Fixed Point Theory, 12(2011), No. 1, 49-56 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

DATA DEPENDENCE OF FIXED POINTS IN GAUGE SPACES

A. CHIŞ-NOVAC

Technical University of Cluj-Napoca, Department of Mathematics C. Daicoviciu Stree No. 15, Cluj-Napoca, Romania E-mail: adela.chis@math.utcluj.ro

Abstract. Data dependence of fixed points for several classes of non-self generalized contractions in gauge spaces is studied.

Key Words and Phrases: fixed point, data dependence, non-self operator, fixed point, gauge space, weakly Picard operator.

2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Let (X, \mathcal{P}) be gauge space, $Y \subset X$ a nonempty subset of X and $f : Y \to X$ an operator. In what follow we shall use the following notations:

$$\begin{split} F_f &= \{x \in Y : f(x) = x\} - \text{the fixed points set of } f; \\ I(f) &= \{Z \subset Y : f(Z) \subset Z, Z \neq \emptyset\} - \text{the set of invariant subsets of } f; \\ (MI)_f &= \bigcup_{Z \in I(f)} Z - \text{the maximal invariant subset of } f; \\ (BA)_f(x^*) &= \{x \in Y : f^n(x) \text{ is defined for all } n \in \mathbb{N} \text{ and } f^n(x) \underbrace{\mathcal{P}}_{A^*} x^* \in F_f \}. \\ &- \text{the attraction basin of } x^* \in F_f \text{ with respect to } f; \\ (BA)_f &= \cup (BA)_f(x^*) - \text{the attraction basin of } f; \\ (PH)_{\mathcal{P}} &= ((PH)_{d_\alpha})_{\alpha \in \mathcal{A}}, \text{ where} \\ (PH)_{d_\alpha}(A, B) &:= \max \left(\sup_{a \in A} \inf_{b \in B} d_\alpha(a, b), \sup_{b \in B} \inf_{a \in A} d_\alpha(a, b) \right) \end{split}$$

In [3], the authors, using the weakly Picard operator technique, give some data dependence results for the fixed points of nonself operators in a metric space. In this paper, the data dependence of fixed points for several classes of non-self generalized contractions in gauge spaces is studied.

2. PICARD AND WEAKLY PICARD NON-SELF OPERATORS

We begin our considerations by some definitions. Let X be a nonempty set and let $\mathcal{P} = (d_{\alpha})_{\alpha \in \mathcal{A}}$ be a separated gauge structure on X. Then the pair (X, \mathcal{P}) is said to be a gauge space (see [4], [10], [11]). Let Y be a nonempty subset of X.

Definition 2.1. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and let $f : Y \to X$ be an operator. We say that the operator f is a contraction with respect to \mathcal{P} if for every $\alpha \in \mathcal{A}$ there exists $0 < a_{\alpha} < 1$ such that

$$d_{\alpha}(f(x), f(y)) \le a_{\alpha} d_{\alpha}(x, y), \text{ for every } x, y \in Y$$

$$(2.1)$$

In this case we will say that f is an A-contraction, where $A = (a_{\alpha})_{\alpha \in \mathcal{A}}$.

Definition 2.2. An operator $f: Y \to X$ is said to be a Picard operator (PO) if:

(i) $F_f = \{x_f^*\};$

(ii) $(MI)_f = (BA)_f$.

Definition 2.3. An operator $f : Y \to X$ is said to be a weakly Picard operator *(WPO)* if:

(i)
$$F_f \neq \emptyset$$
;
(ii) $(MI)_f = (BA)_f$.

Definition 2.4. For each WPO $f: Y \to X$ we define the operator $f^{\infty}: (BA)_f \to (BA)_f$ by $f^{\infty}(x) = \lim_{n \to \infty} f^n(x)$.

Remark 2.1. Notice that $f^{\infty}((BA)_f) = F_f$, thus f^{∞} is a set retraction of $(BA)_f$ on F_f .

Remark 2.2. In terms of weakly Picard self operators theory, the above definitions take the following form:

 $f: Y \to X$ is a WPO (PO) iff $f|_{(MI)_f}: (MI)_f \to (MI)_f$ is a WPO (PO).

Let $\Psi = (\psi_{\alpha})_{\alpha \in \mathcal{A}}$, where $\psi_{\alpha} : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing, continuous in 0 and $\psi_{\alpha}(0) = 0$, for every $\alpha \in \mathcal{A}$.

Definition 2.5. An operator $f: Y \to X$ is said to be a Ψ -WPO (Ψ -PO) if f is a WPO (PO) and

 $d_{\alpha}(x, f^{\infty}(x)) \leq \psi_{\alpha}(d_{\alpha}(x, f(x)))$ for every $x \in (MI)_{f}$ and every $\alpha \in \mathcal{A}$.

If $\psi_{\alpha}(t) := c_{\alpha}t, t \in \mathbb{R}_+$, for some $c_{\alpha} > 0$ for every $\alpha \in \mathcal{A}$, we say that f is a C-WPO (C-PO), where $C = (c_{\alpha})_{\alpha \in \mathcal{A}}$.

Example 2.1. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let $f : Y \to X$ be an A-contraction such that $F_f = \{x_f^*\}$. Then f is a C-PO with $C = \left(\frac{1}{1-a_\alpha}\right)_{\alpha \in \mathcal{A}}$.

Indeed, for $x \in (MI)_f$ and $\alpha \in \mathcal{A}$ we have that $d_{\alpha}(f^n(x), x_f^*) \to 0$ as $n \to \infty$, i.e., f is a PO. On the other hand, for $x \in (MI)_f$ and $\alpha \in \mathcal{A}$ we have

$$d_{\alpha}(x, f^{n}(x)) \leq d_{\alpha}(x, f(x)) + d_{\alpha}(f(x), f^{2}(x)) + \dots + d_{\alpha}(f^{n-1}(x), f^{n}(x))$$

$$\leq (1 + a_{\alpha} + a_{\alpha}^{2} + \dots + a_{\alpha}^{n-1})d_{\alpha}(x, f(x))$$

$$\leq \frac{1}{1 - a_{\alpha}}d_{\alpha}(x, f(x)).$$

Hence $d_{\alpha}(x, x_f^*) \leq \frac{1}{1-a_{\alpha}} d_{\alpha}(x, f(x))$, for every $\alpha \in \mathcal{A}$.

Example 2.2. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let $f : Y \to X$ be a generalized contraction of *Ćirić-Reich-Rus type*, that is for every $\alpha \in \mathcal{A}$

 $d_{\alpha}(f(x), f(y)) \leq a_{\alpha}d_{\alpha}(x, f(x)) + b_{\alpha}d_{\alpha}(y, f(y)) + c_{\alpha}d_{\alpha}(x, y) \text{ for all } x, y \in Y, \quad (2.2)$ where $a_{\alpha}, b_{\alpha}, c_{\alpha}$ are non-negative numbers with $a_{\alpha} + b_{\alpha} + c_{\alpha} < 1$. We suppose that $F_f = \{x_f^*\}.$ Then f is a C-PO, where $C = \left(\frac{1-b_{\alpha}}{1-a_{\alpha}-b_{\alpha}-c_{\alpha}}\right)_{\alpha \in \mathcal{A}}.$

Indeed, if we let in (2.2) $y = f(x), x \in (BA)_f$, we obtain

$$d_{\alpha}(f(x), f^{2}(x)) \leq a_{\alpha}d_{\alpha}(x, f(x)) + b_{\alpha}d_{\alpha}(f(x), f^{2}(x)) + c_{\alpha}d_{\alpha}(x, f(x))$$

and thus

$$d_{\alpha}(f(x), f^{2}(x)) \leq \frac{a_{\alpha} + c_{\alpha}}{1 - b_{\alpha}} d_{\alpha}(x, f(x)), \text{ for all } x \in (BA)_{f} \text{ and all } \alpha \in \mathcal{A}.$$
(2.3)

Then, for every $n \in \mathbb{N}^*$ and every $\alpha \in \mathcal{A}$ we have

$$d_{\alpha}(x, f^{n}(x)) \leq d_{\alpha}(x, f(x)) + d_{\alpha}(f(x), f^{2}(x)) + \dots + d_{\alpha}(f^{n-1}(x), f^{n}(x))$$

$$\leq \frac{1 - b_{\alpha}}{1 - a_{\alpha} - b_{\alpha} - c_{\alpha}} d_{\alpha}(x, f(x)).$$

Consequently, f is a C-PO.

Example 2.3. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let $f : Y \to X$ be a generalized contraction of Ciric type, that is for every $\alpha \in \mathcal{A}$

$$d_{\alpha}(f(x), f(y)) \leq q_{\alpha} \max\{d_{\alpha}(x, y), d_{\alpha}(x, f(x)), d_{\alpha}(y, f(y)), d_{\alpha}(x, f(y)), d_{\alpha}(y, f(x))\}$$

for all $x, y \in Y$ and some $q_{\alpha} \in [0, \frac{1}{2})$. We suppose that $F_f = \{x_f^*\}$. Then f is a C-PO, where $C = \left(\frac{1-q_{\alpha}}{1-2q_{\alpha}}\right)_{\alpha \in \mathcal{A}}$.

Example 2.4. Let Y be a nonempty subset of the gauge space (X, \mathcal{P}) and let $f : Y \to X$ be a graphic contraction with closed graph, i.e., for every $\alpha \in \mathcal{A}$ there exists $a_{\alpha} \in (0, 1)$ such that, for all x for which $f^2(x)$ is defined we have:

$$d_{\alpha}(f^{2}(x), f(x)) \leq a_{\alpha}d_{\alpha}(x, f(x)).$$

We suppose that $F_f \neq \emptyset$. Then f is a C-WPO, where $C = \left(\frac{1}{1-a_\alpha}\right)_{\alpha \in \mathcal{A}}$.

Indeed, the graphic contraction condition implies that for every $x \in (MI)_f$, the sequence $(f^n(x))$ is convergent. Since f has closed graph the limit of the sequence $(f^n(x))$ is a fixed point of f. Thus f is a WPO. In addition, if $x \in (BA)_f$, then for every $\alpha \in \mathcal{A}$, we have

$$d_{\alpha}(x, f^{n}(x)) \leq d_{\alpha}(x, f(x)) + d_{\alpha}(f(x), f^{2}(x)) + \dots + d_{\alpha}(f^{n-1}(x), f^{n}(x))$$

$$\leq (1 + a_{\alpha} + a_{\alpha}^{2} + \dots + a_{\alpha}^{n-1})d_{\alpha}(x, f(x))$$

$$\leq \frac{1}{1 - a_{\alpha}}d_{\alpha}(x, f(x)).$$

Letting $n \to \infty$, we obtain $d_{\alpha}(x, f^{\infty}(x)) \leq \frac{1}{1-a_{\alpha}} d_{\alpha}(x, f(x))$ for all $\alpha \in \mathcal{A}$.

A. CHIŞ-NOVAC

Example 2.5. Let (X, \mathcal{P}) be a gauge space, let $\Phi = (\varphi_{\alpha})_{\alpha \in \mathcal{A}}$ be a family of functions such that for every $\alpha \in \mathcal{A}$, $\varphi_{\alpha} : \mathbb{R}_+ \to \mathbb{R}_+$ is a strict comparison function (see [8]), *i.e.*, for every $\alpha \in \mathcal{A}$:

(a) φ_{α} is increasing; (b) $\varphi_{\alpha}^{n}(t) \to 0$ as $n \to \infty$, for all $t \in \mathbb{R}_{+}$; (c) $t - \varphi_{\alpha}(t) \to +\infty$ as $t \to \infty$. Let $Y \subset X$ and $f: Y \to X$ be a strict Φ - contraction with respect to \mathcal{P} , i.e.,

 $d_{\alpha}(f(x), f(y)) \leq \varphi_{\alpha}(d_{\alpha}(x, y))$ for all $x, y \in Y$ and all $\alpha \in \mathcal{A}$.

Suppose that $F_f \neq \emptyset$. Then f is a Ψ_{Φ} -PO, with $\Psi_{\Phi} = (\psi_{\varphi_{\alpha}})_{\alpha \in \mathcal{A}}$ where $\psi_{\varphi_{\alpha}} : \mathbb{R}_+ \to \mathbb{R}_+$,

$$\psi_{\varphi_{\alpha}}(\eta) = \sup\{t \in \mathbb{R}_{+}: t - \varphi_{\alpha}(t) \le \eta\},\$$

for every $\alpha \in \mathcal{A}$.

Notice that $F_f = \{x^*\}$. Then, for $x \in (BA)_f$ and $\alpha \in \mathcal{A}$ we have

$$d_{\alpha}(x, x^*) \leq d_{\alpha}(x, f(x)) + d_{\alpha}(f(x), x^*)$$
$$\leq d_{\alpha}(x, f(x)) + \varphi_{\alpha}(d_{\alpha}(x, x^*)).$$

Hence $d(_{\alpha}x, x^*) - \varphi_{\alpha}(d_{\alpha}(x, x^*)) \leq d_{\alpha}(x, f(x))$. Thus we get that $d_{\alpha}(x, x^*) \leq \psi_{\varphi_{\alpha}}(d_{\alpha}(x, f(x)))$ for every $\alpha \in \mathcal{A}$. Therefore f is a Ψ_{Φ} - PO.

Remark 2.3. It is obvious that if $f : X \to X$ is a WPO (PO), then $f|_Y : Y \to X$ is also a WPO (PO).

3. Data dependence for Ψ -WPOs and Ψ -POs

Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ be a nonempty subset of X and $f, g: Y \to X$ two operators.

Theorem 3.1. Assume that the following conditions are satisfied:

(i) f and g are Ψ-WPOs;
(ii) F_g ⊂ (BA)_f and F_f ⊂ (BA)_g;
(iii) for every α ∈ A there exists η_α > 0 such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}$$
 for all $x \in Y$.

Then

$$(PH)_{d_{\alpha}}(F_f, F_g) \leq \psi_{\alpha}(\eta_{\alpha}), \text{ for every } \alpha \in \mathcal{A}.$$

Proof. If $x \in F_q$, and $\alpha \in \mathcal{A}$ then

$$d_{\alpha}(x, f^{\infty}(x)) \leq \psi_{\alpha}(d_{\alpha}(x, f(x))) = \psi_{\alpha}(d_{\alpha}(g(x), f(x))) \leq \psi_{\alpha}(\eta_{\alpha}).$$

If $y \in F_f$, and $\alpha \in \mathcal{A}$ then

$$d_{\alpha}(y, g^{\infty}(y)) \leq \psi_{\alpha}(d_{\alpha}(y, g(y))) = \psi_{\alpha}(d_{\alpha}(f(y), g(y))) \leq \psi_{\alpha}(\eta_{\alpha}).$$

Now the conclusion follows from the next lemma from [8].

Lemma 3.1. Let (X,d) be a metric space and $A, B \subset X$ be two nonempty sets. If $\tau > 0$ is such that:

(1) for each $a \in A$ there exists $b \in B$ such that $d(a,b) \leq \tau$; (2) for each $b \in B$ there exists $a \in A$ such that $d(a,b) \leq \tau$, then $(PH)_d(A,B) \leq \tau$.

In the case of Picard operators, Theorem 3.1 takes the following form:

Theorem 3.2. Assume that the following conditions are satisfied: (i) f is a Ψ -PO ($F_f = \{x_f^*\}$); (ii) $\emptyset \neq F_g \subset (BA)_f$; (iii) for every $\alpha \in A$ there exists $\eta_\alpha > 0$ such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha} \quad \text{for all } x \in Y.$$

Then

$$d_{\alpha}(x_{f}^{*}, x_{g}^{*}) \leq \psi_{\alpha}(\eta_{\alpha}), \quad \text{for all } x_{g}^{*} \in F_{g} \text{ and all } \alpha \in \mathcal{A}.$$

For the case of strict Φ -contractions we have the following result:

Theorem 3.3. Assume that the following conditions are satisfied: (i) f is a strict Φ - contraction with respect to \mathcal{P} with $F_f = \{x_f^*\}$; (ii) $F_g \neq \emptyset$;

(iii) for every $\alpha \in \mathcal{A}$ there exists $\eta_{\alpha} > 0$ such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \text{ for all } x \in Y.$$

Then

$$d_{\alpha}(x_g^*, x_f^*) \leq \psi_{\varphi_{\alpha}}(\eta_{\alpha}), \text{ for all } x_g^* \in F_g \text{ and all } \alpha \in \mathcal{A}.$$

Proof. Let $x_g^* \in F_g$ and $\alpha \in \mathcal{A}$. We have

$$d_{\alpha}(x_g^*, x_f^*) \le d_{\alpha}(x_g^*, f(x_g^*)) + d_{\alpha}(f(x_g^*), x_f^*)$$
$$\le \eta_{\alpha} + \varphi_{\alpha}(d_{\alpha}(x_g^*, x_f^*)).$$

 $\leq \eta_{\alpha} + \varphi_{\alpha}(a_{\alpha}(x_{g}, x_{f})).$ Hence $d_{\alpha}(x_{g}^{*}, x_{f}^{*}) - \varphi_{\alpha}(d_{\alpha}(x_{g}^{*}, x_{f}^{*})) \leq \eta_{\alpha}$, i.e., we get that $d_{\alpha}(x_{g}^{*}, x_{f}^{*}) \leq \psi_{\varphi_{\alpha}}(\eta_{\alpha})$ for every $\alpha \in \mathcal{A}$.

We also have the following result:

Theorem 3.4. Assume that the following conditions are satisfied:

(i) there exist $a_{\alpha}, b_{\alpha} \in \mathbb{R}_+, a_{\alpha} + 2b_{\alpha} < 1$ such that

$$d_{\alpha}(f(x), f(y)) \le a_{\alpha}d(x, y) + b_{\alpha}[d_{\alpha}(x, f(x)) + d_{\alpha}(y, f(y))]$$

for all $x, y \in X$ and each $\alpha \in A$. Suppose that $F_f = \{x_f^*\};$

(ii) $F_g \neq \emptyset$;

(iii) for every $\alpha \in \mathcal{A}$ there exists $\eta_{\alpha} > 0$ such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \text{ for all } x \in Y.$$

Then

$$d_{\alpha}(x_g^*, x_f^*) \le \frac{1 + b_{\alpha}}{1 - a_{\alpha}} \eta_{\alpha}, \text{ for all } x_g^* \in F_g \text{ and all } \alpha \in A.$$

$$(3.1)$$

Proof. Let $x_q^* \in F_g$ and $\alpha \in \mathcal{A}$. We have

$$d_{\alpha}(x_g^*, x_f^*) \leq d_{\alpha}(x_g^*, f(x_g^*)) + d_{\alpha}(f(x_g^*), x_f^*)$$

$$\leq \eta_{\alpha} + a_{\alpha} d_{\alpha}(x_g^*, x_f^*) + b_{\alpha} d_{\alpha}(x_g^*, f(x_g^*))$$

$$\leq \eta_{\alpha} + a_{\alpha} d_{\alpha}(x_g^*, x_f^*) + b_{\alpha} \eta_{\alpha}.$$

Remark 3.1. In applications one use continuation principles in order to satisfies condition (i) in Theorem 3.1 and Theorem 3.2 (see [1], [2], [5], [7]).

4. Data dependence for operators satisfying the Ψ -condition

4.1. The Ψ - condition in the case $F_f = \{x_f^*\}$. Let $\Psi = (\psi_\alpha)_{\alpha \in A}$, where $\psi_\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing, continuous in 0 and $\psi_\alpha(0) = 0$, for every $\alpha \in A$. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f: Y \to X$ be an operator with $F_f = \{x_f^*\}$.

Definition 4.1. We say that the operator f satisfies the Ψ -condition if for every $\alpha \in A$ one have

$$d_{\alpha}(x, x_f^*) \leq \psi_{\alpha}(d_{\alpha}(x, f(x)))$$
 for all $x \in Y$.

Example 4.1. If $f: Y \to X$ is an A-contraction then f satisfies the Ψ -condition with respect to $\Psi = \left(\frac{t}{1-a_{\alpha}}\right)_{\alpha \in A}$.

Example 4.2. If $f: Y \to X$ is a strict Φ -contraction with respect to \mathcal{P} , (with $\Phi := (\varphi_{\alpha})_{\alpha \in \mathcal{A}}$ a family of strict comparison functions), then f satisfies the Ψ -condition, where $\Psi = (\psi_{\alpha})_{\alpha \in \mathcal{A}}$, with $\psi_{\alpha}(r) = \sup\{t \in \mathbb{R}_{+} : t - \varphi_{\alpha}(t) \leq r\}$, for any $\alpha \in \mathcal{A}$.

The above examples give rise to the following problems:

Problem 4.1. Which generalized contractions on gauge space satisfy the Ψ -condition, where $\Psi = (\psi_{\alpha})_{\alpha \in \mathcal{A}}$, for some functions $\psi_{\alpha} : \mathbb{R}_+ \to \mathbb{R}_+$?

Problem 4.2. Let Y = X. For which generalized contractions we have that: (i) f satisfies the Ψ - condition with respect to $\Psi = (\psi_{\alpha})_{\alpha \in \mathcal{A}}$; (ii) f is not a Ψ -PO.

Theorem 4.1. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f : Y \to X$ be an operator with $F_f = \{x_f^*\}$. If f satisfies the Ψ -condition, then the fixed point problem is well posed for f.

Proof. Let $(x_n)_{n \in \mathbb{N}} \subset Y$ be such that $d_{\alpha}(x_n, f(x_n)) \to 0$ as $n \to \infty$, for every $\alpha \in \mathcal{A}$. Then, from the Ψ -condition, for every $\alpha \in \mathcal{A}$, we have that $d_{\alpha}(x_n, x_f^*) \leq \psi_{\alpha}(d_{\alpha}(x_n, f(x_n))) \to 0$ as $n \to \infty$.

Theorem 4.2. Let (X, \mathcal{P}) be a gauge space, $f : Y \to X$ be an operator with $F_f = \{x_f^*\}$. Assume that the following conditions are satisfied:

(i) Y = X;

(ii) f satisfies the Ψ - condition with respect to $\Psi = (\psi_{\alpha})_{\alpha \in \mathcal{A}}$;

(iii) f is asymptotically regular, i.e., for every $\alpha \in \mathcal{A}$

 $d_{\alpha}(f^n(x), f^{n+1}(x)) \to 0 \text{ as } n \to \infty \text{ for every } x \in X.$

Then f is a Ψ -PO.

Proof. Let $x \in X$. For every $\alpha \in A$, we have that

$$d_{\alpha}(f^n(x), x_f^*) \leq \psi_{\alpha}(d_{\alpha}(f^n(x), f^{n+1}(x))) \to 0 \text{ as } n \to \infty$$

So, f is a PO. Now (ii) implies that f is a Ψ -PO.

Now we state a data dependence result for operators satisfying the Ψ -condition.

Theorem 4.3. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f, g : Y \to X$ be two operators. We suppose that:

(i) f satisfies the Ψ - condition;

(ii) for every $\alpha \in A$ there exists $\eta_{\alpha} > 0$ such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \quad \text{for every } x \in Y.$$

Then

$$d_{\alpha}(x_{f}^{*}, x_{g}^{*}) \leq \psi_{\alpha}(\eta_{\alpha})$$
 for every $x_{g}^{*} \in F_{g}$ and every $\alpha \in A$.

Proof. Let $x_q^* \in F_g$ and $\alpha \in A$. Then (i) and (ii) guarantee that:

$$d_{\alpha}(x_g^*, x_f^*) \le \psi_{\alpha}(d_{\alpha}(x_g^*, f(x_g^*))) = \psi_{\alpha}(d_{\alpha}(g(x_g^*), f(x_g^*))) \le \psi_{\alpha}(\eta_{\alpha}).$$

In the case of Φ -contractions (see Example 2.5) we have the following result:

Theorem 4.4. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f, g : Y \to X$ be two operators. We suppose that:

(i) f is a Φ -contraction;

(ii) for every $\alpha \in A$ there exists $\eta_{\alpha} > 0$ such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}$$
 for every $x \in Y$.

Then

$$d_{\alpha}(x_{f}^{*}, x_{a}^{*}) \leq \psi_{\alpha}(\eta_{\alpha})$$
 for every $x_{a}^{*} \in F_{q}$ and every $\alpha \in A$.

4.2. The Ψ -condition in the case $F_f \neq \emptyset$. Let $\Psi = (\psi_\alpha)_{\alpha \in A}$ where $\psi_\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing, continuous in 0 and $\psi_\alpha(0) = 0$, for every $\alpha \in A$. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f : Y \to X$ be an operator with $F_f \neq \emptyset$.

Definition 4.2. The operator f satisfies the Ψ - condition if there exists a set retraction $\chi_f: Y \to F_f$ such that

$$d_{\alpha}(x,\chi_f(x)) \leq \psi_{\alpha}(d_{\alpha}(x,f(x)))$$
 for every $x \in Y$ and $\alpha \in A$.

Example 4.3. Let Y = X and let $f : X \to X$ be a Ψ -WPO. If we take $\chi_f = f^{\infty}$, then f satisfies the Ψ -condition.

Example 4.4. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f : Y \to X$. We suppose that (i) $Y = \bigcup Y_i$ is a partition of Y such that $F_f \cap Y_i = \{x_i^*\}, i \in I$;

(ii) $f|_{Y_i}: Y_i \to X$ is an A-contraction, $i \in I$.

Then f satisfies the Ψ - condition with respect to $\Psi = \left(\frac{t}{1-a_{\alpha}}\right)_{\alpha \in A}$.

Problem 4.3. Which generalized contractions on gauge space satisfy the Ψ -condition with respect to some family of functions $\Psi = (\psi_{\alpha})_{\alpha \in \mathcal{A}}$?

Problem 4.4. In the case Y = X, for which generalized contractions on gauge space we have that:

(i) f satisfies the Ψ -condition;

(ii) f is not a Ψ -WPO?

We have the following data dependence result.

Theorem 4.5. Let (X, \mathcal{P}) be a gauge space, $Y \subset X$ and $f, g : Y \to X$ two operators. We suppose that:

(i) f, g satisfy the Ψ -condition and $F_f \neq \emptyset$;

(ii) for every $\alpha \in A$ there exists $\eta_{\alpha} > 0$ such that

$$d_{\alpha}(f(x), g(x)) \leq \eta_{\alpha}, \text{ for all } x \in Y;$$

(iii) $F_g \neq \emptyset$.

Then for every $\alpha \in A$ we have that $(PH)_{d_{\alpha}}(F_f, F_g) \leq \psi_{\alpha}(\eta_{\alpha})$.

Proof. Let $x \in F_g$ and let $\alpha \in A$. Then

$$d_{\alpha}(x,\chi_f(x)) \le \psi_{\alpha}(d_{\alpha}(x,f(x))) = \psi_{\alpha}(d_{\alpha}(g(x),f(x))) \le \psi_{\alpha}(\eta_{\alpha}).$$

Similarly, if $y \in F_f$, then

$$d_{\alpha}(y,\chi_{g}(y)) \leq \psi_{\alpha}(d_{\alpha}(y,g(y))) = \psi_{\alpha}(d_{\alpha}(f(y),g(y))) \leq \psi_{\alpha}(\eta_{\alpha}).$$

Now from Lemma 3.1 we have that $(PH)_{d_{\alpha}}(F_f, F_g) \leq \psi(\eta_{\alpha})$ for every $\alpha \in A$.

References

- [1] A. Chiş, Fixed point theorems for generalized contractions, Fixed Point Theory, 4(2003), 33-48.
- [2] A. Chiş, R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl., 3(2004), 173-185.
- [3] A. Chiş, R. Precup, I.A. Rus, Data dependence of fixed point for non-self generalized contractions, Fixed Point Theory, 10(2009), 73-87.
- [4] I. Colojoară, On a fixed point theorem in complete uniform spaces (Romanian), Com. Acad. R.P.R., 11(1961), 281-283.
- [5] M. Frigon, Fixed point and continuation results for contractions in metric gauge spaces, Fixed Point Theory and its Applications, Banach Center Publications, 77(2007), 89-114.
- [6] W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer, Boston, 2001.
- [7] D. O'Regan, R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
- [8] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [9] I.A. Rus, *Picard operators and applications*, Scientiae Mathematicae Japonicae, 58(2003), no. 1, 191-219.
- [10] K.K. Tan, Fixed point theorems for nonexpansive mappings, Pacific J. Math., 41(1972), 829-842.
- [11] E. Tarafdar, An approach to fixed point theorems on uniform spaces, Trans. Amer. Math. Soc., 191(1974), 209-225.

Received: May 12, 2009; Accepted: September 5, 2010.