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1. INTRODUCTION

The concept of b-metric space or generalizations of it appeared in works of N.
Bourbaki [11], I.A. Bakhtin [2], S. Czerwik [15], J. Heinonen [19], etc. Some examples
of b-metric spaces and some fixed and strict fixed point theorems in b-metric spaces
can also be found in M. Boriceanu, A. Petrugel and I.A.Rus [5], M. Boriceanu [§],
[6], M. Bota [7]. I. Ekeland in 1974 [16] formulated a variational principle, which has
applications in many domains of mathematics, including fixed point theory. Later
Borwein and Preiss [9] gave another form of this principle suitable for applications
in subdifferential theory. Ekeland’s variational principle has many generalizations,
see [23], [24] and the very recent books of Borwein and Zhu [10], Meghea [21] and
their references. FEkeland’s variational principle is the main tool in proving the so-
called Caristi fixed point theorem in complete metric spaces, see [10] and [21]. In this
paper we give a version of Ekeland’s variational principle in b-metric spaces and, as
consequence, we will also obtain a Caristi type fixed point theorem in a complete b-
metric space. Another recent generalizations of Caristi fixed point theorem in metric
spaces can be found in T. Cardinali, P. Rubbioni [12], A. Amini-Harandi [1].

2. PRELIMINARIES

We will first give the definition of a b-metric space.

Definition 1.1. (Bakhtin [2], Czerwik [15]) Let X be a set and let s > 1 be a
given real number. A functional d : X x X — R, is said to be a b-metric if and only
if for all x,y, z € X the following conditions are satisfied:

(1) d(x,y) =0 if and only if x = y;
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(2) d(z,y) = d(y, z);
(3) d(z,z) < sld(x,y) + d(y, 2)].

The pair (X, d) is called a b-metric space.

The class of b-metric spaces is larger than the class of metric spaces, since a b-
metric space is a metric space, when s = 1 in the third assumption of the above
definition. Some examples of b-metric spaces are given by V. Berinde [3], S. Czerwik
[15], J. Heinonen [19].

If (X,d) is a b-metric space and Y is a nonempty subset of X, then we de-
note (as in metric spaces) by diam(Y) the diameter of the set Y, i.e., diam(Y) :=
sup{d(a,d) | a,b e Y}.

Example 1.2. Let X be a set with the cardinal card(X) > 3. Suppose that
X = X; U X, is a partition of X such that card(X;) > 2. Let s > 1 be arbitrary.
Then, the functional d : X x X — R, defined by:

0, xz=y
d(z,y) =14 2s, z,y€ X
1, otherwise

is a b-metric on X with coefficient s > 1.
Example 1.3. The set [P(R) (with 0 < p < 1), where IP(R) := {(z,) C

R| Z |z,|P < oo}, together with the functional d : IP(R) x IP(R) — R,

n=1

(oo}
d(x,y) = (Z |xn - yn|p)l/p’
n=1
(where © = (2,,),y = (y,) € IP(R)) is a b-metric space with coefficient s = 2'/7 > 1.
Notice that the above result holds for the general case IP(X) with 0 < p < 1, where
X is a Banach space.

Example 1.4. The space LP[0,1] (where 0 < p < 1) of all real functions xz(t),
t € [0, 1] such that fol |z(t)|Pdt < 0o, together with the functional

1
) = (| 1o(0) = y(®Pd0)"7, for each a,y € L7(0.1),
0

is a b-metric space. Notice that s = 21/7.
We will present now the notions of convergence, compactness, closedness and com-
pleteness in a b-metric space.
Definition 1.5. Let (X, d) be a b-metric space. Then a sequence (x,, )nen in X is
called:
(a) convergent if and only if there exists 2 € X such that d(x,,z) — 0 as
n — +o0o. In this case, we write lim z,, = x.

n—oo
(b) Cauchy if and only if d(zy,, z,,) — 0 as m,n — +oo.
Remark 1.6. Notice that in a b-metric space (X,d) the following assertions hold:
(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;
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(i) (X, i) is an L-space (see Fréchet [18], Blumenthal [4]);
(iv) in general, a b-metric is not continuous;
(v) in general, a b-metric does not induce a topology on X.

Taking into account of (iii), we have the following concepts.

Definition 1.7. Let (X, d) be a b-metric space. A subset Y C X is called:

(i) closed if and only if for each sequence (z,)nen in Y which converges to an
element x, we have x € Y;

(ii) compact if and only if for every sequence of elements of Y there exists a sub-
sequence that converges to an element of Y.

The b-metric space (X, d) is complete if every Cauchy sequence in X converges in
X.

Example 1.8. Let E be a Banach space, let P be a cone in E with intP # () and
let < be a partial ordering with respect to P. A mapping d: X x X — FE is called a
cone metric on the nonempty set X if the following axioms are satisfies:

1) 0 < d(zx,y) for all z,y € X and d(z,y) = 0 if and only if z = y;

2) d(z,y) = d(y,x), for all z,y € X

3) d(z,y) < d(z,z) +d(z,y), for all z,y,z € X.

The pair (X, d), where X is a nonempty set and d is a cone metric is called a cone
metric space.

Notice that (see Lemma 5 in [20]) that if the cone P is normal with constant K,
then the cone metric d : X x X — F is continuous, i.e. if (x,), (y,) are sequences in
X with z, — « and y,, — y as n — oo, then d(x,,y,) — d(z,y), as n — oc.

Let E be a Banach space and P be a normal cone in E with the coefficient of
normality denoted by K. Let D : X x X — R be defined by D(z,y) = ||d(z,y)|,
where d : X x X — E is a cone metric space. Then (X, D) is a b-metric space with
constant s := K > 1.

Moreover, since the topology 74 generated by the cone metric d coincides with the
topology Tp generated by the b-metric D, (see [22], Theorem 2.4), the b-metric D is
continuous.

3. EKELAND VARIATIONAL PRINCIPLE AND CONSEQUENCES

We begin this section with Cantor’s intersection theorem in b-metric spaces.
Lemma 2.1. Let (X,d) be a b-metric space. Suppose that (X,d) is complete.
Then, for every descending sequence {Fy,}n>1 of nonempty closed subsets of X such
oo

that diam(F,) — 0 as n — oco. Then the intersection ﬂ F,, contains one and only
n=1
one point.

Proof. We suppose that (X, d) is complete. For each positive integer n, let z,, be
any point in F;,. Then by the hypothesis, x,,, T, 11, ni2, ... all lie in F,. Given € > 0,
there exists some integer ng such that diam(F,,) < &. Now, Zpn,, Tng+1s Tngt2, --- all
lie in F,,,. For m,n > ng, we have that d(z,,z,) < diam(F,,) < €. This shows that
the sequence {x,,},,>1 is a Cauchy sequence in the complete b-metric space X. So, it
is convergent. Let x € X be such that lim z, = x. Now for any given n, we have

n—oo



24 ON EKELAND’S VARIATIONAL PRINCIPLE IN B-METRIC SPACES

thet z,,,zn4+1,... C Fy,. In view of this, x = lim =z, € F, = F,, since F, is closed.

n—oo

Hence, = € ﬂ F,. Ifye ﬂ F, and y # z, then d(y,x) = a > 0. There exists n € N
n=1 n=1

large enough such that diam(F,) < a = d(y, x), which ensures that y ¢ F,,. Hence, y

cannot be in ﬂ F,,. Thus, the intersection contains only one point. [J
n=1
We present now Ekeland’s variational principle in b-metric spaces.
Theorem 2.2. Let (X,d) be a complete b-metric space (with s > 1), such that the
b-metric d is continuous and let f : X — R be a lower semicontinuous, proper and
lower bounded mapping. Then, for every xo € X and € > 0 with

flwo) < inf f(@)+ e,

there exists a sequence (xp)neny C X and x. € X such that:

(1) &y — xe aS N — 00 (1)

(1) d(xe, xy) < 2%, neN (2)

) fac) + 3 5 o) < floo) < o 1(0) +o 3
+Z—dz Tn) > fxe) +Z d(xe,xy), for every x # xz.. (4)

n=0

Proof. We consider the set
T'(xo) = {z € X|f(x) + d(z,z0) < f(x0)}- (5)

Using the fact that f is a lower semicontinuous mapping and z¢ € T(z¢), we obtain
that T'(zg) is nonempty and closed in (X, d) and for every y € T(z)

d(y, w0) < (o) = f(y) < f(zo) — inf f() <e. ©)

We choose x1 € T'(z0) such that f(z1) 4 d(z1,20) < infyep@{f(@) +d(z,20)} + 5
and let

1
T(ar) = {w € T(ao)|f(z +Zé (r,2:) < f(a1) +d(ar, x0) }.
=0

Inductively, we can suppose that x,_1 € T(z,—2) was already chosen and we
consider

n—1
T(xp_1) := {33 €T(xn_2)|f(z)+ Z %d(x, x;) <
=0
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Let us choose z,, € T'(x,—1) such that
n—1

fle) + 3 = )

=0

IN

€T (Tp—-1)

n—1
1
< inf {f(m) +> S d(x,xi)} + 2551__ (8)
and define the set

T(x,) = {zxzeT(rp—1)|f(x)+ Z %d(z,xi) <

=0
SN (CARD DEY C)E )

As before, the set T'(x,) is nonempty and closed. From the relations (8) and (9) it
follows that for each y € T'(z,,) we have

n—1 n—1
1 1 1
—d(y,zn) < |flza)+ Z:; o d(xnafi)‘| — | f)+ ; P wi)]
n—1 1 n—1 1
< ) + —d(xp,x;)| —  inf r) + —d(x, x;
[f( )+ 3 )] %T(%_l){f( )+ 3 e >}
€
< an )
- 2ngn
therefore, for all y € T'(x,,) we have
d(y, zn) < 2% (10)

We can observe that d(y,z,) — 0 as n — oo, so diam T'(z,,) — 0. Because (X, d)
is a complete b-metric space, from Cantor’s intersection theorem (see Lemma 2.1) we
have that ﬂ (x5,) = {z:}. From (6), (10) we obtain that z. € X satisfies (2). Thus
Ty, — T S 570 — oo

Moreover, for all z # x. we have = ¢ m , so there exists m € N such that
n=0

m—1
1
+Z .%‘.TZ >fxm +ZOE .’L'm,!L'l
i=

From (5), (7) and (8), for every g > m, we have that

m—1
)2 fam) 4 3 Sllam, ) 2 o)+ 3 e )
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Thus (3) and (4) hold. O

We have the following consequence of Ekeland’s variational principle in b-metric
spaces.

Corollary 2.3. Let (X,d) be a complete b-metric space (with s > 1), such that the
b-metric d is continuous and let f : X — R be a lower semicontinuous, proper and
lower bounded mapping. Then, for every e > 0 there exists a sequence (xp)neny C X
and z* € X such that:

(i) zp — zeyz: € X,n — 00

(i) Fla) + i L doea) < inf @) e

(ii1) f(z) + Z si" d(x,xy) > flxe) + Z si" d(xe,xp), for any x € X.
n=0 n=0

Next, we will give an extension of Caristi’s fixed point theorem.

Theorem 2.4. Let (X,d) be a complete b-metric space (with s > 1), such that
the b-metric d is continuous. Let T': X — X be an operator for which there exists a
lower semicontinuous mapping f : X — R, such that

d(u,v) + sd(u, T(u)) > d(T(u),v) (11)
s2
s—1

Then T has at least one fixed point.

d(u, T(w)) < f(u) — f(T(w)), for any u,v € X (12)

Proof. We suppose that for all x € X we have that T'(z) # z. Using Corollary 2.3
for f, we obtain that, for each € > 0 there exists a sequence (z,)nen in X, such that
T, — T asn — oo,z € X and

P+ 30 ) > o) + Y - d(re,w0),
n=0 n=0

for every x € X. If, in the above inequality, we put = := T'(x.), since T(z¢) # x., we
get that

f@0) = FT@) < Y = d(T (). 0,) = 3 o).
Using (11) for u = z.,v = z,, we Ta(x)ze -
fa) ~ FT(@) < 3 2 dlo T(a) (13)
In (12) we choose u = .. Then -
P e T) < f(x) — f(T(2). (14

s—1
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Moreover, from (13) we get that

2
fa) = F(T(@2) < —— d(a=, T(a2). (15)
If we compare the inequalities (14) and (15), we obtain that
52 52
e T) < fa) - (T@) < S d@eT@), (10

which is a contradiction. Thus, there exists z* € X such that «* € T(z*). O
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