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Abstract. In this paper we use some fixed point principles to study the convergence of the iterates
of Stancu operators. To do this we shall investigate the existence of an invariant expression and a

Volterra interval for some classes of positive linear operators on C[0, 1], preserving constant and only

constant functions. Stancu’s operators are relevant examples of such operators.
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1. Introduction

Let α, β ∈ R, 0 ≤ α ≤ β and n ∈ N∗. In the paper [9], D.D. Stancu studied the
following linear positive operators (see also [1] and [2])

Sn,α,β : C[0, 1] → C[0, 1]

defined by

Sn,α,β(f)(x) :=
n∑

k=0

f

(
k + α

n + β

)(
n

k

)
xk(1− x)n−k.

In [7] we established the following results on the convergence of the sequence of iterates
of Stancu operators.

Theorem 1.1. Let n ∈ N∗ and β > 0. Then for all f ∈ C[0, 1]

Sm
n,0,β(f)(x) → f(0) as m →∞,

uniformly with respect to x ∈ [0, n
n+β ].

Theorem 1.2. Let n ∈ N∗ and α > 0. Then for all f ∈ C[0, 1]

Sm
n,α,α(f)(x) → f(1) as m →∞,

uniformly with respect to x ∈ [ α
n+α , 1].
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Relative to the above results the authors of the paper [3] have the following opinion:
,, . . . due to the fact that the operators considered neither reproduce linear functions
nor interpolate the function at the endpoints, the results formulated by Rus were
limited to proper compact subinterval of [0, 1].” On the other hand we established in
[6] the following abstract result (see also [8]):

Theorem 1.3. Let X be a nonempty set and A : X → X be an operator. The
following statements are equivalent:

(i) FA = FAn 6= ∅, ∀n ∈ N∗;
(ii) there exists an L-space structure on X, →, such that, A : (X,→) → (X,→)

is weakly Picard operator;
(iii) there exists a metric d on X such that, A : (X, d) → (X, d) is weakly Picard

operator;
(iv) there exists α ∈]0, 1[, a complete metric d on X and a partition of X, X =⋃

λ∈Λ

Xλ, such that:

(a) A(Xλ) ⊂ Xλ, FA ∩Xλ = {x∗λ}, ∀λ ∈ Λ;
(b) A

∣∣
Xλ

: Xλ → Xλ is an α-contraction with respect to d;
(v) there exists α ∈]0, 1[ and a complete metric d on X such that:

(a) A : (X, d) → (X, d) is orbitally continuous;
(b) d(A2(x), A(x)) ≤ αd(x, A(x)), ∀x ∈ X.

The aim of this paper is to use this abstract result, as an intuition, to realize a
complete study of the convergence of the iterates of Stancu’s operators. To do this
we shall study the existence of an invariant expression and of a Volterra interval for
these operators.

2. Invariant expression of positive linear operators preserving
constant and only constant functions

Let ϕk ∈ C([0, 1], R+), k = 0, n and 0 ≤ a0 < a1 < . . . < an−1 < an ≤ 1. We
suppose that:

(1ϕ) {ϕ0, . . . , ϕn} is linearly independent;

(2ϕ)
n∑

k=0

ϕk(x) = 1, ∀x ∈ [0, 1].

Let us consider the following linear positive operator

A : C[0, 1] → C[0, 1], A(f) :=
n∑

k=0

f(ak)ϕk.

From (2ϕ) it follows that: the constant functions are fixed points of the operator A.
Moreover we have

Lemma 2.1. Let us suppose that the conditions (1ϕ) and (2ϕ) are satisfied. Then
the following statements are equivalent:
(3ϕ,a) f ∈ C[0, 1], A(f) = f ⇒ f is a constant function;
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(4ϕ,a) rank
(
[ϕi(ak)]− In+1

)
= n.

Proof. First we remark that if f is a fixed point of A, then f =
n∑

i=0

piϕi, with pi ∈ R,

i = 0, n. Since p0 = 1, . . . , pn = 1 is a solution, we get that rank
(
[ϕi(ak)]−In+1

)
≤ n.

Thus, we have (3ϕ,a) iff we have (4ϕ,a). �

Definition 2.1. Let c = (c0, . . . , cn) ∈ Rn+1, c 6= 0. By definition the expression,
n∑

i=0

cif(ai), is an invariant expression by A iff

n∑
i=0

ciA(f)(ai) =
n∑

i=0

cif(ai), ∀f ∈ C[0, 1].

Lemma 2.2. Let the conditions (1ϕ), (2ϕ) and (3ϕ,a) be satisfied. Then there exists
a unique c∗ ∈ Rn+1, such that:

(1) c∗ ≥ 0,
n∑

i=0

c∗i = 1;

(2)
n∑

i=0

c∗i A(f)(ai) =
n∑

i=0

c∗i f(ai), ∀f ∈ C[0, 1].

Proof. Let us determine c ∈ Rn+1, c 6= 0, such that

(1I)
n∑

i=0

ciA(f)(ai) =
n∑

i=0

cif(ai), ∀f ∈ C[0, 1].

It is clear that we have (1I) if and only if

(2I)
n∑

i=0

ciϕk(ai) = ck, k = 0, n.

Let K := {c ∈ Rn+1 | ci ≥ 0,

n∑
i=0

ci = 1} ⊂ Rn+1. We consider the function

T : K → K, T (c) :=
( n∑

i=0

ciϕ0(ai), . . . ,
n∑

i=0

ciϕn(ai)
)

.

The invariance of K with respect to T follows from the fact that the matrix [ϕk(ai)]
is a stochastic matrix (see, for example, Chapter 9 in [4]). From the Brouwer fixed
point theorem there exists c∗ ∈ K such that T (c∗) = c∗. From Lemma 2.1 it follows
that there exists such a unique fixed point. �

Remark 2.1. If ϕk(ai) > 0, for all k, i ∈ {0, 1, . . . , n}, then c∗i > 0 for i = 0, n.

Remark 2.2. If A is as in Lemma 2.2 and is a weakly Picard operator in
(C[0, 1],

unif−→ ) (see [8]), then

A∞(f) =
n∑

i=0

c∗i f(ai).
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Indeed, from (1I) it follows that
n∑

i=0

c∗i A
m(f)(ai) =

n∑
i=0

c∗i f(ai), ∀m ∈ N∗,

which implies that
n∑

i=0

c∗i A
∞(f)(ai) =

n∑
i=0

c∗i f(ai).

Since A∞ ∈ FA, we have that A∞(f) is a constant function and A∞(f) =
n∑

i=0

c∗i f(ai).

Now the problem to study is the following one: In which conditions on ϕi and ai,
i = 0, n, the operator A is weakly Picard operator?

3. Operators with a Volterra interval and with values in Πn

Let E ⊂ R be an interval. We denote by Πn(E) the set of all polynomial functions
on E with values in R. Let A : C[a, b] → C[a, b] be an operator.

Definition 3.1. A non-degenerate interval E ⊂ [a, b] is a Volterra interval for A iff
f, g ∈ C[a, b], f

∣∣
E

= g
∣∣
E
⇒ A(f) = A(g).

If A is an operator with a Volterra interval E, then we define the operator AE :
C(E) → C(E) by AE(f) := A(f̃), where f̃ ∈ C[0, 1] such that f̃

∣∣
E

= f .

Example 3.1. For the Stancu operators, Sn,0,β, the interval E := [0, n
n+β ] is a

Volterra interval.

Example 3.2. For the Stancu operators, Sn,α,α, the interval E := [ α
n+α , 1] is a

Volterra interval.

We have

Lemma 3.1. Let A : C[a, b] → C[a, b] be an operator. We suppose that:
(i) the operator A has a Volterra interval E ⊂ [a, b];
(ii) A(C[a, b]) ⊂ Πn[a, b].

Then the following statements are equivalent:

(a) A is weakly Picard operator on (C[a, b],
unif−→);

(b) AE is weakly Picard operator on (C(E),
unif−→).

4. Iterates of the operator A in §2

It is well known that if a linear positive operator A : C[0, 1] → C[0, 1] is with
FA = Π1[0, 1] then A(f)(0) = f(0) and A(f)(1) = f(1), for all f ∈ C[0, 1] (see, for
example [5]). For the operator A in §2 in the case that FA = Π0[0, 1] we have

Theorem 4.1. We suppose that the conditions (1ϕ), (2ϕ), (3ϕ,a) and the following
are satisfied:
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(5ϕ,a) ϕi(x) > 0 for all i = 0, n and x ∈ [a0, an];
(6ϕ) ϕi, i = 0, n, are polynomial functions.

Then:
(a) there exists in K (see the proof of Lemma 2.2) a unique c∗ such that

n∑
i=0

c∗i A(f)(ai) = c∗i f(ai), ∀f ∈ C[0, 1].

Moreover, c∗ ∈ K̊.

(b) A is weakly Picard operator on (C[0, 1],
unif−→) and A∞(f) =

n∑
i=0

c∗i f(ai).

Proof. From Lemma 2.2 it follows (a). Let us prove (b). To do this we consider the
Banach space (C[0, 1], ‖·‖∞). Let for α ∈ R,

Xα := {f ∈ C[0, 1] |
n∑

i=0

c∗i f(ai) = α}.

We remark that:
(1) Xα is a closed subset of C[0, 1], ∀α ∈ R;
(2) A(Xα) ⊂ Xα, ∀α ∈ R;
(3) C[0, 1] =

⋃
α∈R

Xα, is a partition of C[0, 1].

Now we shall prove that the restriction of A to Xα, A
∣∣
Xα

: Xα → Xα is a Picard
operator. Since ϕi, i = 0, n, are polynomial functions, it is sufficient (see Lemma 3.1)
to prove that (Am(f))m∈N∗ converges on [a0, an]. Let Yα := {f

∣∣
[a0,an]

| f ∈ Xα}. Let
I := [a0, an]. Let AI : Yα → Yα be defined by AI(f)(x) := A(f)(x), x ∈ I.
Now we shall prove that the operator AI is a contraction with respect to d‖·‖∞ . Since
f, g ∈ Yα implies that f − g ∈ Y0, one need to prove that there exists l ∈]0, 1[ such

that ‖AI(f)‖∞ ≤ l‖f‖∞, ∀f ∈ Y0. Since
n∑

i=0

c∗i f(ai) = 0, for f ∈ Y0 and c∗i > 0, we

have |AI(f)(x)| =
∣∣∣∣ n∑
k=0

f(ak)ϕk(x)
∣∣∣∣ ≤ max x∈I

0≤k≤n

(
1− ϕk(x)

)
‖f‖∞. Thus,

‖AI(f)‖∞ ≤ l‖f‖∞, ∀f ∈ Y0, with l := max
x∈I

0≤k≤n

(
1− ϕk(x)

)
.

�

5. Iterates of Stancu operators

From Theorem 1.1 and the Lemma 3.1, we have the following theorem.

Theorem 5.1. Let n ∈ N∗ and β > 0. Then the operator Sn,0,β is weakly Picard

operator on (C[0, 1],
unif−→) and

S∞n,0,β(f) = f(0), ∀f ∈ C[0, 1].
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From Theorem 1.2 and the Lemma 3.1 we have the folloing result.

Theorem 5.2. Let n ∈ N∗ and α > 0. Then the operator Sn,α,α is weakly Picard

operator on (C[0, 1],
unif−→) and

S∞n,α,α(f) = f(1), ∀f ∈ C[0, 1].

For the case 0 < α < β we have the following result.

Theorem 5.3. The operator Sn,α,β is weakly Picard operator on (C[0, 1],
unif−→) and

S∞n,α,β(f) =
n∑

i=0

c∗i f

(
i + α

n + β

)
,

where c∗ ∈ Rn+1 is the unique solution in K of the following system
n∑

i=0

ci

(
i + α

n + β

)n(
1− i + α

n + β

)n−k

= ck, k = 0, n.

Proof. With ai := i+α
n+β and ϕi(x) := xi(1 − x)n−i, i = 0, n, we are in the conditions

of Theorem 4.1. �

Remark 5.1. By some simple calculations we have

S∞1,α,β(f) =
(

1− α

β

)
f

(
α

1 + β

)
+

α

β
f

(
1 + α

1 + β

)
.

Thus, Theorem 5.1 corrects Proposition 2.5.5 in [2].

Remark 5.2. Let D ⊂ Rp be a compact set with D̊ 6= ∅. In a joint paper with O.
Agratini, we extend the above results for a linear positive operator A on (C(D),

unif−→)
with FA = Π0(D). For the case of a sequence (An)n∈N of linear positive operators
with An → 1C(D) as n →∞ we also study the limit of the coupled iterates Am

n .
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