DATA DEPENDENCE OF FIXED POINTS IN GAUGE SPACES

A. CHIŞ-NOVAC
Technical University of Cluj-Napoca, Department of Mathematics
C. Daicoviciu Stree No. 15, Cluj-Napoca, Romania
E-mail: adela.chis@math.utcluj.ro

Abstract

Data dependence of fixed points for several classes of non-self generalized contractions in gauge spaces is studied. Key Words and Phrases: fixed point, data dependence, non-self operator, fixed point, gauge space, weakly Picard operator. 2010 Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.

1. Introduction

Let (X, \mathcal{P}) be gauge space, $Y \subset X$ a nonempty subset of X and $f: Y \rightarrow X$ an operator. In what follow we shall use the following notations:

$$
\begin{aligned}
& F_{f}=\{x \in Y: f(x)=x\}-\text { the fixed points set of } f ; \\
& I(f)=\{Z \subset Y: f(Z) \subset Z, Z \neq \emptyset\}-\text { the set of invariant subsets of } f ; \\
& (M I)_{f}=\bigcup_{Z \in I(f)} Z-\text { the maximal invariant subset of } f ; \\
& (B A)_{f}\left(x^{*}\right)=\left\{x \in Y: f^{n}(x) \text { is defined for all } n \in \mathbb{N} \text { and } f^{n}(x) \xrightarrow{\mathcal{P}} x^{*} \in F_{f}\right\} . \\
& \quad-\text { the attraction basin of } x^{*} \in F_{f} \text { with respect to } f ; \\
& (B A)_{f}=\cup(B A)_{f}\left(x^{*}\right)-\text { the attraction basin of } f ; \\
& (P H)_{\mathcal{P}}=\left((P H)_{d_{\alpha}}\right)_{\alpha \in \mathcal{A}}, \text { where } \\
& (P H)_{d_{\alpha}}(A, B):=\max \left(\sup _{a \in A} \inf _{b \in B} d_{\alpha}(a, b), \sup _{b \in B} \inf _{a \in A} d_{\alpha}(a, b)\right)
\end{aligned}
$$

In [3], the authors, using the weakly Picard operator technique, give some data dependence results for the fixed points of nonself operators in a metric space. In this paper, the data dependence of fixed points for several classes of non-self generalized contractions in gauge spaces is studied.

2. Picard and weakly Picard non-self operators

We begin our considerations by some definitions. Let X be a nonempty set and let $\mathcal{P}=\left(d_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a separated gauge structure on X . Then the pair (X, \mathcal{P}) is said to be a gauge space (see [4], [10], [11]). Let Y be a nonempty subset of X.

Definition 2.1. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and let $f: Y \rightarrow X$ be an operator. We say that the operator f is a contraction with respect to \mathcal{P} if for every $\alpha \in \mathcal{A}$ there exists $0<a_{\alpha}<1$ such that

$$
\begin{equation*}
d_{\alpha}(f(x), f(y)) \leq a_{\alpha} d_{\alpha}(x, y), \text { for every } x, y \in Y \tag{2.1}
\end{equation*}
$$

In this case we will say that f is an A-contraction, where $A=\left(a_{\alpha}\right)_{\alpha \in \mathcal{A}}$.
Definition 2.2. An operator $f: Y \rightarrow X$ is said to be a Picard operator (PO) if:
(i) $F_{f}=\left\{x_{f}^{*}\right\}$;
(ii) $(M I)_{f}=(B A)_{f}$.

Definition 2.3. An operator $f: Y \rightarrow X$ is said to be a weakly Picard operator (WPO) if:
(i) $F_{f} \neq \emptyset$;
(ii) $(M I)_{f}=(B A)_{f}$.

Definition 2.4. For each WPO $f: Y \rightarrow X$ we define the operator $f^{\infty}:(B A)_{f} \rightarrow$ $(B A)_{f}$ by $f^{\infty}(x)=\lim _{n \rightarrow \infty} f^{n}(x)$.
Remark 2.1. Notice that $f^{\infty}\left((B A)_{f}\right)=F_{f}$, thus f^{∞} is a set retraction of $(B A)_{f}$ on F_{f}.

Remark 2.2. In terms of weakly Picard self operators theory, the above definitions take the following form:
$f: Y \rightarrow X$ is a WPO $(P O)$ iff $\left.f\right|_{(M I)_{f}}:(M I)_{f} \rightarrow(M I)_{f}$ is a WPO (PO).
Let $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$, where $\psi_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous in 0 and $\psi_{\alpha}(0)=$ 0 , for every $\alpha \in \mathcal{A}$.

Definition 2.5. An operator $f: Y \rightarrow X$ is said to be $a \Psi-W P O(\Psi-P O)$ if f is a $W P O$ (PO) and

$$
d_{\alpha}\left(x, f^{\infty}(x)\right) \leq \psi_{\alpha}\left(d_{\alpha}(x, f(x)) \text { for every } x \in(M I)_{f} \text { and every } \alpha \in \mathcal{A}\right.
$$

If $\psi_{\alpha}(t):=c_{\alpha} t, t \in \mathbb{R}_{+}$, for some $c_{\alpha}>0$ for every $\alpha \in \mathcal{A}$, we say that f is a C-WPO $\left(C\right.$-PO), where $C=\left(c_{\alpha}\right)_{\alpha \in \mathcal{A}}$.

Example 2.1. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let $f: Y \rightarrow$ X be an A-contraction such that $F_{f}=\left\{x_{f}^{*}\right\}$. Then f is a C-PO with $C=\left(\frac{1}{1-a_{\alpha}}\right)_{\alpha \in \mathcal{A}}$.

Indeed, for $x \in(M I)_{f}$ and $\alpha \in \mathcal{A}$ we have that $d_{\alpha}\left(f^{n}(x), x_{f}^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$, i.e., f is a PO. On the other hand, for $x \in(M I)_{f}$ and $\alpha \in \mathcal{A}$ we have

$$
\begin{aligned}
d_{\alpha}\left(x, f^{n}(x)\right) & \leq d_{\alpha}(x, f(x))+d_{\alpha}\left(f(x), f^{2}(x)\right)+\ldots+d_{\alpha}\left(f^{n-1}(x), f^{n}(x)\right) \\
& \leq\left(1+a_{\alpha}+a_{\alpha}^{2}+\ldots+a_{\alpha}^{n-1}\right) d_{\alpha}(x, f(x)) \\
& \leq \frac{1}{1-a_{\alpha}} d_{\alpha}(x, f(x))
\end{aligned}
$$

Hence $d_{\alpha}\left(x, x_{f}^{*}\right) \leq \frac{1}{1-a_{\alpha}} d_{\alpha}(x, f(x))$, for every $\alpha \in \mathcal{A}$.

Example 2.2. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let f : $Y \rightarrow X$ be a generalized contraction of Ćirić-Reich-Rus type, that is for every $\alpha \in \mathcal{A}$

$$
\begin{equation*}
d_{\alpha}(f(x), f(y)) \leq a_{\alpha} d_{\alpha}(x, f(x))+b_{\alpha} d_{\alpha}(y, f(y))+c_{\alpha} d_{\alpha}(x, y) \text { for all } x, y \in Y \tag{2.2}
\end{equation*}
$$

where $a_{\alpha}, b_{\alpha}, c_{\alpha}$ are non-negative numbers with $a_{\alpha}+b_{\alpha}+c_{\alpha}<1$. We suppose that $F_{f}=\left\{x_{f}^{*}\right\}$. Then f is a C-PO, where $C=\left(\frac{1-b_{\alpha}}{1-a_{\alpha}-b_{\alpha}-c_{\alpha}}\right)_{\alpha \in \mathcal{A}}$.

Indeed, if we let in (2.2) $y=f(x), x \in(B A)_{f}$, we obtain

$$
d_{\alpha}\left(f(x), f^{2}(x)\right) \leq a_{\alpha} d_{\alpha}(x, f(x))+b_{\alpha} d_{\alpha}\left(f(x), f^{2}(x)\right)+c_{\alpha} d_{\alpha}(x, f(x))
$$

and thus

$$
\begin{equation*}
d_{\alpha}\left(f(x), f^{2}(x)\right) \leq \frac{a_{\alpha}+c_{\alpha}}{1-b_{\alpha}} d_{\alpha}(x, f(x)), \text { for all } x \in(B A)_{f} \text { and all } \alpha \in \mathcal{A} . \tag{2.3}
\end{equation*}
$$

Then, for every $n \in \mathbb{N}^{*}$ and every $\alpha \in \mathcal{A}$ we have

$$
\begin{aligned}
d_{\alpha}\left(x, f^{n}(x)\right) & \leq d_{\alpha}(x, f(x))+d_{\alpha}\left(f(x), f^{2}(x)\right)+\ldots+d_{\alpha}\left(f^{n-1}(x), f^{n}(x)\right) \\
& \leq \frac{1-b_{\alpha}}{1-a_{\alpha}-b_{\alpha}-c_{\alpha}} d_{\alpha}(x, f(x)) .
\end{aligned}
$$

Consequently, f is a C-PO.
Example 2.3. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let f : $Y \rightarrow X$ be a generalized contraction of Ciric type, that is for every $\alpha \in \mathcal{A}$

$$
d_{\alpha}(f(x), f(y)) \leq q_{\alpha} \max \left\{d_{\alpha}(x, y), d_{\alpha}(x, f(x)), d_{\alpha}(y, f(y)), d_{\alpha}(x, f(y)), d_{\alpha}(y, f(x))\right\}
$$

for all $x, y \in Y$ and some $q_{\alpha} \in\left[0, \frac{1}{2}\right)$. We suppose that $F_{f}=\left\{x_{f}^{*}\right\}$. Then f is a $C-P O$, where $C=\left(\frac{1-q_{\alpha}}{1-2 q_{\alpha}}\right)_{\alpha \in \mathcal{A}}$.
Example 2.4. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let f : $Y \rightarrow X$ be a graphic contraction with closed graph, i.e., for every $\alpha \in \mathcal{A}$ there exists $a_{\alpha} \in(0,1)$ such that, for all x for which $f^{2}(x)$ is defined we have:

$$
d_{\alpha}\left(f^{2}(x), f(x)\right) \leq a_{\alpha} d_{\alpha}(x, f(x)) .
$$

We suppose that $F_{f} \neq \emptyset$. Then f is a C-WPO, where $C=\left(\frac{1}{1-a_{\alpha}}\right)_{\alpha \in \mathcal{A}}$.
Indeed, the graphic contraction condition implies that for every $x \in(M I)_{f}$, the sequence $\left(f^{n}(x)\right)$ is convergent. Since f has closed graph the limit of the sequence $\left(f^{n}(x)\right)$ is a fixed point of f. Thus f is a WPO. In addition, if $x \in(B A)_{f}$, then for every $\alpha \in \mathcal{A}$, we have

$$
\begin{aligned}
d_{\alpha}\left(x, f^{n}(x)\right) & \leq d_{\alpha}(x, f(x))+d_{\alpha}\left(f(x), f^{2}(x)\right)+\ldots+d_{\alpha}\left(f^{n-1}(x), f^{n}(x)\right) \\
& \leq\left(1+a_{\alpha}+a_{\alpha}^{2}+\ldots+a_{\alpha}^{n-1}\right) d_{\alpha}(x, f(x)) \\
& \leq \frac{1}{1-a_{\alpha}} d_{\alpha}(x, f(x))
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain $d_{\alpha}\left(x, f^{\infty}(x)\right) \leq \frac{1}{1-a_{\alpha}} d_{\alpha}(x, f(x))$ for all $\alpha \in \mathcal{A}$.

Example 2.5. Let (X, \mathcal{P}) be a gauge space, let $\Phi=\left(\varphi_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family of functions such that for every $\alpha \in \mathcal{A}, \varphi_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a strict comparison function (see [8]), i.e., for every $\alpha \in \mathcal{A}$:
(a) φ_{α} is increasing;
(b) $\varphi_{\alpha}^{n}(t) \rightarrow 0$ as $n \rightarrow \infty$, for all $t \in \mathbb{R}_{+}$;
(c) $t-\varphi_{\alpha}(t) \rightarrow+\infty$ as $t \rightarrow \infty$.

Let $Y \subset X$ and $f: Y \rightarrow X$ be a strict Φ - contraction with respect to \mathcal{P}, i.e.,

$$
d_{\alpha}(f(x), f(y)) \leq \varphi_{\alpha}\left(d_{\alpha}(x, y)\right) \quad \text { for all } x, y \in Y \text { and all } \alpha \in \mathcal{A} .
$$

Suppose that $F_{f} \neq \emptyset$. Then f is a $\Psi_{\Phi}-P O$, with $\Psi_{\Phi}=\left(\psi_{\varphi_{\alpha}}\right)_{\alpha \in \mathcal{A}}$ where $\psi_{\varphi_{\alpha}}: \mathbb{R}_{+} \rightarrow$ \mathbb{R}_{+},

$$
\psi_{\varphi_{\alpha}}(\eta)=\sup \left\{t \in \mathbb{R}_{+}: t-\varphi_{\alpha}(t) \leq \eta\right\}
$$

for every $\alpha \in \mathcal{A}$.
Notice that $F_{f}=\left\{x^{*}\right\}$. Then, for $x \in(B A)_{f}$ and $\alpha \in \mathcal{A}$ we have

$$
\begin{aligned}
d_{\alpha}\left(x, x^{*}\right) & \leq d_{\alpha}(x, f(x))+d_{\alpha}\left(f(x), x^{*}\right) \\
& \leq d_{\alpha}(x, f(x))+\varphi_{\alpha}\left(d_{\alpha}\left(x, x^{*}\right)\right) .
\end{aligned}
$$

Hence $d\left({ }_{\alpha} x, x^{*}\right)-\varphi_{\alpha}\left(d_{\alpha}\left(x, x^{*}\right)\right) \leq d_{\alpha}(x, f(x))$. Thus we get that $d_{\alpha}\left(x, x^{*}\right) \leq$ $\psi_{\varphi_{\alpha}}\left(d_{\alpha}(x, f(x))\right)$ for every $\alpha \in \mathcal{A}$. Therefore f is a $\Psi_{\Phi^{-}} \mathrm{PO}$.

Remark 2.3. It is obvious that if $f: X \rightarrow X$ is a $W P O(P O)$, then $\left.f\right|_{Y}: Y \rightarrow X$ is also a WPO (PO).

3. Data dependence for Ψ-WPOs and Ψ-POs

Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ be a nonempty subset of X and $f, g: Y \rightarrow X$ two operators.

Theorem 3.1. Assume that the following conditions are satisfied:
(i) f and g are Ψ-WPOs;
(ii) $F_{g} \subset(B A)_{f}$ and $F_{f} \subset(B A)_{g}$;
(iii) for every $\alpha \in \mathcal{A}$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha} \quad \text { for all } x \in Y \text {. }
$$

Then

$$
(P H)_{d_{\alpha}}\left(F_{f}, F_{g}\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right), \text { for every } \alpha \in \mathcal{A}
$$

Proof. If $x \in F_{g}$, and $\alpha \in \mathcal{A}$ then

$$
d_{\alpha}\left(x, f^{\infty}(x)\right) \leq \psi_{\alpha}\left(d_{\alpha}(x, f(x))\right)=\psi_{\alpha}\left(d_{\alpha}(g(x), f(x))\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right)
$$

If $y \in F_{f}$, and $\alpha \in \mathcal{A}$ then

$$
d_{\alpha}\left(y, g^{\infty}(y)\right) \leq \psi_{\alpha}\left(d_{\alpha}(y, g(y))\right)=\psi_{\alpha}\left(d_{\alpha}(f(y), g(y))\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right)
$$

Now the conclusion follows from the next lemma from [8].

Lemma 3.1. Let (X, d) be a metric space and $A, B \subset X$ be two nonempty sets. If $\tau>0$ is such that:
(1) for each $a \in A$ there exists $b \in B$ such that $d(a, b) \leq \tau$;
(2) for each $b \in B$ there exists $a \in A$ such that $d(a, b) \leq \tau$,
then $(P H)_{d}(A, B) \leq \tau$.
In the case of Picard operators, Theorem 3.1 takes the following form:
Theorem 3.2. Assume that the following conditions are satisfied:
(i) f is a $\Psi-P O\left(F_{f}=\left\{x_{f}^{*}\right\}\right)$;
(ii) $\emptyset \neq F_{g} \subset(B A)_{f}$;
(iii) for every $\alpha \in A$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha} \quad \text { for all } x \in Y
$$

Then

$$
d_{\alpha}\left(x_{f}^{*}, x_{g}^{*}\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right), \quad \text { for all } x_{g}^{*} \in F_{g} \text { and all } \alpha \in \mathcal{A} .
$$

For the case of strict Φ-contractions we have the following result:
Theorem 3.3. Assume that the following conditions are satisfied:
(i) f is a strict Φ - contraction with respect to \mathcal{P} with $F_{f}=\left\{x_{f}^{*}\right\}$;
(ii) $F_{g} \neq \emptyset$;
(iii) for every $\alpha \in \mathcal{A}$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \quad \text { for all } x \in Y
$$

Then

$$
d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right) \leq \psi_{\varphi_{\alpha}}\left(\eta_{\alpha}\right), \text { for all } x_{g}^{*} \in F_{g} \text { and all } \alpha \in \mathcal{A} .
$$

Proof. Let $x_{g}^{*} \in F_{g}$ and $\alpha \in \mathcal{A}$. We have

$$
\begin{aligned}
d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right) & \leq d_{\alpha}\left(x_{g}^{*}, f\left(x_{g}^{*}\right)\right)+d_{\alpha}\left(f\left(x_{g}^{*}\right), x_{f}^{*}\right) \\
& \leq \eta_{\alpha}+\varphi_{\alpha}\left(d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right)\right) .
\end{aligned}
$$

Hence $d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right)-\varphi_{\alpha}\left(d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right)\right) \leq \eta_{\alpha}$, i.e., we get that $d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right) \leq$ $\psi_{\varphi_{\alpha}}\left(\eta_{\alpha}\right)$ for every $\alpha \in \mathcal{A}$.

We also have the following result:
Theorem 3.4. Assume that the following conditions are satisfied:
(i) there exist $a_{\alpha}, b_{\alpha} \in \mathbb{R}_{+}, a_{\alpha}+2 b_{\alpha}<1$ such that

$$
d_{\alpha}(f(x), f(y)) \leq a_{\alpha} d(x, y)+b_{\alpha}\left[d_{\alpha}(x, f(x))+d_{\alpha}(y, f(y))\right]
$$

for all $x, y \in X$ and each $\alpha \in A$. Suppose that $F_{f}=\left\{x_{f}^{*}\right\}$;
(ii) $F_{g} \neq \emptyset$;
(iii) for every $\alpha \in \mathcal{A}$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \quad \text { for all } x \in Y
$$

Then

$$
\begin{equation*}
d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right) \leq \frac{1+b_{\alpha}}{1-a_{\alpha}} \eta_{\alpha}, \text { for all } x_{g}^{*} \in F_{g} \text { and all } \alpha \in A . \tag{3.1}
\end{equation*}
$$

Proof. Let $x_{g}^{*} \in F_{g}$ and $\alpha \in \mathcal{A}$. We have

$$
\begin{aligned}
d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right) & \leq d_{\alpha}\left(x_{g}^{*}, f\left(x_{g}^{*}\right)\right)+d_{\alpha}\left(f\left(x_{g}^{*}\right), x_{f}^{*}\right) \\
& \leq \eta_{\alpha}+a_{\alpha} d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right)+b_{\alpha} d_{\alpha}\left(x_{g}^{*}, f\left(x_{g}^{*}\right)\right) \\
& \leq \eta_{\alpha}+a_{\alpha} d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right)+b_{\alpha} \eta_{\alpha} .
\end{aligned}
$$

Remark 3.1. In applications one use continuation principles in order to satisfies condition (i) in Theorem 3.1 and Theorem 3.2 (see [1], [2], [5], [7]).

4. Data dependence for operators satisfying the Ψ-Condition

4.1. The Ψ - condition in the case $F_{f}=\left\{x_{f}^{*}\right\}$. Let $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in A}$, where ψ_{α} : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous in 0 and $\psi_{\alpha}(0)=0$, for every $\alpha \in A$. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f: Y \rightarrow X$ be an operator with $F_{f}=\left\{x_{f}^{*}\right\}$.

Definition 4.1. We say that the operator f satisfies the Ψ-condition if for every $\alpha \in A$ one have

$$
d_{\alpha}\left(x, x_{f}^{*}\right) \leq \psi_{\alpha}\left(d_{\alpha}(x, f(x))\right) \text { for all } x \in Y
$$

Example 4.1. If $f: Y \rightarrow X$ is an A-contraction then f satisfies the Ψ-condition with respect to $\Psi=\left(\frac{t}{1-a_{\alpha}}\right)_{\alpha \in A}$.
Example 4.2. If $f: Y \rightarrow X$ is a strict Φ-contraction with respect to \mathcal{P}, (with $\Phi:=$ $\left(\varphi_{\alpha}\right)_{\alpha \in \mathcal{A}}$ a family of strict comparison functions), then f satisfies the Ψ-condition, where $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$, with $\psi_{\alpha}(r)=\sup \left\{t \in \mathbb{R}_{+}: t-\varphi_{\alpha}(t) \leq r\right\}$, for any $\alpha \in \mathcal{A}$.

The above examples give rise to the following problems:
Problem 4.1. Which generalized contractions on gauge space satisfy the Ψ-condition, where $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$, for some functions $\psi_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$?

Problem 4.2. Let $Y=X$. For which generalized contractions we have that:
(i) f satisfies the Ψ - condition with respect to $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$;
(ii) f is not $a \Psi-P O$.

Theorem 4.1. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f: Y \rightarrow X$ be an operator with $F_{f}=\left\{x_{f}^{*}\right\}$. If f satisfies the Ψ-condition, then the fixed point problem is well posed for f.
Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset Y$ be such that $d_{\alpha}\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, for every $\alpha \in \mathcal{A}$. Then, from the Ψ-condition, for every $\alpha \in \mathcal{A}$, we have that $d_{\alpha}\left(x_{n}, x_{f}^{*}\right) \leq$ $\psi_{\alpha}\left(d_{\alpha}\left(x_{n}, f\left(x_{n}\right)\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 4.2. Let (X, \mathcal{P}) be a gauge space, $f: Y \rightarrow X$ be an operator with $F_{f}=$ $\left\{x_{f}^{*}\right\}$. Assume that the following conditions are satisfied:
(i) $Y=X$;
(ii) f satisfies the Ψ - condition with respect to $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$;
(iii) f is asymptotically regular, i.e., for every $\alpha \in \mathcal{A}$

$$
d_{\alpha}\left(f^{n}(x), f^{n+1}(x)\right) \rightarrow 0 \text { as } n \rightarrow \infty \text { for every } x \in X
$$

Then f is a $\Psi-P O$.
Proof. Let $x \in X$. For every $\alpha \in A$, we have that

$$
d_{\alpha}\left(f^{n}(x), x_{f}^{*}\right) \leq \psi_{\alpha}\left(d_{\alpha}\left(f^{n}(x), f^{n+1}(x)\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

So, f is a PO. Now (ii) implies that f is a Ψ-PO.
Now we state a data dependence result for operators satisfying the Ψ-condition.
Theorem 4.3. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f, g: Y \rightarrow X$ be two operators. We suppose that:
(i) f satisfies the Ψ - condition;
(ii) for every $\alpha \in A$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \quad \text { for every } x \in Y
$$

Then

$$
d_{\alpha}\left(x_{f}^{*}, x_{g}^{*}\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right) \text { for every } x_{g}^{*} \in F_{g} \text { and every } \alpha \in A .
$$

Proof. Let $x_{g}^{*} \in F_{g}$ and $\alpha \in A$. Then (i) and (ii) guarantee that:

$$
d_{\alpha}\left(x_{g}^{*}, x_{f}^{*}\right) \leq \psi_{\alpha}\left(d_{\alpha}\left(x_{g}^{*}, f\left(x_{g}^{*}\right)\right)\right)=\psi_{\alpha}\left(d_{\alpha}\left(g\left(x_{g}^{*}\right), f\left(x_{g}^{*}\right)\right)\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right)
$$

In the case of Φ-contractions (see Example 2.5) we have the following result:
Theorem 4.4. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f, g: Y \rightarrow X$ be two operators. We suppose that:
(i) f is a Φ-contraction;
(ii) for every $\alpha \in A$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha} \quad \text { for every } x \in Y
$$

Then

$$
d_{\alpha}\left(x_{f}^{*}, x_{g}^{*}\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right) \text { for every } x_{g}^{*} \in F_{g} \text { and every } \alpha \in A .
$$

4.2. The Ψ-condition in the case $F_{f} \neq \emptyset$. Let $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in A}$ where $\psi_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ is increasing, continuous in 0 and $\psi_{\alpha}(0)=0$, for every $\alpha \in A$. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f: Y \rightarrow X$ be an operator with $F_{f} \neq \emptyset$.

Definition 4.2. The operator f satisfies the Ψ - condition if there exists a set retraction $\chi_{f}: Y \rightarrow F_{f}$ such that

$$
d_{\alpha}\left(x, \chi_{f}(x)\right) \leq \psi_{\alpha}\left(d_{\alpha}(x, f(x))\right) \text { for every } x \in Y \text { and } \alpha \in A
$$

Example 4.3. Let $Y=X$ and let $f: X \rightarrow X$ be a Ψ-WPO. If we take $\chi_{f}=f^{\infty}$, then f satisfies the Ψ-condition.

Example 4.4. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f: Y \rightarrow X$. We suppose that
(i) $Y=\bigcup_{i \in I} Y_{i}$ is a partition of Y such that $F_{f} \cap Y_{i}=\left\{x_{i}^{*}\right\}, i \in I$;
(ii) $\left.f\right|_{Y_{i}}: Y_{i} \rightarrow X$ is an A-contraction, $i \in I$.

Then f satisfies the Ψ - condition with respect to $\Psi=\left(\frac{t}{1-a_{\alpha}}\right)_{\alpha \in \mathcal{A}}$.

Problem 4.3. Which generalized contractions on gauge space satisfy the Ψ-condition with respect to some family of functions $\Psi=\left(\psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$?

Problem 4.4. In the case $Y=X$, for which generalized contractions on gauge space we have that:
(i) f satisfies the Ψ-condition;
(ii) f is not $a \Psi-W P O$?

We have the following data dependence result.
Theorem 4.5. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f, g: Y \rightarrow X$ two operators. We suppose that:
(i) f, g satisfy the Ψ-condition and $F_{f} \neq \emptyset$;
(ii) for every $\alpha \in A$ there exists $\eta_{\alpha}>0$ such that

$$
d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \text { for all } x \in Y
$$

(iii) $F_{g} \neq \emptyset$.

Then for every $\alpha \in A$ we have that $(P H)_{d_{\alpha}}\left(F_{f}, F_{g}\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right)$.
Proof. Let $x \in F_{g}$ and let $\alpha \in A$. Then

$$
d_{\alpha}\left(x, \chi_{f}(x)\right) \leq \psi_{\alpha}\left(d_{\alpha}(x, f(x))\right)=\psi_{\alpha}\left(d_{\alpha}(g(x), f(x))\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right)
$$

Similarly, if $y \in F_{f}$, then

$$
d_{\alpha}\left(y, \chi_{g}(y)\right) \leq \psi_{\alpha}\left(d_{\alpha}(y, g(y))\right)=\psi_{\alpha}\left(d_{\alpha}(f(y), g(y))\right) \leq \psi_{\alpha}\left(\eta_{\alpha}\right)
$$

Now from Lemma 3.1 we have that $(P H)_{d_{\alpha}}\left(F_{f}, F_{g}\right) \leq \psi\left(\eta_{\alpha}\right)$ for every $\alpha \in A$.

References

[1] A. Chiş, Fixed point theorems for generalized contractions, Fixed Point Theory, 4(2003), 33-48.
[2] A. Chiş, R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl., 3(2004), 173-185.
[3] A. Chiş, R. Precup, I.A. Rus, Data dependence of fixed point for non-self generalized contractions, Fixed Point Theory, 10(2009), 73-87.
[4] I. Colojoară, On a fixed point theorem in complete uniform spaces (Romanian), Com. Acad. R.P.R., 11(1961), 281-283.
[5] M. Frigon, Fixed point and continuation results for contractions in metric gauge spaces, Fixed Point Theory and its Applications, Banach Center Publications, 77(2007), 89-114.
[6] W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer, Boston, 2001.
[7] D. O'Regan, R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
[8] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[9] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), no. 1, 191-219.
[10] K.K. Tan, Fixed point theorems for nonexpansive mappings, Pacific J. Math., 41(1972), 829-842.
[11] E. Tarafdar, An approach to fixed point theorems on uniform spaces, Trans. Amer. Math. Soc., 191(1974), 209-225.

Received: May 12, 2009; Accepted: September 5, 2010.

