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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let T be
an operator with domain D(T ) and range R(T ) in H. A multivalued operator T is
monotone if its graph G(T ) := {(x, y) ∈ H ×H : x ∈ D(T ), y ∈ Tx} is a monotone
set in H ×H. That is, T is monotone if and only if

(x1, y1), (x2, y2) ∈ G(T ) ⇒ 〈x1 − x2, y1 − y2〉 ≥ 0. (1.1)

A monotone operator T is maximal monotone if the graph G(T ) is not properly
contained in the graph of any other monotone operator on H.

Let T be a maximal monotone operator on H. Then a point z ∈ D(T ) is called a
zero of T if 0 ∈ Tz. We denote by Ω the set of all zeros of T , i.e., Ω = T−1(0). It is
known that Ω is closed and convex.
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One of the major problems in the theory of maximal monotone operators is to
find a point in Ω, assuming that Ω is nonempty. A variety of problems, for example,
convex programming and variational inequalities, can be formulated as finding a zero
of maximal monotone operators. The proximal point algorithm (for short, PPA)
is recognized as a powerful and successful algorithm in finding a zero of maximal
monotone operators. Starting from any initial guess x0 ∈ H, the PPA generates a
sequence {xn} via the following inclusion:

xn ∈ xn+1 + cnTxn+1, (1.2)

where cn > 0 is a regularization parameter.
Based on the fact that solving the inclusion (1.2) may probably be as difficult as

solving the original problem of finding a zero of Ω, Rockafellar [13] proposed the inex-
act proximal point algorithm (for short, IPPA) which is a more practical algorithm.
Starting from any initial guess x0 ∈ H, the IPPA generates a sequence {xn} via the
following relation:

xn + en ∈ xn+1 + cnTxn+1, (1.3)

where {en} is a sequence of errors.
In recent years, some iterative algorithms including the PPA and IPPA have played

a powerful and successful role in solving variational inequality problems, optimization
problems, the zero point problem of maximal monotone operators and many others,
see [1,2,4,6-15,19,27-34] and the references therein. It is worth pointing out that the
accuracy criteria for the errors {en} in the IPPA (1.3) have been extensively studied
so that the convergence of (1.3) is guaranteed. It is well-known that two criteria were
introduced in [13]; these are

‖en‖ ≤ εn,
∞∑
n=0

εn <∞, (1.4)

‖en‖ ≤ δn‖xn+1 − xn‖,
∞∑
n=0

δn <∞, (1.5)

Utilizing criterion (1.4), Rockafellar [13] proved the weak convergence of (1.3) pro-
vided the regularization sequence {cn} remains bounded away from zero. He [11] also
obtained the rate of convergence of (1.3) by virtue of the criterion (1.5). He [11] also
proposed another criterion as follows:

‖en‖ ≤ ηn‖xn+1 − xn‖,
∞∑
n=0

η2
n <∞. (1.6)

It is shown in [10] that if H is a finite dimensional Hilbert space, then the sequence
{xn} generated by (1.3) converges to a point in Ω provided the criterion (1.6) holds
and the regularization sequence {cn} remains bounded away from zero.

In [6], Eckstein and Bertsekas considered the following generalized proximal point
algorithm (for short, GPPA):

xn+1 = (1− αn)xn + αnwn, ∀n ≥ 0, (1.7)
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where αn ∈ (0, 2) (∀n ≥ 0) and

‖wn − (I + cnT )−1xn‖ ≤ εn, ∀n ≥ 0.

Weak convergence of (1.7) was proved under the conditions

∞∑
n=0

εn <∞, inf
n≥0

cn > 0,

and there is some ᾱ ∈ (0, 2) with the property

ᾱ ≤ αn ≤ 2− ᾱ, ∀n ≥ 0. (1.8)

Since the PPA (1.2) does not, in general, have strong convergence (see [8]), an
interesting topic is how to modify the PPA (1.2) so that strong convergence is guar-
anteed. Some effort has been made recently (see, e.g., [1,14,18,27]). In 2002, Xu [18]
introduced a contraction proximal point algorithm as follows:

xn+1 = αnu+ (1− αn)(I + cnT )−1xn + en, ∀n ≥ 0, (1.9)

and proved strong convergence of (1.9) by virtue of the condition that the regulariza-
tion sequence {cn} tends to the infinity. Later on, Marino and Xu [12] further con-
sidered algorithm (1.9) and obtained some strong convergence results under certain
appropriate assumptions. Very recently, Yao and Noor [19] introduced and analyzed
some generalized proximal point algorithms, which include as special cases the algo-
rithms in Rockafellar [13], Han and He [10], Eckstein and Bertsekas [6], Marino and
Xu [12], and Xu [18]. In [19], several weak and strong convergence results for Yao
and Noor’s GPPAs were established under some mild conditions.

On the other hand, let H be a real Hilbert space. Yamada ([22], see also [23])
recently introduced a hybrid steepest-descent method for the variational inequality
problem (for short, VI(F,C)), that is, find a point x ∈ C such that

〈F (x), y − x〉 ≥ 0, ∀y ∈ C,

where F : H → H is a nonlinear operator and C is the fixed point set of a nonexpansive
mapping A : H → H, i.e., C = {x ∈ H : Ax = x}. Recall that A is nonexpansive if

‖Ax−Ay‖ ≤ ‖x− y‖, ∀x, y ∈ H,

and let

Fix(A) = {x ∈ H : Ax = x}
denote the fixed point set of A. Yamada’s idea is stated now. Let F : H → H be
an operator such that for some constants κ, η > 0, F is κ-Lipschitzian and η-strongly
monotone on C. Take a fixed number µ ∈ (0, 2η/κ2) and a sequence {λn} ⊂ [0, 1].
Starting with an arbitrary initial guess x0 ∈ H, one can generate a sequence {xn} by
the following algorithm:

xn+1 := Axn − λn+1µF (Axn), ∀n ≥ 0. (1.10)

Then, Yamada [22] proved that under appropriate conditions, {xn} converges strongly
to the unique solution of the VI(F,C). Subsequently, Xu and Kim [20] and Ceng, Xu
and Yao [24] improved and extended Yamada’s result [22].
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Inspired and motivated by the above research work, we introduce and analyze
some generalized hybrid proximal point algorithms for finding a common element of
the set of zeros of a maximal monotone operator and the set of fixed points of a
nonexpansive mapping in a Hilbert space. These algorithms include the Eckstein-
Bertsekas type generalized proximal point algorithm and Marino-Xu type contraction
proximal point algorithm as special cases; see, e.g., [6,9,12,18,19]. Moreover, weak and
strong convergence results for these algorithms are proved under some mild conditions.
Our proofs are different from many others. Results presented in this paper can be
viewed as a significant improvement, refinement and development of the corresponding
ones in Eckstein and Bertsekas [6], Han and He [10], Marino and Xu [12], Yao and
Noor [19] and many others.

Throughout this paper, we use the following notations:
• ⇀ stands for weak convergence and → for strong convergence.
• ωw({xn}) = {x : ∃xnk

⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let T be a
maximal monotone operator on H and Ω be the set of zeros of T . Let A : H → H be
a nonexpansive mapping such that Fix(A) ∩ Ω 6= ∅. For r > 0, we use Jr and Ar to
denote the resolvent and Yosida approximation of T , respectively; that is,

Jr = (I + rT )−1 and Ar =
1

r
(I − Jr).

It is well-known that Arx ∈ T (Jrx) for all x ∈ H; for more details see [3,12].
Let C be a nonempty closed convex subset of H. Recall that a mapping f : C → C

is called nonexpansive if
‖f(x)− f(y)‖ ≤ ‖x− y‖

for all x, y ∈ C. It is known that the resolvent Jr is nonexpansive for r > 0. We use
Fix(f) = {x ∈ C : f(x) = x} to denote the fixed point set of f . Note that Fix(f) is
closed and convex in H. Note also that Ω = Fix(Jr) for each r > 0. We use PC to
denote the projection from H onto C; that is, for each x ∈ H

PCx = arg min
y∈C
‖x− y‖.

It is known [25] that PC is characterized by: for given x ∈ H and u ∈ C, u = PCx if
and only if

〈x− u, u− y〉 ≥ 0, ∀y ∈ C. (2.1)

Before starting the main results of this paper, we include some lemmas as follows
Lemma 2.1. (Xu [18]). Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ an + σn, ∀n ≥ 0,

where {σn} is a sequence of nonnegative real numbers such that
∑∞
n=0 σn <∞. Then

limn→∞ an exists.
The following two lemmas are well-known.

Lemma 2.2. (see [25, Demiclosedness principle]). Let C be a nonempty closed
convex subset of a Hilbert space H and f : C → C be a nonexpansive mapping such
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that Fix(f) 6= ∅. Assume that {xn} is a sequence in C which converges weakly to
x ∈ C and that {(I − f)xn} converges strongly to y ∈ H. Then (I − f)x = y.
Lemma 2.3. (see [12]). The resolvent identity. For λ, µ > 0, there holds the identity

Jλx = Jµ(
µ

λ
x+ (1− µ

λ
)Jλx), ∀x ∈ H.

Lemma 2.4. (Marino and Xu [12]). Assume that 0 < c1 ≤ c2. Then ‖Jc1x − x‖ ≤
‖Jc2x− x‖ for all x ∈ H.

The following lemma is very important for proving our main results, one can find
it in [5,16,17].
Lemma 2.5. Let {xn} and {zn} be bounded sequences in a real Banach space X
and let {αn} be a sequence in [0, 1] with 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
Suppose that xn+1 = (1−αn)xn+αnzn for all integers n ≥ 0 and lim supn→∞(‖zn+1−
zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖zn − xn‖ = 0.
Lemma 2.6. (see [18,20]). Let {an} be a sequence of nonnegative real numbers
satisfying the property

an+1 ≤ (1− sn)an + sntn + δn, ∀n ≥ 0,

where {sn} ⊂ [0, 1] and {tn} are such that
(i)
∑∞
n=0 sn =∞;

(ii) either lim supn→∞ tn ≤ 0 or
∑∞
n=0 |sntn| <∞;

(iii)
∑∞
n=0 δn <∞.

Then {an} converges to zero.
Let F : H → H be an operator such that, for some constants κ, η > 0, F is

κ-Lipschitzian and η-strongly monotone. That is, F satisfies the conditions

‖Fx− Fy‖ ≤ κ‖x− y‖, ∀x, y ∈ H,

and

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H.
Let λ be a number in [0, 1] and let µ > 0. Associating with a nonexpansive mapping
A : H → H, we define the mapping Aλ : H → H by

Aλx := Ax− λµF (Ax), ∀x ∈ H.

Lemma 2.7. (see [22]). If 0 ≤ λ ≤ 1 and 0 < µ < 2η/κ2, then there holds for
Aλ : H → H,

‖Aλx−Aλy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ H,

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1).
Lemma 2.8. Let H be a Hilbert space. Then there hold the following statements:

(i) (see [25]) for each x, y ∈ H and each λ ∈ [0, 1]

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2;

(ii) for each x, y ∈ H

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.



34 LU-CHUAN CENG AND JUEI-LING HO

Recall now that a Banach space X satisfies Opial’s property [21] provided, for each
sequence {xn} in X, the condition xn ⇀ x implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

It is known [21] that the Hilbert space H and space lp (1 ≤ p <∞) enjoy this property,
while Lp does not unless p = 2. It is known [26] that any separable Banach space can
be equivalently renormed so that it satisfies Opial’s property.

3. Main results

We recall the following generalized proximal point algorithm proposed by Eckstein
and Bertsekas in [6]:

xn+1 = (1− αn)xn + αnJcn(xn) + en, ∀n ≥ 0, (3.1)

where en is an error. Algorithm (3.1) generalizes Gol’shtein and Tre’yakov’s algorithm
[7] defined as follows:

xn+1 = (1− αn)xn + αnJc(xn), ∀n ≥ 0, (3.2)

which was considered in a finite dimensional Hilbert space setting where the param-
eters c does not vary with the iteration steps.

Very recently, Yao and Noor [19] consider Gol’shtein and Tre’yakov’s algorithm
(3.2) with errors; namely, the algorithm:

xn+1 = (1− αn)xn + αnJc(xn) + en, ∀n ≥ 0, (3.3)

Now we introduce the following algorithm in the sense of Gol’shtein and Tre’yakov{
xn+1 = (1− αn)xn + αnJc(yn) + en,
yn = (1− βn)xn + βn(Axn − λnµF (Axn)), ∀n ≥ 0.

(3.4)

Let wω(xn) denote the weak ω-limit set of {xn}. That is, wω(xn) consists of the
points which are the weak limits of subsequences of {xn}. Now we give the following
result.
Theorem 3.1. Let F : H → H be a mapping such that for some constants κ, η > 0, F
is κ-Lipschitzian and η-strongly monotone. Let A : H → H be nonexpansive such that
Fix(A) ∩ Ω 6= ∅. Let µ ∈ (0, 2η/κ2), let x0 ∈ H, {en} ⊂ H and {λn}, {αn}, {βn} ⊂
[0, 1] satisfying the conditions:

(i) limn→∞ λn = 0;
(ii) limn→∞ ‖en‖ = 0;
(iii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(iv) limn→∞ |βn+1 − βn| = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} generated by (3.4) converges weakly to a point in Fix(A)∩Ω
provided {xn} is bounded.
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Proof. First, let us show that {yn} is bounded. Indeed, pick p ∈ Fix(A) ∩ Ω, then
utilizing Lemma 2.7 we have

‖yn − p‖ = ‖(1− βn)xn + βn(Axn − λnµF (Axn))− p‖
≤ (1− βn)‖xn − p‖+ βn‖(Axn − λnµF (Axn))− p‖
≤ (1− βn)‖xn − p‖+ βn[‖Aλnxn −Aλnp‖+ ‖Aλnp− p‖]
≤ (1− βn)‖xn − p‖+ βn[(1− λnτ)‖xn − p‖+ λnµ‖F (p)‖]
≤ ‖xn − p‖+ λnµ‖F (p)‖.

Hence from the boundedness of {xn} it follows that {yn} is bounded.
Set xn+1 = (1− αn)xn + αnzn. Note that {zn} is also bounded. Then, we have

zn+1 − zn = xn+2−(1−αn+1xn+1)
αn+1

− xn+1−(1−αn)xn

αn

= Jc(yn+1)− Jc(yn) + en+1

αn+1
− en

αn
.

(3.5)

From the nonexpansivity of Jc and (3.5), we have

‖zn+1 − zn‖ − ‖yn+1 − yn‖ ≤
1

αn+1
‖en+1‖+

1

αn
‖en‖,

which implies that (noting that limn→∞ ‖en‖ = 0)

lim sup
n→∞

(‖zn+1 − zn‖ − ‖yn+1 − yn‖) ≤ 0. (3.6)

Also, observe that

‖Aλn+1xn+1 −Aλnxn‖ ≤ ‖Aλn+1xn+1 −Aλn+1xn‖+ ‖Aλn+1xn −Aλnxn‖
≤ (1− λn+1τ)‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖,

and hence

‖yn+1 − yn‖ ≤ |βn − βn+1|‖xn+1‖+ (1− βn)‖xn+1 − xn‖

+|βn+1 − βn|‖Aλn+1xn+1‖+ βn‖Aλn+1xn+1 −Aλnxn‖
≤ |βn − βn+1|‖xn+1‖+ (1− βn)‖xn+1 − xn‖+ |βn+1 − βn|‖Aλn+1xn+1‖

+βn[(1− λn+1τ)‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖]
≤ ‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖
+|βn − βn+1|(‖xn+1‖+ ‖Aλn+1xn+1‖).

Since A and F are Lipschitzian and {xn} is bounded, we know that both {F (Axn)}
and {Aλnxn} are bounded. Hence from λn → 0 and |βn+1 − βn| → 0 it follows that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

This together with (3.6) implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.7)

It follows from (3.7) and Lemma 2.5 that

lim
n→∞

‖xn − zn‖ = 0.

So limn→∞ ‖xn+1 − xn‖ = 0. Consequently, we have

lim
n→∞

‖Jc(yn)− xn‖ = 0. (3.8)
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Furthermore, observe that for p ∈ Fix(A) ∩ Ω

‖yn − p‖2 = ‖(1− βn)xn + βn(Axn − λnµF (Axn))− p‖2
= ‖(1− βn)(xn − p) + βn(Axn − p)− βnλnµF (Axn)‖2
≤ ‖(1− βn)(xn − p) + βn(Axn − p)‖2 + 2‖(1− βn)(xn − p)
+βn(Axn − p)‖‖βnλnµF (Axn)‖+ ‖βnλnµF (Axn)‖2
≤ ‖(1− βn)(xn − p) + βn(Axn − p)‖2 + λnMµ‖F (Axn)‖
= (1− βn)‖xn − p‖2 + βn‖Axn − p‖2 − βn(1− βn)‖xn −Axn‖2
+λnMµ‖F (Axn)‖
≤ ‖xn − p‖2 − βn(1− βn)‖xn −Axn‖2 + λnMµ‖F (Axn)‖,

where M is a constant such that M > 2‖xn − p‖ + µ‖F (Axn)‖. In the meantime,
observe also that

‖xn+1 − p‖2 = ‖(1− αn)xn + αnJc(yn) + en − p‖2
≤ ‖(1− αn)(xn − p) + αn(Jc(yn)− p)‖2 + 2〈en, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + αn‖yn − p‖2 + 2‖en‖‖xn+1 − p‖
≤ (1− αn)‖xn − p‖2 + αn[‖xn − p‖2 − βn(1− βn)‖xn −Axn‖2
+λnMµ‖F (Axn)‖] + 2‖en‖‖xn+1 − p‖
≤ ‖xn − p‖2 − αnβn(1− βn)‖xn −Axn‖2 + λnMµ‖F (Axn)‖]
+2‖en‖‖xn+1 − p‖
≤ ‖xn − p‖2 − αnβn(1− βn)‖xn −Axn‖2 +M(λnM + ‖en‖),

Consequently, we obtain

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1− βn)‖xn −Axn‖2 +M(λnM + ‖en‖),

and hence

αnβn(1− βn)‖xn −Axn‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 +M(λnM + ‖en‖)
≤ |‖xn − p‖ − ‖xn+1 − p‖|(‖xn − p‖+ ‖xn+1 − p‖) +M(λnM + ‖en‖)
≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) +M(λnM + ‖en‖).

Since

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

λn → 0 and ‖en‖ → 0, we deduce from ‖xn − xn+1‖ → 0 that

lim
n→∞

‖xn −Axn‖ = 0.

This together with (3.4) implies that

‖yn − xn‖ ≤ βn‖xn −Axn‖+ βnλnµ‖F (Axn)‖ ≤ ‖xn −Axn‖+ λnM → 0.

That is,

lim
n→∞

‖yn − xn‖ = 0.

Thus, we get from (3.8)

‖Jc(xn)−xn‖ ≤ ‖Jc(xn)−Jc(yn)‖+‖Jc(yn)−xn‖ ≤ ‖xn−yn‖+‖Jc(yn)−xn‖ → 0.
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That is,

lim
n→∞

‖Jc(xn)− xn‖ = 0.

Now let us show that ωw(xn) ⊂ Fix(A) ∩ Ω. Indeed, since {xn} is bounded and
H is reflexive, we know that ωw(xn) 6= ∅. Let {xni} be a subsequence of {xn} such
that xni ⇀ x̂ ∈ ωw(xn). Since ‖xn − Axn‖ → 0 and ‖Jc(xn) − xn‖ → 0, and
both A and Jc are nonexpansive mappings, in terms of Lemma 2.2 we conclude that
x̂ ∈ Fix(A) ∩ Fix(Jc) = Fix(A) ∩ Ω. This shows that ωw(xn) ⊂ Fix(A) ∩ Ω. Next
let us show that ωw(xn) is a singleton. Indeed, let {xmj

} be another subsequence of
{xn} such that xmj ⇀ x̄ ∈ ωw(xn). If x̂ 6= x̄, utilizing Opial’s property of H we reach
the following contradiction:

lim
n→∞

‖xn − x̂‖ = lim
i→∞

‖xni
− x̂‖

< lim
i→∞

‖xni
− x̄‖ = lim

j→∞
‖xmj

− x̄‖
< lim
j→∞

‖xmj
− x̂‖

= lim
n→∞

‖xn − x̂‖.

This shows that ωw(xn) is a singleton. The proof is therefore complete. �
Corollary 3.1. (see [19, Theorem 3.1]). Let {xn} be generated by the algorithm
(3.3). Assume that limn→∞ ‖en‖ = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
Then {xn} converges weakly to a point in Ω provided {xn} is bounded.
Proof. In Theorem 3.1, put A = I the identity mapping of H, and λn = 0 for all
n ≥ 0. Then we have

yn = (1− βn)xn + βn(Axn − λnµF (Axn))
= (1− βn)xn + βnxn = xn.

Hence algorithm (3.4) reduces to (3.3). Therefore, from Theorem 3.1 we immediately
obtain the desired result. �

We remind the reader of the following fact. Although in [19, Theorem 3.1] there
is no requirement of the boundedness of {xn}, in the proof of [19, Theorem 3.1] one
can not see that the combination of Lemma 2.1 with the condition limn→∞ ‖en‖ = 0
implies the existence of the limit limn→∞ ‖xn − p‖ for p ∈ Ω. Thus, in [19, Theorem
3.1] the boundedness of {xn} must be required.

Next we let the parameter cn to vary with the iteration steps and introduce the
following generalized hybrid proximal point algorithm in the sense of Eckstein and
Bertsekas: {

xn+1 = (1− αn)xn + αnJcn(yn) + en,
yn = (1− βn)xn + βn(Axn − λnµF (Axn)), ∀n ≥ 0.

(3.9)

The convergence result for algorithm (3.9) is given as follows:
Theorem 3.2. Let F : H → H be a mapping such that for some constants κ, η > 0,
F is κ-Lipschitzian and η-strongly monotone. Let A : H → H be nonexpansive such
that Fix(A) ∩ Ω 6= ∅. Let µ ∈ (0, 2η/κ2), let x0 ∈ H, {cn} ⊂ (0,∞), {en} ⊂ H and
{λn}, {αn}, {βn} ⊂ [0, 1] satisfying the conditions:

(i)
∑∞
n=0 λn <∞;

(ii)
∑∞
n=0 ‖en‖ <∞;
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(iii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(iv) limn→∞ |βn+1 − βn| = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(v) cn ≥ c, where c is some positive constant;
(vi) limn→∞ |cn+1 − cn| = 0.

Then the sequence {xn} generated by (3.9) converges weakly to a point in Fix(A)∩Ω.
Proof. Pick p ∈ Fix(A)∩Ω and note that Jrp = p for all r > 0. Then utilizing Lemma
2.7 we have from (3.9)

‖yn − p‖ = ‖(1− βn)xn + βn(Axn − λnµF (Axn))− p‖
≤ (1− βn)‖xn − p‖+ βn‖(Axn − λnµF (Axn))− p‖
≤ (1− βn)‖xn − p‖+ βn[‖Aλnxn −Aλnp‖+ ‖Aλnp− p‖]
≤ (1− βn)‖xn − p‖+ βn[(1− λnτ)‖xn − p‖+ λnµ‖F (p)‖]
≤ ‖xn − p‖+ λnµ‖F (p)‖,

and hence

‖xn+1 − p‖ = ‖(1− αn)xn + αnJcn(yn) + en − p‖
≤ (1− αn)‖xn − p‖+ αn‖Jcn(yn)− p‖+ ‖en‖
≤ (1− αn)‖xn − p‖+ αn‖yn − p‖+ ‖en‖
≤ (1− αn)‖xn − p‖+ αn[‖xn − p‖+ λnµ‖F (p)‖] + ‖en‖
≤ ‖xn − p‖+ λnµ‖F (p)‖+ ‖en‖.

(3.10)

From Lemma 2.1, (i), (ii) and (3.10), we conclude that limn→∞ ‖xn − p‖ exists. This
implies that {xn} is bounded.

Put xn+1 = (1− αn)xn + αnzn. Then we have

zn+1 − zn = xn+2−(1−αn+1xn+1)
αn+1

− xn+1−(1−αn)xn

αn

= Jcn+1
(yn+1)− Jcn(yn) + en+1

αn+1
− en

αn
.

If cn ≤ cn+1, from Lemma 2.3, utilizing the resolvent identity

Jcn+1
(yn+1) = Jcn(

cn
cn+1

yn+1 + (1− cn
cn+1

)Jcn+1
(yn+1)),

we obtain

‖Jcn+1(yn+1)− Jcn(yn)‖ ≤ cn
cn+1
‖yn+1 − yn‖+ (1− cn

cn+1
)‖Jcn+1(yn+1)− yn‖

≤ ‖yn+1 − yn‖+ 1
c |cn+1 − cn|‖Jcn+1

(yn+1)− yn‖.
If cn > cn+1, again by Lemma 2.3,

‖Jcn(yn)− Jcn+1(yn+1)‖ = ‖Jcn+1( cn+1

cn
yn + (1− cn+1

cn
)Jcn(yn))− Jcn+1

(yn+1)‖
≤ cn+1

cn
‖yn − yn+1‖+ (1− cn+1

cn
)‖Jcn(yn)− yn+1‖

≤ ‖yn+1 − yn‖+ 1
c |cn+1 − cn|‖Jcn(yn)− yn+1‖.

Hence, from the above estimates, we have

‖Jcn+1
(yn+1)− Jcn(yn)‖ ≤ ‖yn+1 − yn‖+

K

c
|cn+1 − cn|, (3.11)

where K is a constant such that sup{‖Jcn+1
(yn+1)− yn‖, ‖Jcn(yn)− yn+1‖, n ≥ 0} ≤

K. Therefore, we have

‖zn+1 − zn‖ ≤ ‖Jcn+1
(yn+1)− Jcn(yn)‖+ ‖en+1‖

αn+1
+ ‖en‖

αn

≤ ‖yn+1 − yn‖+ K
c |cn+1 − cn|+ ‖en+1‖

αn+1
+ ‖en‖

αn
,
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which implies

lim sup
n→∞

(‖zn+1 − zn‖ − ‖yn+1 − yn‖) ≤ 0. (3.12)

Also, observe that

‖Aλn+1xn+1 −Aλnxn‖ ≤ ‖Aλn+1xn+1 −Aλn+1xn‖+ ‖Aλn+1xn −Aλnxn‖
≤ (1− λn+1τ)‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖,

and hence

‖yn+1 − yn‖ ≤ |βn − βn+1|‖xn+1‖+ (1− βn)‖xn+1 − xn‖

+|βn+1 − βn|‖Aλn+1xn+1‖+ βn‖Aλn+1xn+1 −Aλnxn‖

≤ |βn − βn+1|‖xn+1‖+ (1− βn)‖xn+1 − xn‖+ |βn+1 − βn|‖Aλn+1xn+1‖

+βn[(1− λn+1τ)‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖]

≤ ‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖

+|βn − βn+1|(‖xn+1‖+ ‖Aλn+1xn+1‖).

Since A and F are Lipschitzian and {xn} is bounded, we know that both {F (Axn)}
and {Aλnxn} are bounded. Hence from λn → 0 and |βn+1 − βn| → 0 it follows that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

This together with (3.12) implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.13)

It follows from (3.13) and Lemma 2.5 that

lim
n→∞

‖xn − zn‖ = 0.

So limn→∞ ‖xn+1 − xn‖ = 0. Consequently, we have

lim
n→∞

‖Jcn(yn)− xn‖ = 0. (3.14)

Furthermore, observe that for p ∈ Fix(A) ∩ Ω

‖yn − p‖2 = ‖(1− βn)xn + βn(Axn − λnµF (Axn))− p‖2
= ‖(1− βn)(xn − p) + βn(Axn − p)− βnλnµF (Axn)‖2
≤ ‖(1− βn)(xn − p) + βn(Axn − p)‖2 + 2‖(1− βn)(xn − p)
+βn(Axn − p)‖‖βnλnµF (Axn)‖+ ‖βnλnµF (Axn)‖2
≤ ‖(1− βn)(xn − p) + βn(Axn − p)‖2 + λnMµ‖F (Axn)‖
= (1− βn)‖xn − p‖2 + βn‖Axn − p‖2 − βn(1− βn)‖xn −Axn‖2
+λnMµ‖F (Axn)‖
≤ ‖xn − p‖2 − βn(1− βn)‖xn −Axn‖2 + λnMµ‖F (Axn)‖,
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where M is a constant such that M > 2‖xn − p‖ + µ‖F (Axn)‖. In the meantime,
observe also that

‖xn+1 − p‖2 = ‖(1− αn)xn + αnJcn(yn) + en − p‖2
≤ ‖(1− αn)(xn − p) + αn(Jcn(yn)− p)‖2 + 2〈en, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + αn‖yn − p‖2 + 2‖en‖‖xn+1 − p‖
≤ (1− αn)‖xn − p‖2 + αn[‖xn − p‖2 − βn(1− βn)‖xn −Axn‖2
+λnMµ‖F (Axn)‖] + 2‖en‖‖xn+1 − p‖
≤ ‖xn − p‖2 − αnβn(1− βn)‖xn −Axn‖2 + λnMµ‖F (Axn)‖]
+2‖en‖‖xn+1 − p‖
≤ ‖xn − p‖2 − αnβn(1− βn)‖xn −Axn‖2 +M(λnM + ‖en‖),

Consequently, we obtain

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1− βn)‖xn −Axn‖2 +M(λnM + ‖en‖),
and hence

αnβn(1− βn)‖xn −Axn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 +M(λnM + ‖en‖).
Since

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

λn → 0 and ‖en‖ → 0, we deduce from the existence of limn→∞ ‖xn − p‖ that

lim
n→∞

‖xn −Axn‖ = 0.

This together with (3.9) implies that

‖yn − xn‖ ≤ βn‖xn −Axn‖+ βnλnµ‖F (Axn)‖ ≤ ‖xn −Axn‖+ λnM → 0.

That is,
lim
n→∞

‖yn − xn‖ = 0.

Thus, we get from (3.14)

‖Jcn(xn)− xn‖ ≤ ‖Jcn(xn)− Jcn(yn)‖+ ‖Jcn(yn)− xn‖
≤ ‖xn − yn‖+ ‖Jcn(yn)− xn‖ → 0.

That is,
lim
n→∞

‖Jcn(xn)− xn‖ = 0. (3.15)

It follows from Lemma 2.4 and (3.15) that

lim
n→∞

‖Jc(xn)− xn‖ = 0.

By the same argument as in the proof of Theorem 3.1 we obtain {xn} converges
weakly to a point in Fix(A) ∩ Ω. The proof is therefore complete. �
Corollary 3.2. ([19, Theorem 3.2]). Let {xn} be generated by the algorithm (3.1).
Assume that the following conditions hold

(i)
∑∞
n=0 ‖en‖ <∞;

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(iii) cn ≥ c, where c is some positive constant;
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(iv) cn+1 − cn → 0.
Then {xn} converges weakly to a point in Ω.
Proof. In Theorem 3.1, put A = I the identity mapping of H, and λn = 0 for all
n ≥ 0. Then we have

yn = (1− βn)xn + βn(Axn − λnµF (Axn))
= (1− βn)xn + βnxn = xn.

Hence algorithm (3.9) reduces to (3.1). Therefore, from Theorem 3.2 we immediately
obtain the desired result. �

We observe that in general the proximal point algorithms have only weak conver-
gence. Recently some modified proximal point algorithms with strong convergence
have been proposed (see, e.g., [1,10,14,15,18,27,32]). Very recently, motivated by
Marino and Xu [12], Yao and Noor [19] suggested the following contraction proximal
point algorithm: for given u ∈ H, let the sequence {xn} be generated iteratively by

xn+1 = αnu+ γnxn + δnJcn(xn) + en, ∀n ≥ 0, (3.16)

where αn, γn, δn ∈ [0, 1] and αn + γn + δn = 1 (∀n ≥ 0), cn > 0 and en is an error.
We remark that algorithm (3.16) includes the algorithm of Marino and Xu [12] as
a special case. Now we introduce the following hybrid contraction proximal point
algorithm in the sense of Marino and Xu: for given u ∈ H, let the sequence {xn} be
generated iteratively by{

xn+1 = αnu+ γnxn + (1− αn − γn)Jcn(yn) + en,
yn = (1− βn)xn + βn(Axn − λnµF (Axn)), ∀n ≥ 0,

(3.17)

where µ ∈ (0, 2η/κ2), λn, αn, βn, γn ∈ [0, 1] and αn + γn ≤ 1 (∀n ≥ 0), cn > 0 and en
is an error. The convergence result for algorithm (3.17) is given as follows:
Theorem 3.3. Let F : H → H be a mapping such that for some constants κ, η > 0,
F is κ-Lipschitzian and η-strongly monotone. Let A : H → H be nonexpansive such
that Fix(A)∩Ω 6= ∅. Let µ ∈ (0, 2η/κ2), let x0, u ∈ H, {cn} ⊂ (0,∞), {en} ⊂ H and
{λn}, {αn}, {βn}, {γn} ⊂ [0, 1] satisfying the conditions:

(i)
∑∞
n=0 λn <∞;

(ii) limn→∞ αn = 0 and
∑∞
n=0 αn =∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;
(iv) limn→∞ |βn+1 − βn| = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(v) cn ≥ c, where c is some positive constant;
(vi) limn→∞ |cn+1 − cn| = 0;
(vii)

∑∞
n=0 ‖en‖ <∞.

Then the sequence {xn} generated by (3.17) converges strongly to PFix(A)∩Ωu, i.e.,
the nearest point projection of u onto Fix(A) ∩ Ω.
Proof. Take p ∈ Fix(A)∩Ω. Noting that each resolvent Jr is nonexpansive for r > 0,
we have

‖yn − p‖ = ‖(1− βn)xn + βn(Axn − λnµF (Axn))− p‖
≤ (1− βn)‖xn − p‖+ βn‖(Axn − λnµF (Axn))− p‖
≤ (1− βn)‖xn − p‖+ βn[‖Aλnxn −Aλnp‖+ ‖Aλnp− p‖]
≤ (1− βn)‖xn − p‖+ βn[(1− λnτ)‖xn − p‖+ λnµ‖F (p)‖]
≤ ‖xn − p‖+ λnµ‖F (p)‖,
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and hence

‖xn+1 − p‖ = ‖αnu+ γnxn + (1− αn − γn)Jcn(yn) + en − p‖

≤ αn‖u− p‖+ γn‖xn − p‖+ (1− αn − γn)‖Jcn(yn)− p‖+ ‖en‖
≤ αn‖u− p‖+ γn‖xn − p‖+ (1− αn − γn)‖yn − p‖+ ‖en‖

≤ αn‖u− p‖+ γn‖xn − p‖+ (1− αn − γn)[‖xn − p‖+ λnµ‖F (p)‖] + ‖en‖
≤ αn‖u− p‖+ (1− αn)‖xn − p‖+ λnµ‖F (p)‖+ ‖en‖.

By induction we obtain

‖xn+1 − p‖ ≤ max{‖u− p‖, ‖x0 − p‖}+ µ‖F (p)‖ ·
n∑
i=0

λi +

n∑
i=0

‖ei‖, ∀n ≥ 0.

Hence {xn} is bounded.
Next we show that ωw(xn) ⊂ Fix(A) ∩Ω. To this end we first prove that ‖xn+1 −

xn‖ → 0. Put xn+1 = γnxn + (1− γn)zn. Then we have

zn+1 − zn = xn+2−γn+1xn+1

1−γn+1
− xn+1−γnxn

1−γn

=
αn+1u+(1−αn+1−γn+1)Jcn+1

(yn+1)+en+1

1−γn+1
− αnu+(1−αn−γn)Jcn (yn)+en

1−γn
= ( αn+1

1−γn+1
− αn

1−γn )u+ 1−αn+1−γn+1

1−γn+1
(Jcn+1(yn+1)− Jcn(yn))

+( 1−αn+1−γn+1

1−γn+1
− 1−αn−γn

1−γn )Jcn(yn) + en+1

1−γn+1
− en

1−γn .

(3.18)
By the same argument as (3.11), we also have

‖Jcn+1
(yn+1)− Jcn(yn)‖ ≤ ‖yn+1 − yn‖+

K1

c
|cn+1 − cn|,

where K1 is some constant such that

sup{‖Jcn+1
(yn+1)− yn‖, ‖Jcn(yn)− yn+1‖, n ≥ 0} ≤ K1.

Then, we have

‖zn+1 − zn‖ ≤ | αn+1

1−γn+1
− αn

1−γn |‖u‖+ 1−αn+1−γn+1

1−γn+1
‖yn+1 − yn‖+

+ 1−αn+1−γn+1

1−γn+1

K1

c |cn+1 − cn|
+| 1−αn+1−γn+1

1−γn+1
− 1−αn−γn

1−γn |‖Jcn(yn)‖
+ ‖en+1‖

1−γn+1
+ ‖en‖

1−γn ,

which implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖yn+1 − yn‖) ≤ 0. (3.19)

Also, observe that

‖Aλn+1xn+1 −Aλnxn‖ ≤ ‖Aλn+1xn+1 −Aλn+1xn‖+ ‖Aλn+1xn −Aλnxn‖
≤ (1− λn+1τ)‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖,

and hence

‖yn+1 − yn‖ ≤ |βn − βn+1|‖xn+1‖+ (1− βn)‖xn+1 − xn‖

+|βn+1 − βn|‖Aλn+1xn+1‖+ βn‖Aλn+1xn+1 −Aλnxn‖
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≤ |βn − βn+1|‖xn+1‖+ (1− βn)‖xn+1 − xn‖+ |βn+1 − βn|‖Aλn+1xn+1‖
+βn[(1− λn+1τ)‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖]

≤ ‖xn+1 − xn‖+ |λn+1 − λn|µ‖F (Axn)‖
+|βn − βn+1|(‖xn+1‖+ ‖Aλn+1xn+1‖).

Since A and F are Lipschitzian and {xn} is bounded, we know that both {F (Axn)}
and {Aλnxn} are bounded. Hence from λn → 0 and |βn+1 − βn| → 0 it follows that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

This together with (3.19) implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.20)

It follows from (3.20) and Lemma 2.5 that

lim
n→∞

‖xn − zn‖ = 0.

Consequently,
lim
n→∞

‖xn+1 − xn‖ = 0. (3.21)

Note that

‖xn − Jcn(yn)‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Jcn(yn)‖
≤ ‖xn+1 − xn‖+ αn‖u− Jcn(yn)‖+ γn‖xn − Jcn(yn)‖+ ‖en‖,

that is,

‖xn − Jcn(yn)‖ ≤ 1

1− γn
‖xn+1 − xn‖+

αn
1− γn

‖u− Jcn(yn)‖+
1

1− γn
‖en‖.

This together with (ii), (iii), (vii) and (3.21) implies that

lim
n→∞

‖xn − Jcn(yn)‖ = 0. (3.22)

Furthermore, observe that for p ∈ Fix(A) ∩ Ω

‖yn − p‖2 = ‖(1− βn)xn + βn(Axn − λnµF (Axn))− p‖2
= ‖(1− βn)(xn − p) + βn(Axn − p)− βnλnµF (Axn)‖2
≤ ‖(1− βn)(xn − p) + βn(Axn − p)‖2 + 2‖(1− βn)(xn − p)
+βn(Axn − p)‖‖βnλnµF (Axn)‖+ ‖βnλnµF (Axn)‖2
≤ ‖(1− βn)(xn − p) + βn(Axn − p)‖2 + λnMµ‖F (Axn)‖
= (1− βn)‖xn − p‖2 + βn‖Axn − p‖2 − βn(1− βn)‖xn −Axn‖2
+λnMµ‖F (Axn)‖
≤ ‖xn − p‖2 − βn(1− βn)‖xn −Axn‖2 + λnMµ‖F (Axn)‖,

(3.23)
where M is a constant such that M > 2‖xn − p‖ + µ‖F (Axn)‖. In the meantime,
observe also that

‖xn+1 − p‖2 = ‖αn(u− p) + γn(xn − p) + (1− αn − γn)(Jcn(yn)− p) + en‖2

≤ ‖αn(u− p) + γn(xn − p) + (1− αn − γn)(Jcn(yn)− p)‖2 + 2〈en, xn+1 − p〉
≤ αn‖u− p‖2 + γn‖xn − p‖2 + (1− αn − γn)‖yn − p‖2 + 2‖en‖‖xn+1 − p‖

≤ αn‖u− p‖2 + γn‖xn − p‖2 + (1− αn − γn)[‖xn − p‖2 − βn(1− βn)‖xn −Axn‖2
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+λnMµ‖F (Axn)‖] + 2‖en‖‖xn+1 − p‖
≤ αn‖u− p‖2 + (1− αn)‖xn − p‖2 − (1− αn − γn)βn(1− βn)‖xn −Axn‖2

+λnMµ‖F (Axn)‖+ 2‖en‖‖xn+1 − p‖
≤ αn‖u− p‖2 + ‖xn − p‖2 − (1− αn − γn)βn(1− βn)‖xn −Axn‖2

+M(λnM + ‖en‖),
Consequently, we obtain

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + ‖xn − p‖2 − (1− αn − γn)βn(1− βn)‖xn −Axn‖2

+M(λnM + ‖en‖),
and so

(1− αn − γn)βn(1− βn)‖xn −Axn‖2

≤ αn‖u− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2 +M(λnM + ‖en‖)
≤ αn‖u− p‖2 + |‖xn − p‖ − ‖xn+1 − p‖|(‖xn − p‖+ ‖xn+1 − p‖) +M(λnM + ‖en‖)

≤ αn‖u− p‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) +M(λnM + ‖en‖).
Since

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1,

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

αn → 0, λn → 0 and ‖en‖ → 0, we deduce from ‖xn+1 − xn‖ → 0 that

lim
n→∞

‖xn −Axn‖ = 0.

This together with (3.17) implies that

‖yn − xn‖ ≤ βn‖xn −Axn‖+ βnλnµ‖F (Axn)‖ ≤ ‖xn −Axn‖+ λnM → 0.

That is,
lim
n→∞

‖yn − xn‖ = 0.

Thus, we get from (3.22)

‖Jcn(xn)− xn‖ ≤ ‖Jcn(xn)− Jcn(yn)‖+ ‖Jcn(yn)− xn‖
≤ ‖xn − yn‖+ ‖Jcn(yn)− xn‖ → 0.

That is,
lim
n→∞

‖Jcn(xn)− xn‖ = 0. (3.24)

It follows from Lemma 2.4 and (3.24) that

lim
n→∞

‖Jc(xn)− xn‖ = 0.

By the same argument as that in the proof of Theorem 3.1 we obtain {xn} converges
weakly to a point x̂ ∈ Fix(A) ∩ Ω.

Now let x∗ = PFix(A)∩Ωu. Since x̂ ∈ Fix(A) ∩ Ω and xn ⇀ x̂, we get that

lim sup
n→∞

〈u− x∗, xn − x∗〉 = 〈u− PFix(A)∩Ωu, x̂− PFix(A)∩Ωu〉 ≤ 0. (3.25)

Finally, applying Lemma 2.8 (ii), we have from (3.23) (take p = x∗)

‖xn+1 − x∗‖2 = ‖αn(u− x∗) + γn(xn − x∗) + (1− αn − γn)(Jcn(yn)− x∗) + en‖2
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≤ ‖αn(u− x∗) + γn(xn − x∗) + (1− αn − γn)(Jcn(yn)− x∗)‖2 + 2〈en, xn+1 − x∗〉
≤ ‖αn(u− x∗) + γn(xn − x∗) + (1− αn − γn)(Jcn(yn)− x∗)‖2 + 2‖xn+1 − x∗‖‖en‖
≤ ‖γn(xn − x∗) + (1− αn − γn)(Jcn(yn)− x∗)‖2 + 2αn〈u− x∗, xn+1 − x∗ − en〉

+2‖xn+1 − x∗‖‖en‖
≤ γn‖xn − x∗‖2 + (1− αn − γn)‖yn − x∗‖2 + 2αn〈u− x∗, xn+1 − x∗〉

+(2αn‖u− x∗‖+ 2‖xn+1 − x∗‖)‖en‖
≤ γn‖xn − x∗‖2 + (1− αn − γn)[‖xn − x∗‖2 − βn(1− βn)‖xn −Axn‖2

+λnMµ‖F (Axn)‖] + 2αn〈u− x∗, xn+1 − x∗〉+ (2αn‖u− x∗‖
+2‖xn+1 − x∗‖)‖en‖

≤ (1− αn)‖xn − x∗‖2 + λnMµ‖F (Axn)‖+ 2αn〈u− x∗, xn+1 − x∗〉
+(2αn‖u− x∗‖+ 2‖xn+1 − x∗‖)‖en‖

≤ (1− αn)‖xn − x∗‖2 + 2αn〈u− x∗, xn+1 − x∗〉
+λnM

2 + (2‖u− x∗‖+M)‖en‖, (3.26)

where the constant M > 2‖xn − x∗‖ + µ‖F (Axn)‖ for all n ≥ 0. Put tn = 2〈u −
x∗, xn+1 − x∗〉 and δn = λnM

2 + (2‖u − x∗‖ + M)‖en‖ for all n ≥ 0. Then the
inequality (3.26) is rewritten as

‖xn+1 − x∗‖2 ≤ (1− αn)‖xn − x∗‖2 + αntn + δn, ∀n ≥ 0. (3.27)

Since
∑∞
n=0 αn =∞ (due to (ii)), lim supn→∞ tn ≤ 0 (due to (3.25)) and

∑∞
n=0 δn <

∞ (due to (i), (vii)), it follows from Lemma 2.6 and (3.27) that {xn} converges
strongly to x∗ = PFix(A)∩Ωu. The proof is therefore complete. �
Corollary 3.3. Let F : H → H be a mapping such that for some constants κ, η > 0,
F is κ-Lipschitzian and η-strongly monotone. Let A : H → H be nonexpansive such
that Fix(A) ∩ Ω 6= ∅. Let µ ∈ (0, 2η/κ2), let x0, u ∈ H, c > 0, {en} ⊂ H and
{λn}, {αn}, {βn}, {γn} ⊂ [0, 1] satisfying the conditions:

(i)
∑∞
n=0 λn <∞;

(ii) limn→∞ αn = 0 and
∑∞
n=0 αn =∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;
(iv) limn→∞ |βn+1 − βn| = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(v)

∑∞
n=0 ‖en‖ <∞.

Then the sequence {xn} generated by the algorithm{
xn+1 = αnu+ γnxn + (1− αn − γn)Jc(yn) + en,
yn = (1− βn)xn + βn(Axn − λnµF (Axn)), ∀n ≥ 0,

converges strongly to PFix(A)∩Ωu, i.e., the nearest point projection of u onto Fix(A)∩
Ω.
Corollary 3.4 ([19, Theorem 3.3]). Let {xn} be generated by the contraction proximal
point algorithm (3.16). Assume that

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn =∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;
(iv) cn ≥ c, where c is some positive constant;
(v) cn+1 − cn → 0;
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(vi)
∑∞
n=0 ‖en‖ <∞.

Then {xn} converges strongly to PΩu, i.e., the nearest point projection of u onto Ω.
Proof. In Theorem 3.3, put A = I the identity mapping of H, and λn = 0 for all
n ≥ 0. Then we have

yn = (1− βn)xn + βn(Axn − λnµF (Axn))
= (1− βn)xn + βnxn = xn.

Hence algorithm (3.17) reduces to (3.16) with δn = 1 − αn − γn. Therefore, from
Theorem 3.3 we immediately obtain the desired result. �
Corollary 3.5. ([19, Corollary 3.1]). Let {xn} be generated by the algorithm

xn+1 = αnu+ γnxn + δnJc(xn) + en, ∀n ≥ 0,

where c > 0 is a constant. Assume that
(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn =∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;
(iv)

∑∞
n=0 ‖en‖ <∞.

Then {xn} converges strongly to PΩu, i.e., the nearest point projection of u onto Ω.
Remark 3.1. Let φ : H → R ∪ {∞} be a proper lower-semicontinuous convex
function. Let ∂φ be the subdifferential of φ; that is,

∂φ(x) = {z ∈ H : φ(y) ≥ φ(x) + 〈y − x, z〉, ∀y ∈ H}, ∀x ∈ dom(∂φ).

It is well-known [1] that ∂φ is a maximal monotone operator on H. The inclusion
0 ∈ ∂φ(x) is equivalent to x = argminv∈Hφ(v). Let T = ∂φ. Assume that the set Ω of
minimizers of φ over H is nonempty. If H is infinite dimensional, then Rockafellar’s
proximal point algorithm only has weak convergence, in general. However, our hybrid
contraction proximal point algorithm (3.17) in the sense of Marino and Xu, always has
strong convergence. In the meantime, there is no doubt that our problem of finding
an element of Fix(A) ∩ Ω is more general than the one of finding a point of Ω.
Remark 3.2. (1) It is clear that

∑∞
n=1 |cn+1 − cn| < ∞ implies cn+1 − cn → 0; (2)

We remove the assumption in that
∑∞
n=1 |λn+1 − λn| < ∞ or limn→∞ λn/λn+1 = 1

(see [20,22]), but we add the very weak restrictions that limn→∞ |βn+1− βn| = 0 and
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
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