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Abstract. In this paper, we will first prove the existence of fixed points for a weakly continuous,

strictly quasi bounded operator on a reflexive Banach space and a completely continuous, strictly
quasi bounded operator on any normed linear space. Using these results we can deduce the existence

of eigenvalues and surjectivity of quasi bounded operator in similar situations.
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1. Introduction

In [2] G. Isac and S.Z. Nemeth have proved some interesting results on fixed points,
eigenvalues and surjectivity. They proved their results for a non expansive mapping
defined on a reflexive Banach space. The result was proved by applying certain
conditions on the mapping and by using the help of Banach contraction principle. In
[4] In Sook Kim have proved that a countably condensing operator on a closed wedge in
a Banach space has a fixed point if it is strictly quasibounded, by using index theory
for such operators and from this he had deduced the eigenvalues and surjectivity.
Also in [1] we can find a result on surjectivity of a continuous, strictly quasi bounded
function which maps each bounded subset of a normed space X into a compact subset
of X. All the authors have used different methods to prove their results. Here we
will prove that any strictly quasi bounded, weakly continuous operator on a reflexive
Banach space has a fixed point. Also we will prove that a strictly quasi bounded,
completely continuous operator on any normed linear space has a fixed point. For
proving this we will use the well known Leray-Schauder alternative. Using these fixed
point theorems we will prove the existence of eigenvalues and surjectivity of some
quasi bounded mappings. Before proving these results let us recall some important
definitions and theorems.
Definition 1.1. Let X and Y be normed spaces and F : X → Y . F is weakly
continuous at x0 ∈ X if, for any sequence {xn} which converges weakly to x0,the
sequence {Fxn} converges weakly to Fx0.
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Definition 1.2. Let X and Y be metric spaces and F : X → Y . F is completely
continuous if the image of each bounded set in X is contained in a compact subset of
Y .
Definition 1.3. Let X be a normed space and F : X → X. F is quasi bounded if
lim sup
‖x‖→∞

‖Fx‖
‖x‖ < ∞ and it is strictly quasi bounded if lim sup

‖x‖→∞

‖Fx‖
‖x‖ < 1.

Theorem 1.4. ([8]) Let X be a reflexive Banach space, K a closed convex subset of
X and F a weakly continuous mapping of K into a bounded subset of K. Then F has
a fixed point in K.
Theorem 1.5. (Leray-Schauder alternative) ([3]) Let X be a normed linear
space, C ⊂ E be a convex set and let U be open in C such that 0 ∈ U . Then each
compact map F : U → C has at least one of the following two properties

(1) F has a fixed point
(2) There exists x ∈ ∂U and λ ∈ (0, 1) such that x = λ Fx where ∂Udenote

boundary of U .
Theorem 1.6. ([1]) A normed space X is reflexive iff every bounded sequence in X
has a weak convergent subsequence.
Theorem 1.7. ([1]) If a sequence {xn} in a normed space X is weak convergent then
it is bounded.

2. Main results

First let us prove a fixed point theorem for a strictly quasi bounded operator on a
reflexive Banach space.
Theorem 2.1. Let X be reflexive Banach space. F : X → X be a weakly continuous
and strictly quasi bounded operator on X. Then F has a fixed point in X.
Proof. For n = 1, 2, 3, ...... define Sn = {x ∈ X : ‖x‖ ≤ n}. We will prove that
F (Sn) ⊆ Sn for some n.

By contradiction, assume that F (Sn) is not a subset of Sn, for all n. Then for each
n = 1, 2, 3, ...... there exists xn ∈ Sn such that ‖Fxn‖ > n (∗).

Now if {xn} is a bounded sequence in X, since X is reflexive by Theorem 1.6, it
has a weak convergent subsequence {xni}. Then as F is weakly continuous {Fxni} is
a weakly convergent sequence in X. Therefore, by Theorem 1.7, {Fxni} is a bounded
sequence in X, which is a contradiction to (∗). Hence ‖xn‖ → ∞ as n →∞.
We have ‖Fxn‖ > n ≥ ‖xn‖, for all n. Therefore lim sup

‖x‖→∞

‖Fx‖
‖x‖ ≥ lim sup

‖xn‖→∞

‖Fxn‖
‖xn‖ ≥

1 which is a contradiction with the fact that F is strictly quasi bounded. Hence
F (Sn) ⊆ Sn for some n.

Then, using Theorem 1.4, we have that F has a fixed point in Sn and hence in X.
�

Corollary 2.2. Let X be reflexive Banach space. F : X → X be a weakly continuous
and quasi bounded operator on X. Let l := lim sup

‖x‖→∞

‖Fx‖
‖x‖ . Then for each λ > l, λ is

an eigenvalue of F provided F (0) 6= 0.
Proof. For x ∈ X, define G(x) = 1

λF (x) where λ > l.
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Let m = lim sup
‖x‖→∞

‖Gx‖
‖x‖ . Then m = l

λ < 1. Hence G is a strictly quasi bounded,

weakly continuous function from Xto X. Then by Theorem 2.1 G has a fixed point
x0 ∈ X. Further as F (0) 6= 0 we have G(0) 6= 0. Hence x0 6= 0, i.e., there exists a
non zero element x0 ∈ X such that Fx0 = λx0. Therefore λ is an eigenvalue of F . �

Corollary 2.3. Let X be reflexive Banach space. F : X → X be a weakly continuous
and quasi bounded operator on X. Then I − 1

λF is surjective for all λ > l where
l = lim sup

‖x‖→∞

‖Fx‖
‖x‖ .

Proof. Let y ∈ X. Define G(x) = y + 1
λF (x).

Let m = lim sup
‖x‖→∞

‖Gx‖
‖x‖ . Then m ≤ l

λ < 1. Hence G is a strictly quasi bounded,

weakly continuous function from X to X and hence by Theorem 2.1 G has a fixed
point x0 ∈ X. Then y + 1

λFx0 = x0. ie.,
(
I − 1

λF
)
x0 = y. Therefore I − 1

λF is
surjective. �

Before proving the next theorem let us discuss a very simple example which verifies
our arguments.
Example 2.4. Define F : R → R by Fx = 2

2x2+1 .
Then one can easily see that F is not a contraction, even it is not non expansive.

But it is strictly quasi bounded and weakly continuous operator on R. (Remember
that since R is finite dimensional both weak convergence and strong convergence
coincides in R). Clearly F has a fixed point which lies in (0, 1).

Further lim sup
‖x‖→∞

‖Fx‖
‖x‖ = 0 and any real number λ > 0 is an eigenvalue of F . �

Theorem 2.5. Let X be normed linear space, F : X → X be a completely continuous
and strictly quasi bounded operator on X. Then F has a fixed point in X.
Proof. Since F is strictly quasi bounded, l = lim sup

‖x‖→∞

‖Fx‖
‖x‖ < 1. Therefore there exists

r > 0 such that ‖Fx‖
‖x‖ < 1, ∀x ∈ X with ‖x‖ ≥ r.

If we suppose contrary, there exists x ∈ X with ‖x‖ = r and λ ∈ (0, 1) such that
x = λFx. Then ‖x‖ = |λ| ‖Fx‖ < ‖Fx‖ which is a contradiction.

Hence by Leray-Schauder alternative of F on {x : ‖x‖ ≤ r} (Theorem 1.5) F has
a fixed point. �

Corollary 2.6. Let X be normed linear space, F : X → X be a completely continuous
and quasi bounded operator on X. Let l = lim sup

‖x‖→∞

‖Fx‖
‖x‖ . Then for each λ > l, λ is

an eigenvalue of F provided F (0) 6= 0.

Corollary 2.7. Let X be normed linear space, F : X → X be a completely continuous
and quasi bounded operator on X. Then for all λ > l, I − 1

λF is surjective, where
l = lim sup

‖x‖→∞

‖Fx‖
‖x‖ .

Theorem 2.8. Let X be normed linear space, F : X → X be a completely continuous
operator such that l = lim sup

‖x‖→∞

‖Fx‖
‖x−Fx‖ < 1 . Then F has a fixed point.
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Proof. Since l = lim sup
‖x‖→∞

‖Fx‖
‖x−Fx‖ < 1, there exists r > 0 such that ‖Fx‖

‖x−Fx‖ < 1, ∀x ∈

X with ‖x‖ ≥ r.
Suppose there exists x ∈ X with ‖x‖ = r and λ ∈ (0, 1) such that x = λFx. Then,

‖x− Fx‖ = ‖λFx− Fx‖ = (1 − λ) ‖Fx‖ < ‖Fx‖, which is a contradiction since
x ∈ X and ‖x‖ = r.

Hence by Leray-Schauder alternative of F on {x : ‖x‖ ≤ r} (Theorem 1.5) F has
a fixed point. �

Theorem 2.9. Let X be normed linear space, F : X → X be a completely continuous
operator such that l = lim sup

‖x‖→∞

B(Fx,x)
B(x,x) < 1 , where B : X × X → R is a map which

satisfies the following conditions
(1) B (λx, y) = λB (x, y) for all λ > 0 and for all x, y ∈ E.
(2) B (x, x) > 0 for all x ∈ E with x 6= 0.

Then F has a fixed point in X.
Proof. Since l < 1, ∃r > 0 with B(Fx,x)

B(x,x) < 1, ∀x ∈ X with ‖x‖ ≥ r.
If we suppose by contradiction, there exists x ∈ X with ‖x‖ = r and λ ∈ (0, 1)

such that x = λFx. Then,

B (Fx, x) = B
(

1
λx, x

)
= 1

λB (x, x) > B (x, x)

which is a contradiction. Hence by Leray-Schauder alternative of F on {x : ‖x‖ ≤ r},
F has a fixed point in X. �

Corollary 2.10. Let X be normed linear space, F : X → X be a completely contin-
uous operator such that l = lim sup

‖x‖→∞

B(Fx,x)
B(x,x) < ∞ and F (0) 6= 0. Then if λ > l, λ is

an eigenvalue of F .
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