a family of mappings satisfying the property (G) and such that
the sequence {Tn}n∈N is equicontinuous on M. Then {Tn}

n∈N
converges to T∞.

Proof. The necessary part follows from Theorem 3.3. To prove the sufficiency, assume
that the sequence {Tn}

n∈N
is equicontinuous on M with its (G)−limit T∞. Then

given any x ∈ X∞, there exists a sequence {xn} in M such that for any α ∈ I
limn pα (xn, x ) = 0 and limn pα (Tnxn, T∞x ) = 0. Since {Tn}

n∈N
is equicontinuous
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onM, we have for any α ∈ I, pα (Tnxn, Tnx)→ 0 as n→∞.Hence pα (Tnx, T∞x)→ 0
as n→∞ and the conclusion follows. �

Corollary 3.7. Let X be a uniform space, {Xn}n∈N a family of nonempty subsets
of X and {Tn : Xn → X}n∈ N a family of mappings satisfying the property (G) and
such that for any n ∈ N, Tn is a k−contraction. Assume that xn is a fixed point of
Tn for each n ∈ N. Then, T∞ admits a fixed point ⇔ {xn} converges to a point in
X∞ ⇔ {xn} admits a subsequence converging to a point in X∞.

Remark 3.8. Under the assumptions of Corollary 3.7 and if

(i) lim inf Xn ⊂ X∞( i.e., the limit of any convergent sequence {xn} in Πn∈NXn

is in X∞), then

T∞ admits a fixed point ⇔ {xn} converges to a point in X∞;

(ii) lim supXn ⊂ X∞ ( i.e., any cluster point of a sequence {xn} in Πn∈NXn is in
X∞), then

T∞ admits a fixed point⇔ {xn} admits a subsequence converging to a point in X∞.

The following theorem, which is a simple consequence of the Remark 3.8 and Theo-
rem 3.3, ensures the existence of a fixed point of the (G)−limit map from the existence
of fixed points of the contraction map Tn under certain compactness condition.

Theorem 3.9. Let X be a uniform space, {Xn}
n∈N

a family of nonempty subsets of

X and {Tn : Xn → X}
n∈N

a family of mappings satisfying the property (G) and such

that for each n ∈ N, Tn is a k−contraction mapping. Assume that lim supXn ⊂ X∞
and

⋃
n∈N

Xn is relatively compact. If for any n ∈ N, Tn admits a fixed point xn, then

the (G)−limit map T∞ admits a fixed point x∞ and the sequence {xn}n∈N converges
to x∞.

Theorem 3.10. Let X be a uniform space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G−). If

for any n ∈ N, xn is a fixed point of Tn, then x∞ is a cluster point of the sequence
{xn}n∈N .
Proof. By the property (G−), there exists a sequence {yn} in Πn∈NXn with a
subsequence

{
ys(n)

}
such that for any α ∈ I, we have that limn pα

(
ys(n), x∞

)
=

0 and limn pα
(
Ts(n)ys(n), T∞x∞

)
= 0. Therefore for each α ∈ I and for each n ∈ N,

we have

pα
(
xn(s), x∞

)
= pα

(
Ts(n)xs(n), T∞x∞

)
≤ pα

(
Ts(n)xs(n), Ts(n)ys(n)

)
+ pα

(
Ts(n)ys(n), T∞x∞

)
≤ k(α)pα

(
xs(n), ys(n)

)
+ pα

(
Ts(n)ys(n), T∞x∞

)
≤ k(α)

[
pα
(
xs(n), x∞) + pα(ys(n), x∞

)]
+ pα

(
Ts(n)ys(n), T∞x∞

)
Thus (1− k(α)) pα

(
xn(s), x∞

)
≤ k(α)pα(ys(n), x∞ + pα

(
Ts(n)ys(n), T∞x∞

)
. Since

1− k(α) < 1, we have that
{
xs(n)

}
converges to x∞ as n→∞. �
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The following result reveals a relationship between the (G)− convergence and
(H)−convergence.

Proposition 3.11. Let X be a uniform space, {Xn} a family of nonempty subsets
of X such that X∞ ⊂ lim inf Xn. Let {Tn : Xn → X}n∈N be a family of mappings
such that T∞ is continuous on X∞. If T∞ is a (H)−limit of {Tn}n∈N , then T∞ is a
(G)−limit of {Tn} .
Proof. Let x ∈ X∞. Then since X∞ ⊂ lim inf Xn, there exists a sequence {xn} in
X such that xn ∈ Xn and xn → x as n → ∞. Further, by the property (H),there
exists a sequence {yn} in X∞ such that for each α ∈ I and n ∈ N, pα (xn, yn) → 0
and pα (Tnxn, T∞yn)→ 0 as n→∞. Consequently, yn → x as n→∞. Hence by the
continuity of T∞, we have T∞yn → T∞x as n→∞. Now by the triangle inequality

pα (Tnxn, T∞x) ≤ pα (Tnxn, T∞yn) + pα(T∞yn, T∞xn)

we conclude that Tnxn → T∞x as n→∞ and the property (G) holds. �

When Xn = M 6= φ for all n ∈ N, the following proposition presents a comparision
between the uniform convergence and (H)− convergence. However, as noted in [6,
Example p. 56], in general the (H)−convergence need not imply uniform convergence.

Proposition 3.12. Let X be a uniform space, M a nonempty subset of X and
{Tn : M → X}

n∈N
a family of mappings. Then:

(a) {Tn}n∈N converges uniformly to T∞ on M ⇒ T∞ is a (H)−limit of {Tn}n∈N .
(b) the converse holds when T∞ is uniformly continuous on M.

Proof. We shall prove (b) as (a) is obvious. Suppose (b) does not hold. So,
let the limit map T∞ be uniformly continuous on M and {Tn} does not con-
verge uniformly to T∞. Hence there exists a sequence {xn} in M such that for
any α ∈ I, limn pα (Tnxn, T∞xn) 6= 0. Now, if the property (H) holds, then
there exists a sequence {yn} in M such that for any α ∈ I limn pα(xn, yn) =
0 and limn pα(Tnxn, T∞yn) = 0, so that pα(Tnxn, T∞xn) → 0 as n → ∞, a con-
tradiction. Hence (b) must hold. �

The following theorem presents our second stability result.

Theorem 3.13. Let X be a uniform space, {Xn}n∈N a family of nonempty subsets
of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (H) and

such that T∞ is a k∞−contraction. If for any n ∈ N, xn is a fixed point of Tn, then
{xn}n∈N converges to x∞.

Proof. By the property (H), there exists a sequence {yn} in X∞ such that for all
α ∈ I we have that limn pα (xn, yn) = 0 and limn pα (Tnxn, T∞yn) = 0.

Using the triangle inequality, it can be easily verified that for any α ∈ I,

pα (xn, x∞) ≤ 1

(1− k∞(α))
[pα (Tnxn, T∞yn) + k∞(α)pα(yn, xn]

and making n→∞, we obtain that {xn} converges to x∞.

Remark 3.14. If X is metrizable, then we get a stability result of Barbet and Nach
[6, Theorem 11} which in turn includes a result of Nadler [11, Theorem 1].
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Remark 3.15. Every locally convex topological vector space X is uniformzable being
completely regular (cf. Kelley [8], Shaefer [13]) where the family of pseudometric
{pα, α ∈ I}is induced by a family of seminorm {ρα, α ∈ I} so that pα(x, y) = ρα(x−y)
for all x, y ∈ X. Therefore all the results proved previously for uniform spaces also
apply to locally convex spaces.
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