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Abstract. This paper is devoted to study the existence of positive solutions of second-order bound-

ary value problem

−u′′ + Mu = h(t)f(t, u), t ∈ (0, 1)

with Neumann boundary conditions

u′(0) = u′(1) = 0,

where M > 0, f ∈ C([0, 1] × R+, R+). h(t) is allowed to be singular at t = 0 and t = 1. The

arguments are based only upon the positivity of the Green’s function and the fixed point theorem of
cone expansion and compression of convex function type.
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1. Introduction

Recently, the existence and multiplicity of positive solutions for nonlinear ordinary
differential equations and difference equations have been studied extensively. The
main tools used are fixed-point theorems. Fixed-point theorems and their applications
to nonlinear problems have a long history, some of which is documented in Zeidler’s
book [7], and the recent book by Agarwal, O’Regan and Wong [1] contains an excellent
summary of the current results and applications. The fixed point theorem of cone
expansion and compression of convex function type [8] is an extension of the fixed
point theorem of cone expansion and compression of norm type that is usually referred
to as Guo-Krasnosel’skii fixed point theorem, a proof of which can be found in [3].
In this paper, we are concerned with the second-order two-point Neumann boundary
value problem

−u′′ + Mu = h(t)f(t, u), t ∈ (0, 1), (1.1)

u′(0) = u′(1) = 0, (1.2)

where M > 0 and f ∈ C([0, 1] × R+, R+). Recently, Neumann boundary value
problems have deserved the attention of many researchers, see [2, 4, 5, 9, 6], and the
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references therein. The goal of this paper is to study the existence results for second-
order Neumann boundary value problem (1.1) and (1.2) under the weaker conditions
by the fixed point theorem of cone expansion and compression of convex function
type.

2. Preliminaries and lemmas

In Banach space C[0, 1] in which the norm is defined by ‖u‖ = max
0≤t≤1

|u(t)| for any

u ∈ C[0, 1]. We set P = {u ∈ C[0, 1]|u(t) ≥ 0, t ∈ [0, 1]} be a cone in C[0, 1]. The
function u is said to be a positive solution of BVP(1.1),(1.2) if u ∈ C[0, 1] ∩ C2(0, 1)
satisfies (1.1), (1.2) and u(t) > 0 for t ∈ (0, 1).

Let G(t, s) be the Green’s function of the problem (1.1), (1.2) with f(t, u) ≡ 0 (see
[4], [5]), that is,

G(t, s) =


ch(m(1− t))ch(ms)

mshm
, 0 ≤ s ≤ t ≤ 1,

ch(m(1− s))ch(mt)
mshm

, 0 ≤ t ≤ s ≤ 1,

where m =
√

M, chx =
ex + e−x

2
, shx =

ex − e−x

2
. Obviously, G(t, s) is continuous

on [0, 1]× [0, 1] and G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1. After direct computations we get

0 <
1

mshm
= α ≤ G(t, s) ≤ β =

ch2m

mshm
, ∀ 0 ≤ t, s ≤ 1. (2.1)

We make the following assumptions:
(H1) h : (0, 1) → [0,+∞) is continuous, and

0 <

∫ 1

0

h(t)dt < +∞;

(H2) f : [0, 1]× R+ → R+ is continuous.
Let

(Au)(t) =
∫ 1

0

G(t, s)h(s)f(s, u(s))ds, t ∈ [0, 1]. (2.2)

We can verify that the nonzero fixed points of the operator A are positive solutions
of the problem (1.1), (1.2).

Define
K = {u ∈ P |u(t) ≥ γ‖u‖, t ∈ [0, 1]},

where 0 < γ = α
β < 1. Then K is subcone of P .

Lemma 2.1. Suppose that (H1) and (H2) are satisfied. Then A : K → K is a
completely continuous operator.
Proof. Let u ∈ K. Since G(t, s) ≥ 0, (t, s) ∈ [0, 1]× [0, 1], by the definition, we have
(Au)(t) ≥ 0, t ∈ [0, 1]. On the other hand, by (2.1) we have

(Au)(t) =
∫ 1

0

G(t, s)h(s)f(s, u(s))ds ≥ α

∫ 1

0

h(s)f(s, u(s))ds, (2.3)
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‖Au‖ = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds ≤ β

∫ 1

0

h(s)f(s, u(s))ds, (2.4)

for every t ∈ [0, 1]. By (2.3) and (2.4) we have (Au)(t) ≥ γ‖Au‖. Thus, we assert
that A : K → K. It follows from [10] that if (H1)− (H2) are satisfied, A : K → K is
completely continuous. �

Our main results concerning positive solutions of (1.1) and (1.2) will arise as ap-
plications of the following fixed point theorem due to Zhang and Sun [8].
Lemma 2.2. Let K be a cone in a real Banach space E, Ω1 and Ω2 be two bounded
open sets in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Suppose that A : K ∩ (Ω2\Ω1) → K
is completely continuous and ρ : K → [0,+∞) is a uniformly continuous convex
functional with ρ(θ) = 0 and ρ(u) > 0 for u 6= θ. If one of the two conditions

(A1) ρ(Au) ≤ ρ(u), ∀ u ∈ K ∩ ∂Ω1 and inf
u∈K∩∂Ω2

ρ(u) > 0, ρ(Au) ≥ ρ(u), ∀ u ∈
K ∩ ∂Ω2

or
(A2) inf

u∈K∩∂Ω1
ρ(u) > 0, ρ(Au) ≥ ρ(u), ∀ u ∈ K ∩ ∂Ω1 and ρ(Au) ≤ ρ(u), ∀ u ∈

K ∩ ∂Ω2 is satisfied, then A has at least one fixed point in K ∩ (Ω2\Ω1).

3. Existence results

In this section, we impose growth conditions on f and then apply Lemma 2.2 to
establish the existence of positive solutions of (1.1), (1.2).
Theorem 3.1. Suppose that (H1) and (H2) are satisfied. If there exist constants a
and b with 0 < a < b satisfying

(H3) a < γ2b;

(H4) f(t, u) ≤ 1

β

∫ 1

0

h(t)dt

u, ∀ (t, u) ∈ [0, 1]×
[
0,

a

γ

∫ 1

0

h(t)dt

]
;

(H5) f(t, u) ≥ 1

α

∫ 1

0

h(t)dt

u, ∀ (t, u) ∈ [0, 1]×
[ γb∫ 1

0

h(t)dt

,
b

γ

∫ 1

0

h(t)dt

]
.

Then Neumann BVP (1.1), (1.2) has at least one positive solution.
Proof. Define ρ : K → R+ by ρ(u) =

∫ 1

0
h(t)u(t)dt.

We observe here that, ρ : K → R+ is a uniformly continuous convex function with
ρ(θ) = 0 and for u ∈ K\{θ}, from the definition of K, such that

ρ(u) =
∫ 1

0

h(t)u(t)dt ≥ γ

∫ 1

0

h(t)dt‖u‖ > 0

Set
Ω1 ∩K = {u ∈ K|ρ(u) < a}, Ω2 ∩K = {u ∈ K|ρ(u) < b}.

It is clear that θ ∈ Ω1 ∩K, Ω1 ∩K ⊂ Ω2 ∩K. If u ∈ Ω1 ∩K, we have

a ≥ ρ(u) ≥ γ

∫ 1

0

h(t)dt‖u‖,
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and thus ‖u‖ ≤ a

γ

∫ 1

0

h(t)dt

which implies that Ω1 ∩K is bounded. In the same way

we know that for each u ∈ Ω2 ∩K, ‖u‖ ≤ b

γ

∫ 1

0

h(t)dt

.

If u ∈ ∂Ω1 ∩K, then ρ(u) = a and ‖u‖ ≤ a

γ

∫ 1

0

h(t)dt

. It follows from (H4) that

ρ(Au) =
∫ 1

0

h(t)
[ ∫ 1

0

G(t, s)h(s)f(s, u(s))ds
]
dt

≤ β

∫ 1

0

h(t)dt

∫ 1

0

h(s)f(s, u(s))ds

≤
∫ 1

0

h(s)u(s)ds = ρ(u).

If u ∈ ∂Ω2 ∩ K, then ρ(u) = b and ‖u‖ ≤ b

γ

∫ 1

0

h(t)dt

. Note that this yields

inf
u∈K∩∂Ω2

ρ(u) = b > 0. Since

b =
∫ 1

0

h(t)u(t)dt ≤
∫ 1

0

h(t)dt‖u‖,

we have that ‖u‖ ≥ b∫ 1

0

h(t)dt

and thus for each t ∈ [0, 1], u(t) ≥ γ‖u‖ ≥ γb∫ 1

0

h(t)dt

.

So it follows from (H5) that

ρ(Au) =
∫ 1

0

h(t)
[ ∫ 1

0

G(t, s)h(s)f(s, u(s))ds
]
dt

≥ α

∫ 1

0

h(t)dt

∫ 1

0

h(s)f(s, u(s))ds

≥
∫ 1

0

h(s)u(s)ds = ρ(u).

Thus the hypothesis (A1) of Lemma 2.2 is satisfied, and therefore the proof is
finished.
Theorem 3.2. Suppose that (H1) and (H2) are satisfied. If there exist constants r
and R with 0 < r < R satisfying

(H6) r < γ2R;
(H7) f(t, u) ≤ r

β

∫ 1

0

h(t)dt

, ∀ (t, u) ∈ [0, 1]×
[
0,

r

γ

]
;
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(H8) f(t, u) ≥ R

α

∫ 1

0

h(t)dt

, ∀ (t, u) ∈ [0, 1]× [γR, +∞).

Then Neumann BVP (1.1), (1.2) has at least one positive solution.
Proof. Define ρ̃ : K → R+ by ρ̃(u) =

∫ 1

0
u(t)dt.

We observe here that, ρ̃ : K → R+ is a uniformly continuous convex function with
ρ̃(θ) = 0 and for u ∈ K\{θ}, from the definition of K, such that

ρ̃(u) =
∫ 1

0

u(t)dt ≥ γ‖u‖ > 0.

Set
Ω1 ∩K = {u ∈ K|ρ̃(u) < r}, Ω2 ∩K = {u ∈ K|ρ̃(u) < R}.

It is clear that θ ∈ Ω1∩K, Ω1 ∩K ⊂ Ω2∩K. If u ∈ Ω1∩K, we have r ≥ ρ̃(u) ≥ γ‖u‖,
and, thus, ‖u‖ ≤ r

γ
which implies that Ω1 ∩K is bounded. In the same way we know

that for each u ∈ Ω2 ∩K, ‖u‖ ≤ R

γ
.

If u ∈ ∂Ω1 ∩K, then ρ̃(u) = r and ‖u‖ ≤ r

γ
. It follows from (H7) that

ρ̃(Au) =
∫ 1

0

[ ∫ 1

0

G(t, s)h(s)f(s, u(s))ds
]
dt

≤ β

∫ 1

0

h(s)f(s, u(s))ds

≤ β · r

β

∫ 1

0

h(t)dt

·
∫ 1

0

h(s)ds = r = ρ̃(u).

If u ∈ ∂Ω2 ∩K, then ρ̃(u) = R and ‖u‖ ≤ R

γ
. Note that this yields inf

u∈K∩∂Ω2
ρ̃(u) =

R > 0. Since

R =
∫ 1

0

u(t)dt ≤
∫ 1

0

dt‖u‖ = ‖u‖,

we have that ‖u‖ ≥ R and thus for each t ∈ [0, 1], u(t) ≥ γ‖u‖ ≥ γR. So it follows
from (H8) that

ρ̃(Au) =
∫ 1

0

∫ 1

0

G(t, s)h(s)f(s, u(s))dsdt

≥ α

∫ 1

0

h(s)f(s, u(s))ds

≥ α · R

α

∫ 1

0

h(t)dt

·
∫ 1

0

h(s)ds = R = ρ̃(u).

Thus the hypothesis (A1) of Lemma 2.2 is satisfied, and therefore the proof is
finished.
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4. An example

Consider the Neumann boundary value problem{
−u′′(t) + u(t) = f(u(t)), 0 < t < 1,
u′(0) = u′(1) = 0,

(4.1)

where f : [0,+∞, ) → [0,+∞) is defined by

f(u) =


√

u

108
, 0 ≤ u ≤ 1,

1
72

u2 − 1
216

, 1 ≤ u ≤ +∞.

BVP (4.1) can be regarded as a BVP of form (1.1), (1.2), where M = 1, h(t) ≡
1, f(t, u) ≡ f(u). It is clear conditions (H1) and (H2) are satisfied, and 3

4 ≤ G(t, s) ≤
9, γ = 1

12 .
Taking r = 1

12 , R = 24. Thus for 0 ≤ u ≤ 1, we have f(u) ≤ 1
108 and for u ≥ 288,

we have f(u) ≥ 32, then conditions (H6)− (H8) are satisfied. Consequently, Theorem
3.2 guarantees the BVP (4.1) has a positive solution.
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