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Abstract. In this paper we study the following mixed type Volterra-Fredholm functional integral

equation

x (t) = F

„
t, x(t),

Z t1

a1

. . .

Z tm

am

K(t, s, x(s))ds,

Z b1

a1

. . .

Z bm

am

H(t, s, x(s))ds

«
.

Using the Picard operator technique we establish existence, uniqueness, data dependence and Gron-

wall results for the solutions. Also, it is studied the Ulam-Hyers stability of this equation.
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1. Introduction

The theory of integral equation is an important chapter of nonlinear analysis and
the most used tool for proving the existence of the solution is the fixed point technique
(see [2], [3], [6], [7], [16], [18], etc.)

In this paper we consider the following mixed type Volterra-Fredholm functional
nonlinear integral equation:

x (t) = F

(
t, x(t),

∫ t1

a1

. . .

∫ tm

am

K(t, s, x(s))ds,
∫ b1

a1

. . .

∫ bm

am

H(t, s, x(s))ds

)
, (1.1)

where [a1; b1]× . . .× [am; bm] be an interval in Rm, K,H : [a1; b1]× . . .× [am; bm]×
[a1; b1]× . . .× [am; bm]×R → R continuous functions and F : [a1; b1]× . . .× [am; bm]×
R3→ R. The mixed type Volterra-Fredholm integral equations have been studied by
many authors (see [1], [4], [15], [17] [27], etc.).

We apply the Picard operators technique to prove the existence and the uniqueness,
data dependence and comparison results for the solutions of (1.1). This technique was
applied by many authors to study some functional nonlinear integral equation, see
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[1], [4], [9], [12], [13], [14], [21], [23], [26], [27], [28]. We use the terminologies and
notations from [19], [23] and [26]. For the convenience of the reader we recall some of
them.

Let (X, d) be a metric space and A : X → X an operator. We denote by A0 := 1X ,
A1 := A, An+1 := An ◦ A, n ∈ N the iterate operators of the operator A. We also
have:

P (X) := {Y ⊆ X | Y 6= ∅}
FA := {x ∈ X | A(x) = x}

I (A) := {Y ∈ P (X) | A (Y ) ⊆ Y }

Definition 1.1. A : X → X is called a Picard operator (briefly PO) if:
(i) FA = {x∗};
(ii) An(x) → x∗ as n→∞, for all x ∈ X.

The operator A is Picard if and only if the discrete dynamical system generated
by A has an equilibrium state which is globally asymptotically stable.

Definition 1.2. Let (X, d) be a metric space and c > 0. By definition, the operator
A is c-PO if A is PO and

d (x, x∗) ≤ c · d (x,A (x)) , ∀x ∈ X.

Definition 1.3. A : X → X is said to be a weakly Picard operator (briefly WPO) if
the sequence (An(x))n∈N converges for all x ∈ X and the limit (which may depend
on x) is a fixed point of A.

If A : X → X is a WPO, then we may define the operator A∞ : X → X by

A∞(x) := lim
n→∞

An(x).

Obviously, A∞(X) = FA. Moreover, if A is a PO and we denote by x∗ its unique
fixed point, then A∞(x) = x∗, for each x ∈ X.

Also, in this paper we study the following integral inequalities

x (t) ≤ F

(
t, x(t),

∫ t1

a1

. . .

∫ tm

am

K(t, s, x(s))ds,
∫ b1

a1

. . .

∫ bm

am

H(t, s, x(s))ds

)
(1.2)

x (t) ≥ F

(
t, x(t),

∫ t1

a1

. . .

∫ tm

am

K(t, s, x(s))ds,
∫ b1

a1

. . .

∫ bm

am

H(t, s, x(s))ds

)
(1.3)

using the Picard operators technique and Abstract Gronwall Lemma (I.A. Rus [22],
[19]).

2. Existence and uniqueness

We prove the existence and uniqueness for the solution of integral equation (1.1)
by standard techniques as in [1], [4], [5], [9], our integral equation (1.1) being more
general than integral equations considered in above mentioned papers.

Theorem 2.1. We assume that:
(i) K,H ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]× R);



A NONLINEAR INTEGRAL EQUATION VIA PICARD OPERATORS 59

(ii) F ∈ C([a1, b1]× · · · × [am, bm]× R3);
(iii) there exist α, β, γ nonnegative constants such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,

for all t ∈ [a1, b1]× · · · × [am, bm], u1, u2, v1, v2, w1, w2 ∈ R;
(iv) there exist LK and LH nonnegative constants such that:

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|,

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|,
for all t, s ∈ [a1, b1]× · · · × [am, bm], u, v ∈ R;

(v) α+ (βLK + γLH)(b1 − a1) . . . (bm − am) < 1.
Then, the equation (1.1) has a unique solution x∗ ∈ C([a1, b1]× · · · × [am, bm]).

Proof. We consider the Banach space X = C([a1, b1] × · · · × [am, bm], ‖ · ‖C), where
‖ · ‖C is the Cebyshev’s norm, and the operator

A : X → X,

A(x)(t) = F
(
t, x(t),

∫ t1
a1
. . .
∫ tm

am
K(t, s, x(s))ds,

∫ b1
a1
. . .
∫ bm

am
H(t, s, x(s))ds

) (2.1)

Conditions (iii) and (iv) imply that:

|A(u)(t)−A(v)(t)| ≤ α|u(t)− v(t)|+ β

∣∣∣∣∫ t1

a1

. . .

∫ tm

am

(K(t, s, u(s))−K(t, s, v(s)))ds
∣∣∣∣

+ γ

∣∣∣∣∣
∫ b1

a1

. . .

∫ bm

am

(K(t, s, u(s))−H(t, s, v(s)))ds

∣∣∣∣∣
≤ α|u(t)− v(t)|+ β

∫ t1

a1

. . .

∫ tm

am

LK |u(s)− v(s)|ds

+ γ

∫ b1

a1

. . .

∫ bm

am

LH |u(s)− v(s)|ds

≤ [α+ (βLK + γLH)(b1 − a1) . . . (bm − am)]‖u− v‖C ,

therefore:

‖A(u)−A(v)‖C ≤ [α+ (βLK + γLH)(b1 − a1) . . . (bm − am)]‖u− v‖C .

From condition (v) we have that the operator A is a contraction and using the con-
traction principle we obtain that the operator A has a unique fixed point, FA = {x∗},
i.e. the equation (1.1) has a unique solution x∗ ∈ C([a1, b1]× · · · × [am, bm]). �

Remark 2.1. In the conditions of the Theorem 2.1, the operator A, given by (2.1),
is PO.

Proof. From the proof of Theorem 2.1 we have that A is a contraction with LA =
α+ (βLK + γLH)(b1 − a1) . . . (bm − am). �

Remark 2.2. The conclusion of Theorem 2.1 remains true if instead of condition
(v) we put the condition
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(v’) there exists τ > 0 such that

α+
βLK

τm
+
γLH

τm
·

m∏
i=1

eτ(bi−ai) < 1.

Proof. We consider the Banach space X = C([a1, b1] × · · · × [am, bm], ‖ · ‖B), where
‖ · ‖B is the Bielecki’s norm

‖x‖B = max
[a1,b1]×···×[am,bm]

|x (t)| ·
m∏

i=1

e−τ(ti−ai), τ > 0

and A defined by (2.1). We have

|A(u)(t)−A(v)(t)| ≤ α ‖u− v‖B ·
m∏

i=1

eτ(ti−ai) +
βLK

τm
‖u− v‖B ·

m∏
i=1

eτ(ti−ai) +

+
γLH

τm
‖u− v‖B ·

m∏
i=1

eτ(ti−ai+bi−ti)

therefore

‖A(u)−A(v)‖B ≤

[
α+

βLK

τm
+
γLH

τm
·

m∏
i=1

eτ(bi−ai)

]
‖u− v‖B ,

thus A is LA−contraction with LA = α+ βLK

τm + γLH

τm ·
m∏

i=1

eτ(bi−ai) and conclusion is

obtained from contraction principle. �

Example 2.1. Let consider the integral equation

x (t) = F

(
t, x(t),

∫ t

a

K(t, s, x(s))ds,
∫ b

a

H(t, s, x(s))ds

)
, (2.2)

under the following hypothesis:
(i) F ∈ C([a, b]× [a, b]× R3), K, H ∈ C([a, b]× [a, b]× R);
(ii) there exist α, β, γ nonnegative constants such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,
for all t ∈ [a, b], u1, u2, v1, v2, w1, w2 ∈ R;

(iii) there exist LK and LH nonnegative constants such that:

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|,
|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|,

for all t, s ∈ [a, b], u, v ∈ R;
(iv) α+ (βLK + γLH)(b− a) < 1 or there exists τ > 0 such that

α+
βLK

τ
+
γLH

τ
· eτ(b−a) < 1.

Then, the equation (2.2) has a unique solution x∗ ∈ C([a, b]).

Proof. We apply Theorem 2.1 in particular case of m = 1. �



A NONLINEAR INTEGRAL EQUATION VIA PICARD OPERATORS 61

The equation (2.2) is a general case of equations considered in [1], [4], [17], [27],
their existence and uniqueness results are a consequence of Theorem 2.1.

Example 2.2. Let consider the integral equation

x (t) = f (t, x (t)) +
∫ t1

a1

. . .

∫ tm

am

K(t, s, x(s))ds+
∫ b1

a1

. . .

∫ bm

am

H(t, s, x(s))ds, (2.3)

under the following hypothesis:

(i) f ∈ C([a1, b1] × · · · × [am, bm] × R), K, H ∈ C([a1, b1] × · · · × [am, bm] ×
[a1, b1]× · · · × [am, bm]× R);

(ii) there exists α > 0 such that:

|f(t, u1)− f(t, u2)| ≤ α|u1 − u2|,

for all t ∈ [a1, b1]× · · · × [am, bm], u1, u2 ∈ R;
(iii) there exist LK and LH nonnegative constants such that:

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|,

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|,
for all t, s ∈ [a, b], u, v ∈ R;

(iv) α+ (LK + LH)(b1 − a1) . . . (bm − am) < 1 or there exists τ > 0 such that

α+ LK

τm + LH

τm ·
m∏

i=1

eτ(bi−ai) < 1

Then, the equation (2.3) has a unique solution x∗ ∈ C([a1, b1]× · · · × [am, bm]).

Proof. This is the special case when F is linear with respect to the last two variables.
We apply Theorem 2.1 for F : [a1, b1]× · · · × [am, bm]× R3 → R,

F (t, u, v, w) = f (t, u) + v + w.

In this case β = γ = 1. �

Example 2.3. Let consider the Darboux problem xt1t2 (t1, t2) = f (t1, t2, x (t1, t2)) , (t1, t2) ∈ [a1; b1]× [a2; b2]
x (t1, a2) = ϕ (t1) , t1 ∈ [a1; b1]
x (a1, t2) = ψ (t2) , t2 ∈ [a2; b2] , ϕ (a1) = ψ (a2)

(2.4)

under the following hypothesis:

(i) f ∈ C([a1; b1]× [a2; b2]× R), ϕ ∈ C ([a1; b1]), ψ ∈ C ([a2; b2]);
(ii) there exists Lf > 0 such that:

|f(t1, t2, u1)− f(t1, t2, u2)| ≤ Lf · |u1 − u2|,

for all (t1, t2) ∈ [a1; b1]× [a2; b2], u1, u2 ∈ R.

Then, the equation Darboux problem (2.4) has a unique solution x∗ ∈ C([a1; b1]×
[a2; b2]).
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Proof. x ∈ C([a1; b1]×[a2; b2]) is a solution of Darboux problem (2.4) iff it is a solution
of the integral equation

x (t1, t2) = ϕ (t1) + ψ (t2)− ϕ (a1) +
∫ t1

a1

∫ t2

a2

f (ξ1, ξ2, x (ξ1, ξ2)) dξ1dξ2. (2.5)

So, we apply Theorem 2.1 in particular case of m = 2 and F : [a1, b1]× [a2, b2]×R3 →
R,

F (t1, t2, u, v, w) = ϕ (t1) + ψ (t2)− ϕ (a1) + v.

In this case we have α = 0, β = 1 , γ = 0, LK = Lf and LH = 0. Also, the condition
(v′) from Remark 2.2 is satisfied: there exists τ > 0 such that Lf

τ2 < 1, for example
we can choose τ = Lf + 1. �

3. Data dependence: continuity

In this section we prove the continuous dependence of the solution for integral
equation (1.1) using the following Abstract Data Dependence Lemma

Lemma 3.1. (I.A. Rus [19], [23], [26]) (Abstract data dependence) Let (X, d) be a
metric space and A,B : X → X two operators such that:

(i) A is c-PO with respect to the metric d, we denote by x∗A the unique fixed point
of operator A;

(ii) there exists x∗B ∈ FB;
(iii) there exists η > 0, such that:

d (A (x) , B (x)) ≤ η, ∀x ∈ X.

Then:
d (x∗A, x

∗
B) ≤ c · η.

We consider the following equations:

x(t) = F

(
t, x(t),

∫ t1

a1

. . .

∫ tm

am

K1(t, s, x(s))ds,
∫ b1

a1

. . .

∫ bm

am

H1(t, s, x(s))ds

)
(3.1)

x(t) = F

(
t, x(t),

∫ t1

a1

. . .

∫ tm

am

K2(t, s, x(s))ds,
∫ b1

a1

. . .

∫ bm

am

H2(t, s, x(s))ds

)
, (3.2)

where Ki,Hi ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]× R), i = 1, 2.

Theorem 3.1. We assume that:
(i) F,K1,H1 satisfy the conditions from Theorem 2.1;
(ii) there exists a nonnegative constant η1 such that:

|K1(t, s, u)−K2(t, s, u)| ≤ η1, ∀ t, s ∈ [a1, b1]× · · · × [am, bm], ∀ u ∈ R;

(iii) there exists a nonnegative constant η2 such that:

|H1(t, s, u)−H2(t, s, u)| ≤ η2, ∀ t, s ∈ [a1, b1]× · · · × [am, bm], ∀ u ∈ R.
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If x∗2 is a solution of the corresponding equation (3.2) then:

‖x∗1 − x∗2‖C ≤ (βη1 + γη2)(b1 − a1) . . . (bm − am)
1− [α+ (βLK1 + γLH1)(b1 − a1) . . . (bm − am)]

,

where x∗1 is the unique solution of the corresponding equation (3.1).

Proof. We consider the Banach space X = C([a1, b1] × · · · × [am, bm], ‖ · ‖C) and
operators

Ai : X → X

Ai(x)(t) = F
(
t, x(t),

∫ t1
a1
. . .
∫ tm

am
Ki(t, s, x(s))ds,

∫ b1
a1
. . .
∫ bm

am
Hi(t, s, x(s))ds

)
(3.3)

∀ t ∈ [a1, b1]× · · · × [am, bm], ∀ i = 1, 2.
From condition (i) we have that the operator A1 is contraction with LA1 = α +

(βLK1 + γLH1)(b1 − a1) . . . (bm − am) , (see Theorem 2.1). Hence, A1 is c-PO with
c = 1

1−LA1
.

From (ii) and (iii) we get:

|A1(x)(t)−A2(x)(t)| ≤ (βη1 + γη2)(b1 − a1) . . . (bm − am),

for ∀ t ∈ [a1, b1]× · · · × [am, bm], which implies that

‖A1(x)−A2(x)‖C ≤ (βη1 + γη2)(b1 − a1) . . . (bm − am).

The conclusion is obtained from Lemma 3.1 for η = (βη1 +γη2)(b1−a1) . . . (bm−am)
and c = 1

1−LA1
. �

4. Data dependence: comparison results

In this section we prove a comparison result for the solution of integral equation
(1.1) using the following Abstract Comparison Lemma

Lemma 4.1. (I.A. Rus [19], [23], [26]) (Comparison lemma) Let (X, d,≤) be an
ordered metric space and A,B,C : X → X operators such that:

(i) A ≤ B ≤ C;
(ii) A,B,C are WPOs;
(iii) the operator B is increasing.
Then

x ≤ y ≤ z =⇒ A∞ (x) ≤ B∞ (y) ≤ C∞ (z) .

We consider the nonlinear integral equations:

x(t) = Fi

(
t, x(t),

∫ t1

a1

. . .

∫ tm

am

Ki(t, s, x(s))ds,
∫ b1

a1

. . .

∫ bm

am

Hi(t, s, x(s))ds

)
(4.1)

where Ki,Hi ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]×R), i ∈ {1, 2, 3}.

Theorem 4.1. We assume that:
(i) Fi,Ki,Hi satisfy the conditions from Theorem 2.1 for i = {1, 2, 3};
(ii) the functions F2 (t, ·, ·, ·), K2 (t, s, ·) and H2 (t, s, ·) are increasing;
(iii) F1 ≤ F2 ≤ F3, K1 ≤ K2 ≤ K3 and H1 ≤ H2 ≤ H3;
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If x∗i is the solution of the equation (4.1) corresponding to Fi,Ki,Hi, i ∈ {1, 2, 3},
then:

x∗1 ≤ x∗2 ≤ x∗3.

Proof. We consider the Banach space X = C([a1, b1] × · · · × [am, bm], ‖ · ‖C) and
operators Ai : X → X defined by (2.1) corresponding to Fi,Ki,Hi, i ∈ {1, 2, 3}.
From condition (i) we have that Ai are PO, i ∈ {1, 2, 3}, therefore FAi

= {x∗i }.
Condition (ii) implies that A2 is an increasing operator and condition (iii) implies
that A1 ≤ A2 ≤ A3.

Let x ∈ X and we denote by ui = Ai (x), i = {1, 2, 3}. It is obvious that:

u1 ≤ u2 ≤ u3

and
x∗i = A∞i (ui) , i = {1, 2, 3} ,

thus, from Lemma 4.1, we have:

u1 ≤ u2 ≤ u3 =⇒ A∞1 (u1) ≤ A∞2 (u2) ≤ A∞3 (u3)

Hence, the conclusion follows. �

5. Gronwall lemmas

In this section we study the integral inequalities (1.2) and (1.3) using the Abstract
Gronwall Lemma and Abstract Gronwall-comparison Lemma.

Lemma 5.1. (I.A. Rus [19], [23], [26]) (Abstract Gronwall lemma) Let (X, d,≤) be
an ordered metric space and A : X → X be an operator. We assume that:

(i) A is a PO;
(ii) A is increasing.

If we denote by x∗A the unique fixed point of A, then:
(a) x ≤ A (x) =⇒ x ≤ x∗A;
(b) x ≥ A (x) =⇒ x ≥ x∗A.

Lemma 5.2. (I.A. Rus [19], [23], [26]) (Abstract Gronwall-comparison lemma) Let
(X,→,≤) be an ordered metric space and A1, A2 : X → X be two operators. We
assume that:

(i) A1 is increasing;
(ii) A1 and A2 are a POs.
(iii) A1 ≤ A2

If we denote by x∗2 the unique fixed point of A2, then

x ≤ A1 (x) =⇒ x ≤ x∗2.

Theorem 5.1. We consider the equation (1.1). We assume that:
(i) F,K,H satisfy the conditions from Theorem 2.1;
(ii) K(t, s, ·),H(t, s, ·) : R → R are increasing functions for all t, s ∈ [a1, b1] ×

· · · × [am, bm];
(iii) F (t, ·, ·, ·) : R3 → R is increasing, for all t ∈ [a1, b1]× · · · × [am, bm].
Then we have:
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(a) If x is a solution of (1.2) then x ≤ x∗, where x∗ is the unique solution of
(1.1);

(b) If x is a solution of (1.3) then x ≥ x∗,where x∗ is the unique solution of (1.1).

Proof. We consider the operator A defined by (2.1). From Theorem 2.1 we have that
A is PO. Conditions (ii) and (iii) imply that A is increasing. In terms of the operator
A the integral inequality (1.2) means

x ≤ A (x) ,

and the integral inequality (1.3) means

x ≥ A (x) .

The conclusion is obtained from Abstract Gronwall Lemma, Lemma 5.1. �

Remark 5.1. To have an effective Gronwall Lemma we need to ”construct” x∗, which
is usualy a very difficult problem.

In this direction, if we use the Abstract Gronwall-comparison lemma, Lemma 5.2,
we obtain the following result:

Theorem 5.2. We consider the integral equation (1.2) corresponding to Fi,Ki,Hi

for i = {1, 2}. We assume that:
(i) Fi,Ki,Hi satisfy the conditions from Theorem 2.1 for i = {1, 2};
(ii) F1 (t, ·, ·, ·), K1 (t, s, ·) and H1 (t, s, ·) are increasing functions for all t, s ∈

[a1, b1]× · · · × [am, bm];
(iii) F1 ≤ F2, K1 ≤ K2 and H1 ≤ H2.
If x is a solution of (1.2) corresponding to F1,K1,H1 then x ≤ x∗2, where x∗2 is the

unique solution of (1.1) corresponding to F2,K2,H2.

Proof. We consider the operator A1, A2 defined by (2.1), corresponding to F1,K1,H1

and F2,K2,H2. From Theorem 2.1 we have that A1 and A2 are POs, we denote by
x∗i the unique fixed point of operator Ai, i = {1, 2}. Condition (ii) implies that A1

is increasing and condition (iii) implies that A1 ≤ A2. If x is a solution of (1.2)
corresponding to F1,K1,H1 then

x ≤ A1 (x) .

The conclusion is obtained from Abstract Gronwall-comparison Lemma, Lemma 5.2.
�

Example 5.1. (Wendroff inequality [11]) If

x (t1, t2) ≤ a(t1) + b(t2) +

t1∫
0

t2∫
0

v (ξ1, ξ2)x (ξ1, ξ2) dξ1dξ2 (5.1)

where a(t1), b(t2) > 0, a′(t1), b′(t2) ≥ 0, x (t1, t2), v (t1, t2) ≥ 0, then:

x (t1, t2) ≤ x∗ (t1, t2) ≤
[a(0) + b(t2)] [a(t1) + b(0)]

a(0) + b(0)
· e

t1R
0

t2R
0

v(ξ1,ξ2)dξ1dξ2

, (5.2)
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where x∗ (t1, t2) is the solution of the Darboux problem xt1t2 (t1, t2) = x (t1, t2) v (t1, t2) , (t1, t2) ∈ [0; b1]× [0; b2]
x (t1, 0) = a(t1) + b(0), t1 ∈ [0; b1]
x (0, t2) = a(0) + b(t2), t2 ∈ [0; b2]

(5.3)

Proof. Let b1 > 0 and b2 > 0 and we consider the Banach space

X = (C ([0; b1]× [0; b2] ,R+) , ‖·‖B) ,

where
‖u‖B = max

[0;b1]×[0;b2]
|u (x, y)| · e−τ(x+y), τ > 0.

We define the operators A1, A2 : X → X

A1 (x) (t1, t2) = a(t1) + b(t2) +

t1∫
0

t2∫
0

v (ξ1, ξ2)x (ξ1, ξ2) dξ1dξ2, (5.4)

A2 (x) (t1, t2) = a(0) + b(t2) +

t1∫
0

 a′(ξ1)
a(ξ1) + b(0)

+

t2∫
0

v (ξ1, ξ2) dξ2

 · x (ξ1, t2) dξ1,

(5.5)
It is clear that any solution of the Darboux problem (5.3) is a fixed point of operator

A1. We have that A1 : X → X is PO (see Example 2.3), thus FA1 = {x∗}. Also, A1

is an increasing operator and from Abstract Gronwall Lemma we have

x ≤ A1 (x) =⇒ x ≤ x∗,

which means that any x satisfying (5.1) will satisfy the inequality x ≤ x∗.
The function

w∗ (t1, t2) =
[a(0) + b(t2)] [a(t1) + b(0)]

a(0) + b(0)
· e

t1R
0

t2R
0

v(ξ1,ξ2)dξ1dξ2

(5.6)

is not the solution of (5.3), w∗ is the solution of the problem wt1 (t1, t2) =
(

a′(t1)
a(t1)+b(0) +

t2∫
0

v (t1, ξ2) dξ2

)
· w (t1, t2)

w (0, t2) = a(0) + b(t2)
(5.7)

or 
∂

∂t2

(
wt1 (t1,t2)

w(t1,t2)

)
= v (t1, t2)

w (t1, 0) = a(t1) + b(0)
w (0, t2) = a(0) + b(t2)

(5.8)

In order to prove (5.2) we will apply the Abstract Gronwall-comparison lemma,
Lemma 5.2.

We consider the set

Y = {x ∈ X : xt1 ≥ 0, xt2 ≥ 0, x (t1, 0) = a(t1) + b(0)} .
It is clear that Y ⊆ X is a closed subset, so it is a complete metric space. Moreover, Y
is an invariant set of A1 and A1 : Y → Y is a contraction, so x∗ ∈ Y and A1 : Y → Y
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is PO. It is easy to check that also A2 : Y → Y is a contraction, so it is PO and
FA2 = {w∗}. Now we prove that A1 (x) ≤ A2 (x) for all x ∈ Y .

We have:

A1 (x) (t1, t2) = a(0) + b(t2) +

t1∫
0

a′(ξ1) +

t2∫
0

v (ξ1, ξ2)x (ξ1, ξ2) dξ2

 dξ1

≤ a(0) + b(t2) +

t1∫
0

 a′(ξ1)
a(ξ1) + b(0)

+

t2∫
0

v (ξ1, ξ2) dξ2

x (ξ1, t2) dξ1

= A2 (x) (t1, t2) ,

since
a(ξ1) + b(0) = x (ξ1, 0) ≤ x (ξ1, ξ2) , ∀ (ξ1, ξ2) ∈ [0; b1]× [0; b2]

and
x (ξ1, ξ2) ≤ x (ξ1, t2) , ∀ξ1 ∈ [0; b1] , 0 ≤ ξ2 ≤ t2 ≤ b2.

All the conditions of the Abstract Gronwall-comparison lemma are satisfied, therefore

x ≤ A1 (x) ≤ A2 (x) =⇒ x ≤ x∗ ≤ w∗

and the proof is complete. �

If we consider the case of a(t1) + b(t2) ≡ c, c ∈ R+, we obtain th results from C.
Crăciun, N. Lungu [5], N. Lungu [8]. In some particular cases for v (t1, t2) we can find
the expresion of x∗ from (5.2), for example, if a(t1) + b(t2) ≡ c and v (t1, t2) ≡ α2

then x∗ (t1, t2) = cJ0

(
2α
√
t1t2

)
, where J0

(
2α
√
t1t2

)
is the Bessel function (see C.

Crăciun, N. Lungu [5]).
For other applications of Abstract Gronwall lemma and Abstract Gronwall-

comparison lemma see N. Lungu [9], N. Lungu, I.A. Rus [10], I.A. Rus [19], [22].

6. Ulam-Hyers stability

Definition 6.1. (I.A. Rus [24]) Let (X, d) be a metric space and A : X → X be an
operator. By definition, the fixed point equation

x = A (x) (6.1)

is Ulam-Hyers stable if there exists a real number cA > 0 such that for each ε > 0
and each solution y∗ of the inequation

d (y,A (y)) ≤ ε

there exists a solution x∗ of (6.1) such that

d (y∗, x∗) ≤ cAε.

Theorem 6.1. In the conditions of the Theorem 2.1, the integral equation (1.1) is
Ulam-Hyers stable, in more precise manner, let ε > 0, if
y∗ ∈ C([a1, b1]× · · · × [am, bm]) is a solution of the inequation∣∣∣∣∣y (t)− F

(
t, y(t),

∫ t1

a1

. . .

∫ tm

am

K(t, s, y(s))ds,
∫ b1

a1

. . .

∫ bm

am

H(t, s, y(s))ds

)∣∣∣∣∣ ≤ ε,
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for every t ∈ [a1, b1]× · · · × [am, bm], then there exists a solution
x∗ ∈ C([a1, b1]× · · · × [am, bm]) of the equation (1.1) such that

|y∗ (t)− x∗ (t)| ≤ 1
1− LA

ε,

for every t ∈ [a1, b1]×· · ·×[am, bm], where LA = α+(βLK+γLH)(b1−a1) . . . (bm−am).

Proof. We consider the operator A, given by (2.1). In the conditions of the The-
orem 2.1, the operator A is contraction, therefore A is c-PO with the constant
c = (1− LA)−1 and the conclusion is an application of the Remark 2.1 from I.A.
Rus [24]. �

7. Integral equations in Banach space

Let (B, |·|) a Banach space. The Theorem 2.1 remains also true if we consider
the mixed type Volterra-Fredholm functional nonlinear integral equation (1.1) in the
Banach space B instead of Banach space R.

Theorem 7.1. We assume that:

(i) K,H ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]× B,B);
(ii) F ∈ C([a1, b1]× · · · × [am, bm]× B3,B);
(iii) there exist α, β, γ nonnegative constants such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,

for all t ∈ [a1, b1]× · · · × [am, bm], u1, u2, v1, v2, w1, w2 ∈ B;
(iv) there exist LK and LH nonnegative constants such that:

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|,

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|,

for all t, s ∈ [a1, b1]× · · · × [am, bm], u, v ∈ B;
(v) α+ (βLK + γLH)(b1 − a1) . . . (bm − am) < 1.

Then, the equation (1.1) has a unique solution x∗ ∈ C([a1, b1]× · · · × [am, bm],B).

Remark 7.1. The conclusion of Theorem 7.1 remains true if instead of condition
(v) we put the condition (v′) from Remark 2.2.

Example 7.1. We consider the following infinite system of integral equation

xn (t) = fn (t) +
∫ t1

a1

. . .

∫ tm

am

k(t, s)xn+1(s)ds+
∫ b1

a1

. . .

∫ bm

am

h(t, s)xn+2(s)ds, n ∈ N,

(7.1)
under the following hypothesis:

(i) fn ∈ C([a1, b1]× · · · × [am, bm]), n ∈ N, fn (t) → 0, n→ +∞, for every
t ∈ [a1, b1]× · · · × [am, bm];

(ii) k, h ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]);
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(iii) (mk +mh)(b1 − a1) . . . (bm − am) < 1 or there exists τ > 0 such that
mk

τm + mh

τm ·
m∏

i=1

eτ(bi−ai) < 1, where

mk = max
t,s∈[a1,b1]×···×[am,bm]

|k(t, s)| ,

mh = max
t,s∈[a1,b1]×···×[am,bm]

|h(t, s)| .

Then, the equation (7.1) has a unique solution.

Proof. Let (B, ‖·‖) the Banach space, where

B = c0 = {u = (u0, u1, . . . , un, . . .) ∈ s (R) : un → 0}
and

‖u‖ = max
n∈N

|un| .

Let u = (u0, u1, . . . , un, . . .) ∈ B. We denote by

f = (f0, f1, . . . , fn, . . .) ,
K = (K0,K1, . . . ,Kn, . . .) ,
H = (H0,H1, . . . ,Hn, . . .) ,

where

Kn (t, s,u) = k(t, s)un+1,

Hn (t, s,u) = h(t, s)un+2,

t, s ∈ [a1, b1] × · · · × [am, bm]. From (i) and (ii) we have that f ∈ C([a1, b1] × · · · ×
[am, bm],B) and K,H ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm],B). Also,

‖K (t, s,u)−K (t, s,v)‖ ≤ mk ‖u− v‖ ,
‖H (t, s,u)−H (t, s,v)‖ ≤ mh ‖u− v‖ ,

for all t, s ∈ [a1, b1]× · · · × [am, bm] and u,v ∈ B. All the conditions of Theorem 7.1
are satisfied, therefore we get that the equation (7.1) has a unique solution
x∗ = (x∗0, x

∗
1, . . . , x

∗
n, . . .) ∈ C([a1, b1]× · · · × [am, bm],B). �
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