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Abstract. In this paper, a concept of monotone generalized contraction in partially ordered metric
spaces is introduced and some fixed point and common fixed point theorems for the so-called weak

contractions are proved. The concept of weak contraction was introduced by Kada, Suzuki and

Takahashi [Math. Japonica, 44 (1996), 381-391], in connection to the concept of w-distance on
a metric space. The results of the present paper represent extensions and improvements of some

theorems given in the setting of partially ordered metric spaces by Nieto and Rodriguez-Lopez
[Contractive mapping theorems in partially ordered sets and applications to ordinary differential

equations, Order 22 (2005), 223-239; Existence and uniqueness of fixed point in partially ordered

sets and applications to ordinary differential equations, Acta Math. Sinica, 23 (2007) 2205-2212] and
Ran and Reurings [A fixed point theorem in partially ordered sets and some applications to matrix

equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443], to more general classes of contractive

type mappings in partially ordered metric spaces.
Key Words and Phrases: Non-decreasing mapping, w-distance, fixed point, common fixed point,

ordered metric space.

2010 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

The well-known Banach fixed point theorem for contraction mappings has been
generalized and extended in many directions ([1]-[7], [11], [15], [16], [8], [17]-[18], [21],
[25], [26], [19]). Recently Nieto and Rodriguez-Lopez [19], [20], Ran and Reurings [24]
and Petruşel and Rus [22] presented some new results for contractions in partially
ordered metric spaces. The multivalued case in the setting of an ordered complete
gauge space was very recently discussed by G. Petruşel in [23]. The main idea in [19],
[20], [24] is to combine the iterative procedures in the contraction principle with the
monotone iterations technique.

Recall that if (X,≤) is a partially ordered set, then F : X → X is said to be
non-decreasing if x, y ∈ X, x ≤ y implies F (x) ≤ F (y).

The main result of Nieto and Rodriguez-Lopez [19], [20] and Ran and Reurings
[24] is the following fixed point theorem.
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Theorem 1.1. Let (X,≤) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose F : X → X is a non-
decreasing mapping and there exists 0 ≤ k < 1 such that d(F (x), F (y)) ≤ kd(x, y),
for all x, y ∈ X with x ≤ y.
Suppose that one of the following assertions holds:

(a) F is continuous or
(b) if {xn} ⊂ X is a non-decreasing sequence with xn → x in X, then xn ≤ x for

all n ∈ N.
If there exists an x0 ∈ X with x0 ≤ F (x0), then F has a fixed point.

In this paper, a concept of monotone generalized contraction in partially ordered
metric spaces is introduced and some fixed point and common fixed point theorems
for the so-called weak contractions are proved.

2. Preliminaries

Kada, Suzuki and Takahashi [13] introduced in 1996, the concept of w-distance
on a metric space and proved some fixed point theorems. In the sequel, we state the
definition of a w-distance and we state a lemma which we will use in the main sections
of this work. For other details, we refer the reader to [13], [27] and [28].

Definition 2.1. ([13]) Let (X, d) be a metric space. Then a function p : X ×X −→
[0,∞) is called a w-distance on X if the following are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(b) for any x ∈ X, p(x, .) : X −→ [0,∞) is lower semi-continuous;
(c) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

Let us recall that a real-valued function f defined on a metric space X is said to
be lower semi-continuous at a point x0 in X if either lim inf

xn→x0
f(xn) = ∞ or f(x0) ≤

lim inf
xn→x0

f(xn), whenever xn ∈ X for each n ∈ N and xn → x0 [12]).

Let us give some examples of w-distance.

Example 2.2. ([13]) Let (X, d) be a metric space. Then the metric d is a w-distance
on X.

Example 2.3. ([13]) Let (X, ‖.‖) be a normed space. Then the function p : X×X −→
[0,∞) defined by p(x, y) = ‖x‖+ ‖y‖ for every x, y ∈ X is a w-distance on X.

Example 2.4. ([13]) Let (X, ‖.‖) be a normed space. Then the function p : X×X −→
[0,∞) defined by p(x, y) = ‖y‖ for every x, y ∈ X is a w-distance on X.

Example 2.5. ([30]) Let X = {a, b}. Then the function p : X×X −→ [0,∞) defined
by

p(x, y) =

{
0, if x = a and y = b,

1, otherwise,

is a w-distance on X.
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Lemma 2.6. ([13, 28]) Let X be a metric space with metric d and p be a w-distance
on X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in [0,∞)
converging to zero, and let x, y, z ∈ X. Then the following hold:

(1) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if
p(x, y) = 0 and p(x, z) = 0, then y = z;

(2) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then d(yn, z) → 0;
(3)if p(xn, xm) ≤ αn for any n, m ∈ N with m > n, then {xn} is a Cauchy sequence;
(4) if p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

3. Fixed point theorems

We introduce first the following concept.

Definition 3.1. Suppose (X,≤) is a partially ordered set and f : X → X be a self
mapping on X. We say f is inverse increasing if for x, y ∈ X,

f(x) ≤ f(y) implies x ≤ y. (3.1)

Our first main result is a fixed point theorem for graphic contractions on a partially
oredered metric space endowed with a w-distance.

Theorem 3.2. Let (X,≤) be a partially ordered set and let d : X × X → R+ be
a metric on X such that (X, d) is a complete metric space. Suppose that p is a w-
distance in (X, d). Let A : X → X be a non-decreasing mapping and there exists
k ∈ [0, 1) such that

p(Ax,A2x) ≤ kp(x,Ax), for all x ≤ Ax. (3.2)

Suppose also that:
(i) for every x ∈ X with x ≤ Ax

inf{p(x, y) + p(x,Ax)} > 0, for every y ∈ X with y 6= Ay. (3.3)

(ii) there exists x0 ∈ X such that x0 ≤ Ax0.
Then A has a fixed point in X.

Proof. If Ax0 = x0, then the proof is finished. Suppose that Ax0 6= x0. Since x0 ≤ Ax0

and A is non-decreasing, we obtain x0 ≤ Ax0 ≤ A2x0 ≤ ... ≤ An+1x0 ≤ .... Hence,
for each n ∈ N we have

p(Anx0, A
n+1x0) ≤ knp(x0, Ax0). (3.4)

Then, for n ∈ N with m > n we successively have

p(Anx0, A
mx0) ≤ p(Anx0, A

n+1x0) + · · ·+ p(Am−1x0, A
mx0)

≤ knp(x0, Ax0) + · · ·+ km−1p(x0, Ax0)

≤ kn

1− k
p(x0, Ax0).

By Lemma 2.6 (3), we conclude that {Anx0} is Cauchy sequence in (X, d). Since
(X, d) is a complete metric space, there exists z ∈ X such that limn→∞Anx0 = z.
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Let n ∈ N be arbitrary but fixed. Then since {Amx0} converges to z in (X, d) and
p(Anx0, ·) is lower semi-continuous, we have

p(Anx0, z) ≤ lim inf
m→∞

p(Anx0, A
mx0) ≤

kn

1− k
p(x0, Ax0).

Assume that z 6= Az. Since Anx0 ≤ An+1x0, by (3.3), we have

0 < inf{p(Anx0, z) + p(Anx0, A
n+1x0)}

≤ inf{ kn

1− k
p(x0, Ax0) + knp(x0, Ax0)} = 0.

This is a contradiction. Therefore, we have z = Az. �

Another result of this type is the following.

Theorem 3.3. Let (X,≤) be a partially ordered set, let d : X ×X → R+ be a metric
on X such that (X, d) is a complete metric space. Suppose that p is a w-distance in
(X, d). Let A : X → X be a non-decreasing mapping and there exists k ∈ [0, 1) such
that

p(Ax,A2x) ≤ kp(x,Ax), for all x ≤ Ax. (3.5)
Assume that one of the following assertions holds:

(i) for every x ∈ X with x ≤ Ax

inf{p(x, y) + p(x,Ax)} > 0, for every y ∈ X with y 6= Ay. (3.6)

(ii) if both {xn} and {Axn} converge to y, then y = Ay;
(iii) A is continuous.

If there exists x0 ∈ X with x0 ≤ Ax0, then A has a fixed point in X.

Proof. The case (i), was proved in Theorem 3.2.
Let us prove first that (ii)=⇒(i). Assume that there exists y ∈ X with y 6= Ay
such that inf{p(x, y) + p(x, Ax) : x ≤ Ax} = 0. Then there exists {zn} ∈ X such
that zn ≤ Azn and limn→∞{p(zn, y) + p(zn, Azn)} = 0. Then p(zn, y) −→ 0 and
p(zn, Azn) −→ 0. By Lemma 2.6, we have that Azn −→ y. We also have

p(zn, A2zn) ≤ p(zn, Azn) + p(Azn, A2zn)
≤ (1 + k)p(zn, Azn) −→ 0 as n →∞.

Again by Lemma 2.6, we get A2zn −→ y. Put xn = Azn. Then both {xn} and {Axn}
converges to y. Thus, by (ii) we have y = Ay. Thus (ii)=⇒(i) holds.
Now, we show that (iii)=⇒(ii). Let A be continuous. Further assume that {xn} and
{Axn} converges to y. Then we have Ay = A(limn→∞ xn) = limn→∞ xn = y. �

4. Common fixed point theorem for commuting mappings

The following theorem was given by Jungck [9] and it represents a generalization
of the Banach contraction principle in complete metric spaces.

Theorem 4.1. Let f be a continuous self mapping on a complete metric space (X, d)
and let g : X −→ X be another mapping, such that the following conditions are
satisfied:
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(a) g(X) ⊆ f(X);
(b) g commutes with f ;
(c) d(g(x), g(y)) ≤ kd(f(x), f(y)), for all x, y ∈ X and for some 0 ≤ k < 1.

Then f and g have a unique common fixed point.

The next example shows that if the mapping f : X → X is continuous with respect
to a metric d on X and g : X → X satisfies the condition

p(g(x), g(y)) ≤ kp(f(x), f(y)), for all x, y ∈ X and some k ∈ [0, 1),

then, in general, g may be not continuous in (X, d).

Example 4.2. Let X := (R, |.|) be a normed linear space. Consider Example 2.4
with w-distance defined by

p(x, y) = |y| for every x, y ∈ R.

Consider the functions f and g defined by f(x) = 4 and

g(x) =

{
1, if x ∈ Q,

0, if x ∈ R \Q.

Then p(g(x), g(y)) = |g(y)| ≤ 1 ≤ 1
3p(f(x), f(y)) = |f(y)|

3 = 4
3 .

Definition 4.3. Let (X,≤) be a partially ordered set and g, h : X → X. By defini-
tion, we say that g is h-non-decreasing if for x, y ∈ X,

h(x) ≤ h(y) implies g(x) ≤ g(y). (4.1)

Our next result is a generalization of the above mentioned result of Jungck [9], for
the case of a weak contraction with respect to a w-distance.

Theorem 4.4. Let (X,≤) be a partially ordered set and let d : X × X → R+ be
a metric on X such that (X, d) is a complete metric space. Suppose that p is a w-
distance on X. Let f, g : X −→ X be mappings that satisfy the following conditions:

(a) g(X) ⊆ f(X);
(b) g is f-non-decreasing and f is inverse increasing;
(c) g commutes with f and f, g are continuous in (X, d);
(d) p(g(x), g(y)) ≤ kp(f(x), f(y)) for all x, y ∈ X with x ≤ y and some 0 < k < 1.
(e) there exists x0 ∈ X such that (i) f(x0) ≤ g(x0) and (ii) f(x0) ≤ f(g(x0)).

Then f and g have a common fixed point u ∈ X. Moreover, if g(v) = g2(v) for all
v ∈ X, then p(u, u) = 0.

Proof We claim that for every f(x) ≤ g(x)

inf{p(f(x), g(x)) + p(f(x), z) + p(g(x), z) + p(g(x), g(g(x)))} > 0

for every z ∈ X with g(z) 6= g(g(z)). For the moment suppose the claim is true. Let
x0 ∈ X with f(x0) ≤ g(x0). By (a) we can find x1 ∈ X such that f(x1) = g(x0). By
induction, we can define a sequence {xn}n ∈ X such that

f(xn) = g(xn−1). (4.2)
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Since f(x0) ≤ g(x0) and f(x1) = g(x0), we have

f(x0) ≤ f(x1). (4.3)

Then from (b), we get g(x0) ≤ g(x1), which means, by (4.2), that f(x1) ≤ f(x2).
Again by (b) we get g(x1) ≤ g(x2), that is, f(x2) ≤ f(x3). By this procedure, we
obtain

g(x0) ≤ g(x1) ≤ g(x2) ≤ g(x3) ≤ · · · ≤ g(xn) ≤ g(xn+1) ≤ · · ·. (4.4)

Hence from (4.2) and (4.4) we have f(xn−1) ≤ f(xn) and by (3.1) we have xn−1 ≤ xn.
By induction we get, for n ≥ 1, that

p(f(xn), f(xn+1)) = p(g(xn−1), g(xn))
≤ kp(f(xn−1), f(xn)) ≤ · · · ≤ knp(f(x0), f(x1)).

This implies that, for m,n ∈ N with m > n,

p(f(xn), f(xm))
≤ p(f(xm−1, f(xm)) + p(f(xm−2), f(xm−1)) + · · ·+ p(f(xn), f(xn+1))

≤ p(f(x0), f(x1))
m−1∑
j=n

kj ≤ kn

1− k
p(f(x0), f(x1)).

Thus, by Lemma 2.6, we obtain that {f(xn)} is a Cauchy sequence in (X, d). Since
(X, d) is complete, there exists y ∈ X such that lim

n→∞
f(xn) = y. As a result the

sequence g(xn−1) = f(xn) tends to y as n → +∞ and hence {g(f(xn))}n converges
to g(y) as n → +∞. However, g(f(xn)) = f(g(xn)), by the commutativity of f and
g, implies that f(g(xn)) converges to f(y) as n → +∞. Since the limit is unique,
we get f(y) = g(y) and, thus, f(f(y)) = f(g(y)). On the other hand, by lower
semi-continuity of p(x, ·) we have, for each n ∈ N, that

p(f(xn), y) ≤ lim inf
m→∞

p(f(xn), f(xm)) ≤ kn

1− k
p(f(x0), f(x1)),

p(g(xn), y) ≤ lim inf
m→∞

p(f(xn+1), f(xm)) ≤ kn+1

1− k
p(f(x0), f(x1)).

Notice that, by (4.3), (4.2) and (4.1) we obtain f(x0) ≤ f(f(x1)) and thus, by (4.1),
we get g(x0) ≤ g(f(x1)). Then f(x1) ≤ g(f(x1)) = f(g(x1)) = f(f(x2)). By (4.1) we
get that g(x1) ≤ g(f(x2)) and thus f(x2) ≤ f(g(x2)).
Continuing this process we get thet f(xn) ≤ f(g(xn)), for n ≥ 0, and, by (3.1), we
get xn ≤ g(xn), for n ≥ 0. Using now the condition (d), we have

p(g(xn), g(g(xn))) ≤ kp(f(xn), f(g(xn))
= kp(g(xn−1), g(g(xn−1)))
≤ k2p(f(xn−1), f(g(xn−1)))
= k2p(g(xn−2), g(g(xn−2)))
≤ · · · ≤ knp(f(x1), g(f(x1))).
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We will show that g(y) = g(g(y)). Suppose, by contradiction, that g(y) 6= g(g(y))).
Then, we have:

0 < inf{p(f(x), g(x)) + p(f(x), y) + p(g(x), y) + p(g(x), g(g(x))) : x ∈ X}
≤ inf{p(f(xn), g(xn)) + p(f(xn), y) + p(g(xn), y) + p(g(xn), g(g(xn))) : n ∈ N}
= inf{p(f(xn), f(xn+1)) + p(f(xn), y) + p(g(xn), y) + p(g(xn), g(g(xn))) : n ∈ N}

≤ inf
n
{knp(f(x0), f(x1)) +

kn

1− k
p(f(x0), f(x1)) +

kn+1

1− k
p(f(x0), f(x1))

+ knp(f(x1), g(f(x1))) : n ∈ N} = 0.

This is a contradiction. Therefore g(y) = g(g(y)). Thus, g(y) = g(g(y)) = f(g(y)).
Hence u := g(y) is a common fixed point of f and g.

Furthermore, if g(v) = g(g(v)) for all v ∈ X, we have

p(g(y), g(y)) = p(g(g(y)), g(g(y)))
≤ kp(f(g(y)), f(g(y))) = kp(g(y), g(y)),

which implies that, p(g(y), g(y)) = 0.
Now it remains to prove the initial claim. Assume that there exists y ∈ X with

g(y) 6= g(g(y)) and

inf{p(f(x), g(x)) + p(f(x), y) + p(g(x), y) + p(g(x), g(g(x))) : x ∈ X} = 0.

Then there exists {xn} such that

lim
n→∞

{p(f(xn), g(xn)) + p(f(xn), y) + p(g(xn), y) + p(g(xn), g(g(xn)))} = 0.

Since p(f(xn), g(xn)) −→ 0 and p(f(xn), y) −→ 0, by Lemma 2.6, we have

lim
n→∞

g(xn) = y. (4.5)

Also, since p(g(xn), y) −→ 0 and p(g(xn), g(g(xn))) −→ 0, by Lemma 2.6, we have

lim
n→∞

g(g(xn)) = y. (4.6)

By (4.5), (4.6) and the continuity of g we have g(y) = g(limn g(xn)) = limn g(g(xn)) =
y. Therefore, g(y) = g(g(y)), which is a contradiction. Hence, if g(y) 6= g(g(y)), then

inf{p(f(x), g(x)) + p(f(x), y) + p(g(x), y) + p(g(x), g(g(x))) : x ∈ X} > 0. �
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